e s TSN R

Appendices

Appendix
Table Of Contents

Page A--1
TABLE OF CONTENTS
Appendix A: MRL Format Description
General Descriptioncvvocsaasconuassaoacascnssnassspuusonsssssys AA-1
The MRL ItémScceccenvescunornncunsvsncsananonussnouossnss AA-1
Chains ...cveeccucnnassscenassunnssnsnscoavccanncouosanasssssaunsss AA-3
Byte Stream Representation of an MRL Link Item c.cevvcnvusasana AA-5
Appendix B: Reserved Words/Standard ldentifiers
Reserved Words and Symbolsceccncnanne GoweewmEEeuwa e AB-1
Standard ldentifiers ..c.ueuevuwccncnaanamauascasscnancucaasssossss AB-1
Appendix C: ASCil Character Set

ASCIl Character Set Table .cucecensnvunnncnas wmasvemsmssmoEmsnE.. AC-1

Appendix D: Language Description

Language Description.ceccsucsnanscncsannunoanncvnnsnaasanscwsananss AD-1

Appendix
Table Of Contents

Page A--2
Appendix E: Bibliography
1. Bibliography ...coconnesvsccnces swamamea cBemsmuNwcemEEsesan e aesswos AE-T
Appendix F: Esror Messages
1. Compiler Error Messages c.cuvovwsannssaavassan wwam e waun wesvuwaaas AF-1
1.1, Errors in Pass 1 tiscucovavcooracncesnouaonasoccsuansannnmaesssa AF -1
1.2. Errors in Pass 2 and 3 .c..cuanovcannarnansansusuononnansssss AF-3
1.3 Additional Errors for Pass 1 ... viensvoonnawesnvonanacnonenacus AF -6
1.4 Additional Errors for Pass 3 cv.uvcuvacunvounassvsnanenonsssns AF-7
1.5. Additional Errors for Pass 4 ..cuccecovvanncannaaa wasnweva ewuw AF-8
1.6. Other Errors cu.uicscssounacassososannuossanaunocsannoesnosus AF -9
1.6.1 Internal Errors vueeroscsasescoonnssannsoosanansesscseos AF-9
1.6.2 Compiler-Parts Related Errors cucuiseruasvcswsnssnonsns AF-9
1.6.3. Commandline Related Errors c.o.ecuvucorcssasvcnnnunsens AF-10
1.6.4 File 1/0O Related Errors vuweevescoanonesnanacanunnsess AF-10
2. Linker Error MeSSQgEeS .csscvcmsscncacennssascnannss cosamcunuoanss AF-T11
3. Runtime Error MeSSagesS cocvcwsvuanaccenoconsusauonvnosscasnnasssn AF-15
4, MR Error MesSsages .cansscacnnanos ssucuusomeae cmuncesea seesessmunae AF-17

5. Compiler Error Messages Shorthandccauo0e- heman e comsssume AF-19

MRL Format Description
General Description / MRL Iltems
Page AA-1

MRL FORMAT DESCRIPTION

Chapter 1. General Description

The MRL format is byte oriented. |t consists of a number of link items.
Each link item contains a number of information bytes.

An MRL file is a sequence of link items with their associated information bytes. it
bears close resemblance to a Microsoft REL file, but is byte oriented to allow a
linker that is written in a high level language to operate at reasonable speed.

Some REL items don't have a MRL relative. Read the Assembly Language Interfacing
Section in the Advanced Programming Guide for more information about how to
write a translatable assembler program and how to do the actual translation.

Chapter 2. The MRL Items

16 MRL items are defined. They are listed below in order of appearance in the
definition of the Mrlltem enumeration type.

'card' means 2 byte representation of a cardinal number, 'name' means ASCI]
representation of a name delimited by a 0C byte. They are the MRL equivalents of
the REL 'A' and 'B' fields. Whereas the REL 'B' field is limited to at most 8
characters, an MRL name field is theoretically unlimited; however, ML the MRL
linker allows for 24 characters at most. Longer names will be clipped.

Item Name Usage
EndFile card Marks end of MRL file, 'card' is just junk.
Offset card Contrary to the REL format, this item stands just

before the head of an ChnExt MRL ltem, lts 'card’
value is added to the value of the chain symbol. All
items in the chain are replaced by the resulting
value.

MRL Format Description

MRL Items
Page AA-2

Item Name Usage

Dword card Card is a data relative word, add start of moduie
data segment to ‘card' and generate the resulting
word in COM file.

Cword card Code relative word. Add the start of the current
modules code segment to fcard' before loading.

Datasiz card Size of data segment in bytes.

Codesiz card Size of code segment in bytes.

EndMod card End of module. If 'card' is <> QFFFFH then ‘card' is
the offset of the initialization code start in the
code segment. The linker will generate a call to
this address before starting the main program.

ChnLoc card Chain the current iocading location address. 'card’ is

the address of the chain's head. See description of
chains below.

Dpublic card name Export item 'name', add the current module's data
segment starting address to ‘card' , the resulting
value is the symbol's value.

Cpublic card name Export code relative item. 'name' is the
procedure/module’s name, 'card' is offset into the
current global module's code segment.

Apublic card name Export item, value is ‘card'. This item is not
generated by the compiler, but can be used by
assembler modules to define absolute variables. Be
careful, the item hasn't been tested thoroughly.

ChnExt card name Chain external "name', chain head is at offset
'card'. See chain description below.

MRL Format Description
MRL ftems / Chains

Page AA-3
Item Name Usage
ModName name Define module name
LibReq name Search file 'name.MRL' for unresolved items. Each

module requests all modules it imports, so user only
has to give the linker a main name and the ML
linker will then load all required files. The linker
recognizes multiple requests for the same file and
loads it once only,

DefPub name Informs linker that this module defines the object
'name'. item is at beginning of file. Used when
searching library files. The actual value is given
later in the file by one of the 'public' items.

AbsByte byte...byte Load the next bytes. AbsByte does not fit into
the normal enumeration type numbering. It is
represented by a byte > 80H, the low 7 bits
determine the number of absolute bytes following.

Chapter 3. Chains

Chains are characterized by their head (starting location) and the fixup value. Each
element of the chain points to the next element. A value of O ends the chain. Each
element is to be replaced by the fixup value. For the ChnlLoc item this value is the
current value of the loading location counter 'loc', for the ChnExt item it is the
value of the indicated external.

To process a chain you recover the value presently in the chain head location, and
patch the fixup value into that location. The old value of the head is the address of
the next location to patch. The chain ends when the head address is Q000 (do not
patch location 0000).

MRL Format Description

Chains
Page AA-4

addr byte byte
0000 .. .
0001 .. .-
0002 .. 0000 = end of chain .
0003 ..
0004 ..
0005 .. .
0006 00 <=m— - + 34
0007 00 <-+ 12
0008 06 --+ 34
0009 00 <---+ 12
oooAa .. .-
000B .. .-
000C .. .-
000D .. .-
00CE .. .-
000F 08 ----+ 34
0010 00 <-+ 12
001t .. | ..
0012 OF --+ 34
0013 00 12
0014 .. .-

memory before fixups done,

chain processing chain processed

chain head = 0012H

fixup value = 1234H

The first item in an MRL file is the module name, foliowed by optional DefPub items
(these are only needed for MODLIB file). Next comes the DataSiz item. All other
items may appear in any order, with the EndMod item marking the end of the module.
Several modules may be in the same file (library files built with LIB80 out of
separate REL files). The EndFile item is the last item in the file.

MRL Format Description
Byte Stream Representation
Page AA-5

Chapter 4. Byte Stream Representation of an MRL Link Item

ftemType =
{ EndFile, Dword, Cword, Datasiz, Codesiz, EndMod, ChnLoc,
Dpublic, Cpublic, Apublic, ChnExt, ModName, LibReq, DefPub)
bb = ORD(Item)
cl = low byte of cardinal value
ch = high byte "

nl..nn = characters of name in ASCII
qq = 128 + number of absolute bytes following (maximum 127)

bb cl ch item with only a card field
bb cl ch nt n2 .. nn 00 item with card & name field
bb n1 n2 .. nn 00 item with only a name filed
qq n1 n2 .. nn AbsByte with n bytes following

The sample assembly module Silly (See Advanced Programming Guide) is presented
here in its MRL byte stream representation.

ML hex Bytes ML Item Description

0C 53 69 6C 6C 79 00 ModName Silly
OE 53 69 6C 6C 79 2E 45 71 DefPub Silly.EqTest
54 65 73 74 00

OE 53 69 6C 6C 79 00 DefPub Silly

04 01 00 DataSiz 1

05 10 00 CodeSiz 10

8C FD E1 E1 7D E1 BD 3E 00 12 Absolute bytes
20 01 3C 32

02 00 00 Dword 0

82 FD E9 2 Absolute bytes

09 00 00 53 69 6C 6C 79 2E Cpublic Silly.EqTest value 0
45 71 54 65 73 74 00

08 00 00 53 69 6C 6C 79 00 Dpubtic Silly value 0
06 FF FF End of module; no init code.
00 00 00 End of file

Reserved Words and Symbois / Standard Identifiers

Page AB-1

RESERVED WORDS AND SYMBOLS

NOTE - All reserved words are always uppercase, as Modula-2 is case sensi-
tive. Also, you aren't allowed to abbreviate the longer ones - every letter

is significant.

P P N L I]

oy~ *

AV A T

i 1n v

A

v

— e] Mo 82 @
"

AND FOR QUALIFED
ARRAY FROM RECORD
BEGIN IF REPEAT
BY IMPLEMENTATION RETURN
CASE IMPORT SET
CONST IN THEN
DEFINITION LOOP TO
Div MOD TYPE
DO MODULE UNTIL
ELSE NOT VAR
ELSIF OF WHILE
END OR WITH
EXIT POINTER
EXPORT PROCEDURE
STANDARD IDENTIFIERS

ABS EXCL MIN

BITSET FALSE NEW

BOOLEAN FLOAT NIL

CAP HALT OobD

CARDINAL HIGH ORD

CHAR INC PROC

CHR INCL REAL

DEC INTEGER TRUE

DISPOSE MAX TRUNC

VAL

ASCII Character Set

Page AC-1
ASCII CHARACTER SET
0 000 00 nul 32 040 20 64 100 40 @ 96 140 60 °
1 001 01 soh 33 041 21 ! 65 101 41 A 97 141 61 a
2 002 02 stx 34 042 22 " 66 102 42 B 98 142 62 b
3 003 03 etx 35 043 23 # 67 103 43 C 99 143 63 ¢
4 004 04 eot 36 044 24 $ 68 104 44 D 100 144 64 d
5 00505 eng 37 04525 % 69 105 45 E 101 145 65 e
6 006 06 ack 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 bel 39 047 27 ! 71 107 47 G 103 147 67 g
8 010 08 bs 40 050 28 (72 110 48 H 104 150 68 h
9 011 09 ht 41 051 29) 73 111 49 | 105 151 69 i
10 012 0A |If 42 052 2A * 74 112 4A J 106 152 6A |
11 013 0B vt 43 053 2B + 75 11348 K 107 153 6B Kk
12 014 OC ff 44 054 2C 76 114 4C L 108 154 6C |
13 015 00 cr 45 055 20 - 77 1154D M 109 155 6D m
14 016 OE so 46 056 2E . 78 116 4 N 110 156 6E n
15 017 OF si 47 057 2F / 79 117 4 O 111 157 6F o
16 020 10 dle 48 06030 O 80 12050 P 112 160 70 p
17 021 11 dc1 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 dc2 50 062 32 2 82 12252 R 114 162 72 r
19 023 13 dc3 51 063 33 3 83 12353 S 115 163 73 s
20 024 14 dc4 52 064 34 4 84 12454 T 116 164 74 t
21 025 15 nak 53 06535 5 85 12555 U 117 165 75 wu
22 026 16 syn 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 etb 55 067 37 7 87 12757 W 119 167 77 w
24 030 18 can 56 07038 8 88 130 58 X 120 170 78 «x
25 031 19 em 57 071 339 9 89 13159 Y 121 171 79 y
26 032 1A sub 58 072 3A : 90 132 5A Z 122 172 TA z
27 033 1B esc 59 073 3B ; 91 133 5B | 123 173 7B {
28 034 1IC fs 60 074 3C <« 92 134 5C \ 124 174 7C I
29 035 1D gs 61 075 3D = 93 135 5D] 125 175 7O }
30 036 1E rs 62 076 3E > 94 136 56 ~ 126 176 7E
31 037 1F us 63 077 3F ? 95 137 5F 127 177 7TF del

Modula~2 System for Z80 CP/M
Language Definition
Page AD-1

LANGUAGE DEFINITION

This appendix iists the subset of Modula-2 impiemented currently by the Modula-2
System for Z80 CP/M.

Character = " " | .. | 176C .
Letter = "A" l . I nzm l ngt i . [i
ldent = Letter { Letter | Digit } .
Number = Integer .
Integer = Digit { Digit } |

OctalDigit { OctalDigit } ("B" | "C") |

Digit { HexDigit } "H" .
HexDigit = Digit l nAaN } npi l e I sl ’ N ! net
Digit = OctalDigit | "8" | "o" .
OctalDigit = non] Rl ! 1ol ’ el l N ' Hgh | gt | I
Real = Sign Number "." [Number] ["E'" Sign Number 1| .
Sign - [non I n_] .
String = " ' " { Character } " " ¥ | * " ¢ { Character } ' " ',
Qualident = Ident { "." ldent } .

ConstantDeclaration = ident =" ConstExpression i ident "=" (String | Real).
ConstExpression = SimpleConstExpr [Relation SimpleConstExpr] .
Relation = "=" ‘ 1"y ‘ e n |u<u l Mt l T , n_n ‘ IN L

SimpleConstExpr = Sign ConstTerm { AddOperator ConstTerm } .
AddOperator = "+" | "-" | OR .

ConstTerm = ConstFactor { MulOperator Constfactor } .

MulOperator = ™" | "/" | DIv | MOD | AND | "&" .

ConstFactor = Qualident | Number | String | Set | "("" ConstExpression ")" |

I

NOT ConstFactor
Set = [Qualident] "{" [Etement { ", Element }] "}" .
Element = ConstExpression [".." ConstExpression | .

Modula-2 System for 280 CP/M
Language Definition
Page AD-2

TypeDeclaration = Ident "=" Type .
Type = SimpleType | ArrayType | RecordType | SetType | PointerType .
SimpleType = Qualident | Enumeration | SubrangeType .

Enumeration = "(" ldentList ")" .
IdentList = Ident { "," Ident } .
SubrangeType = "[" ConstExpression ".." ConstExpression "]" .

ArrayType = ARRAY SimpleType { "," SimpleType } OF Type .
RecordType = RECORD FieldListSequence END .
FieldListSequence = FieldList { ":" FieldList } .
FieldList = [ldentList ™" Type l
CASE [Ident ":"] Qualident OF Variant { "|" variant }
[ELSE FieldListSequence 1 END 1] .
Variant = CaselabelList ":" FieldListSequence .
CaselabellList = Caselabels { ", CaselLabels } .
Caselabels = ConstExpression [".." ConstExpression] .
SetType = SET OF SimpleType .
PointerType = POINTER TO Type .
FormalTypeList = "(" [[VAR 1 FormalType
{"" [VAR] FormalType } 1 ™" [":" Qualident] .

VariableDeclaration = VariableldentList ":" Type .
VariableldentList = VariableDesignator { "," VariableDesignator } .
VariableDesignator = ldent ["[" Number "]" 1.

Designator = Qualident { "." Ident | "[" ExpList "]" | """ }.

ExpList = Expression { ", Expression } .

Expression = SimpleExpression [Relation SimpleExpression] .

SimpleExpression = ["+" | "." 1 Term { AddOperator Term } .

Term = Factor { MulOperator Factor } .

Factor = Number | String | Set | Designator [ActualParameter] |
(" Expression ")" ? NOT Factor .

ActualParameter = "(" [ExpList] ")" .

Modula-2 System for Z80 CP/M
Language Definition
Page AD-3

Statement = [Assignment | ProcedureCall | IfStatement | CaseStatement I
WhileStatement | RepeatStatement | LoopStatement | ForStatement |
WithStatement | EXIT | RETURN [Expression]] .

Assignment = Designator ":=" Expression .

ProcedureCall = Designator [ActualParameter] .

StatementSequence = Statement { ";" Statement } .

IfStatement = {F Expression THEN StatementSequence
{ ELSIF Expression THEN StatementSequence }

[ELSE StatementSequence] END .

CaseStatement = CASE Expression OF Case { "|" Case }
[ELSE StatementSequence] END .

Case = Caselabellist ":" StatementSequence .

WhileStatement = WHILE Expression DO StatementSequence END .

RepeatStatement = REPEAT StatementSequence UNTIL Expression .

ForStatement = FOR Ident ":=" Expression TO Expression
[BY Number] DO StatementSequence END .

LoopStatement = LOOP StatementSequence END .

WithStatement = WITH Designator DO StatementSequence END .

ProcedureDeclaration = ProcedureHeading ";" Block ldent .

ProcedureHeading = PROCEDURE Ident [FormalParameter] .

Block = { Declaration } [BEGIN StatementSequence] END .

Declaration = CONST { ConstantDeclaration ";" } |
TYPE { TypeDeclaration ";" } | VAR { VariableDeclaration ";" } |
ProcedureDeclaration ";" | ModuleDeclaration ";" .

FormalParameter = "(" [FPSection { ";" FPSection }] ")" [":" Qualident] .

FPSection = [VAR] IdentList ":" FormalType .

FormalType = Qualident .

ModuleDeclaration = MODULE Ident ";" { Import } [Export] Block ldent .
Export = EXPORT [QUALIFIED] IdentList ™" .
Import = [FROM Ident] IMPORT IdentList ";" .
DefinitionModule = DEFINITION MODULE Ident ";" { Import }
[Export] { Definition } END ldent "." .
Definition = CONST { ConstantDeclaration ";" } |
TYPE { Ident ["=" Type] "s" } | VAR { VariableDeclaration ";" } |
ProcedureHeading ;" .
ProgramModule = MODULE ldent ";" { Import } Block Ident "." .
CompilationUnit = DefinitionModule | [IMPLEMENTATION] ProgramModule .

In this subset, Procedure Types and Open Array Parameters are missing.

Bibliography
Page AE-1

BIBL IOGRAPHY

This bibliography cannot be complete. If you have the time, go to a good technical
bookstore and look for other Modula-2 related books. Because Modula-2 is catching
on as a language, new books are published at an astounding rate.

N. Wirth: Programming in Modula-2, Springer, 1983: Although most reviewers
aren't pleased with the ilt-organized index and the overall organization of the book,
this is the standard Modula-2 book simply because it defines the Modula-2 language
standard.

Dal Cin, Lutz, Risse: Programmierung in Modula-2, Teubner Studienskripten,
Stuttgart 1984: This book is written in german. It is not simply a translation of the
standard text above, but describes a UNIX implementation as well as the concepts
present in Modula-2. This book is relatively easy to read.

Remmele, Schecher, Eds.: Microcomputing, Teubner Stuttgart 1979: This book is a
collection of small articles not only covering Modula-2 and Lilith, which are partially
written in german.

G. Pomberger: Softwaretechnik und Modula-2, Oldenbourg Verliag, 1984: Mr.
Pomberger had a longer stay at the Institut fuer Informatik, and wrote this book (in
german) with the aid of Lilith. This seems to be quite a good text about software
engineering generally. Modula-2 was the language chosen for the approach.

R. Gleaves: Modula-2 for Pascal Programmers, Springer-Verlag, New York, 1984:
This book received very favorable comments in several reviews. This is no surprise
since Richard Gleaves is the author of the very well written Volition Systems Manual.
Although not a cheap buy at about 10 cents a page, this book is worth its money.
Here, the syntax graphs missing in Programming in Modula-2, are presented.
Unfortunately, Richard Gleaves didn't use the MODUS Standard and Utility Library,
but a revised version of Volition's, which is close to the first but not equal.

There are several Reports of the Institut fuer Informatik at ETH, Zuerich that
treat several interesting aspects of programming with Modula-2 and Lilith., Perhaps
you can get them in University Libraries.

A lot of Modula-2 programming is done in Australia, mostly on UNIX systems. There
should be literature from that part of the earth, too.

Error Messages
Compiler Error Messages
Page AF-1

ERROR MESSAGES

Chapter 1. Compiler Error Messages

The compiler's error messages are explained in detail below. A shorthand list to copy
and hold at hand can be found at the end of this appendix.

If a

message is self explanatory, no additional text at all is appended to it.

Section i. Errors in Pass 1

illegal character in source file

control characters in the source are most often the causes of this error
message.

constant out of range

may also be issued by Pass 2.

: open comment at end of file

1 string terminator not on this line

string constants may not exceed a source line; the start and termination
character must be the same (either both double quotes or both single
quotes).

too many errors

after 300 detected errors, this message is output.

: string too long

the maximum string length is 128 bytes. This is a limit imposed by the
compiler's internal string buffer.

Error Messages
Compiler: Pass 1
Page AF-2

7: to many identifiers (name table full)

Shorten your identifiers! The name table holds at most 5120 characters.

20: identifier expected

21: integer constant expected
22: ']'" expected

23: ;' expected

24: block name at the END does not match
25: error in block

26: ":=' expected

27: error in expression

28: THEN expected

29: error in LOOP statement
30: constant must not be CARDINAL
31: error in REPEAT statement
32: UNTIL expected

33: error in WHILE statement
34: DO expected

35: error in CASE statement
36: OF expected

37: "' expected

38: BEGIN expected

39: error in WITH statement
40: END expected

41: ")' expected

42: error in constant

43: '=' expected

44: error in TYPE declaration
45: '(' expected

46: MODULE expected

47: QUALIFIED expected

48: error in factor

49: error in simple type

50: ',' expected

51: error in formal type

52: error in statement sequence
53: '.' expected

54: export at global level not allowed

use qualified export (EXPORT QUALIFIED), if you aren't trying to export
from a program module.

55: module body in definition module not allowed

56: TO expected

57: nested (local) module in definition module not allowed
58: '} expected

59: '.." expected

60:
61:

70:

71
72:
73:
74:

75:

77

78:

79:

81:
82:
83:
84:

85:

86:

88:
90:
91:
92:
93:

Error Messages
Compiler: Pass 1
Page AF-3

ervor in FOR statement
HAPORT expectad

Sepction 2. Errors in Pass 2 and 3

identifici specified twice in importlist

eventually, vou imported an enumeration constant and its associated type
which automatically re-imports this constant.

identifier not exported from qualifying module
identifier declared twice

identifier not declared

type not deciared

identifier already declared in module environment

if you cannot find such an identifier, maybe it is an enumeration constant

too many nesting levels
the compiler allows for 16 nesting levels including WITH statement levels.
value of absolute address must be of type CARDINAL

scope table overfiow in compiler
see error 7.

definition module belonging to implementation not found
structure not allowed for implementation of hidden type
procedure implementation different from definition

not all defined procedures or hidden types implemented

watch for case errors in identifierst This error is detected at the end of
the implementation module.

name conflict of exported object or enumeration constant in environment
incompatible version of symbolic modules

this error is used for version control which is currently disabled.
function type is not scalar or basic type
pointer-referenced type not declared
tagfield type expected

incompatible type of variant-constant
constant used twice

Error Messages
Compiler: Pass 2 & 3
Page AF-4

94.

95:

96:
97:

98:

99:

100:

101:
102:

103:

104:

105:
107:

109:

110:

arithmetic error in evaluation of constant expression

an over- or underflow occured during evaluation of a constant expression.
Try to set the expression up in a way that no such condition can occur.

incorrect range
ranges have to be of the form lowBound..hiBound.

range only with scalar type
type-incompatible constructor element

element value out of bound

set element ordinal values have to be between 0 and 15. No sets of, for
instance, 100..115 are possible.

set-type identifier expected

set constants have to be preceded by their type identifier if they aren't
BITSE Ts.

structured type too large
size of structures are limited to 32k bytes.

undeclared identifier in export-list of module
range not belonging to base type

wrong class of identifier

identifier classes are: constants, types, variables, procedures and modules.
Example: you used a variable instead of a type or a constant.

no such module name found
perhaps a module identifier case problem. (i.e. you import from Term1 but
the module is actually called TERM1. The compiler finds, in that case, a
matching file named TERM1.MSY, but the difference in module names
cannot be detected until Pass 2 (in definition modules) or Pass 3 (in
implementation modules) terminates. ’

modulename expected
set too large

sets may consist of 16 elements at most.

scalar or subrange type expected

case labels out of bounds

111

120:

121:

122:

123:
126:
127:
128:
129:
130:
131:
132:
134:
135:
136:

137:

138:
139:
140:
141:
142:
143:
144:
145:
146:

147:

Error Messages
Compiler: Pass 2 & 3
Page AF-5

case labels supersede subrange bounds, for example.
iflegal export from program module
incompatible types in conversion

for 'wild' type transfers, at least the size of the converted objects has to
coincide. Only CHR, ORD and VAL can convert different sized objects into
each other. Furthermore, both operands have to be either of (scalar, set,
or pointer) type or of (record or array) type. This is an implementation
restriction.

this type is not expected
variable expected
often set instead of an error 73, undeclared identifer.

incorrect constant

set constant out of range

error in standard procedure parameters
type incompatibility

type identifier expected

type impossible to index

field not belonging to a record variable
too many parameters

reference not to a variable

illegal parameter substitution

constant expected

expected parameter(s)

the number of parameters you gave does not match the number of
parameters declared.

BOOLEAN type expected

scalar type expected

operation with incompatible type

only global procedure allowed as procedure variable value
incompatible element type

type incompatible operands

no selector allowed for procedures

only function calls allowed in expression

arrow not belonging to a pointer variable

standard function or procedure must not be assigned
because they have different parameter passing mechanisms, you cannot use

standard functions/procedures as variables. Applies only to Procedure
Types.

Error Messages
Compiler: Pass 2 & 3
Page AF-6

148:
149:

150:

151:
152:
153:
154:
155:

156:

157:
158:

223:

331:
337:

338:

360:
361:
362:

constant not allowed as variant
SET type expected

illegal substitution to WORD parameter
any two byte scalar can be substituted for WORD.
EXIT only in LOOP
RETURN only in PROCEDURE
expression expected
expression not allowed
type of function expected
integer constant expected

a BY clause has to have a constant value of type INTEGER or CARDINAL.

procedure call expected
identifier not exported from qualifying module

case label twice specified

the label can be specified twice explicitly or one time as part of a label
range.

Section 3. Additional Errors for Pass 1

no priority allowed
more than 16 LOOF-Statements nested

these are all implementation restrictions.

different identifier with same significant base
the compiler distincts identifiers but in the first 14 places. This was done
because of the linker's 24 character maximum identifier length. An

identifier used by the linker consists of ModuleName.ObjectName, i.e. it is
a qualified identifier.

illegal definition
illegal declaration
illegal block identifier

Error Messages
Compiler: Additional Errors
Page AF-7
364: filename incompatible with modulename
a module's file name is formed by uppercasing the first 8 characters of the
module name. If it is shorter than eight characters, the rest is padded
with blanks. There is NO exception to this rule.

365: filename extension incompatible with module type

use DEF for definition modules only. MOD applies to (IMPLEMENTATION)
MODULEs.

366: iilegal position of BEGIN
back in Pascal, aren't you?
367: hidden type only allowed in DEFINITION MODULE

may occur also if a colon (":") instead of an equal sign ('=') is set in a
type definition,

Section 4. Additional Errors for Pass 3

401: too many case labels (more than 256).

this is an implementation restriction.

402: overlapping case ranges

you specified ranges of the form 10..20 and 15..25; eventually it is only a
single label that lies inmidst a range also specified.

403: expression too complicated

this error indicates that an overflow of the expression evaluation buffer of
Pass 3 occured. Because this error is fatal, the compilation doesn't
continue. Try to simplify the constant expression that is involved.

Error Messages
Compiler: Pass 4
Page AF-8

Section 5. Additional Errors for Pass 4

500: type conflict in expression

501: unexpected token from interpass file

502: structured function return value not allowed

503: name in factor is not constant, variable or function

504: array or record constant not allowed

505: illegal standard name in procedure/function

506: illegal standard name in constant

507: illegal type conversion

508: module name not exported

509: more than 16 LLOOP statements nested

510: loop stack overflow

511: name is not variable in procedure: AccessVariable

512: name is not constant in procedure: Constant

513: type is not array in procedure: IndexVar

514: type is not record in procedure: FieldVar

515: name is not field in procedure: FieldVar

516: type is not procedure in procedure: PointVar

517: name is not variable in procedure: Variable

518: peephole table overflow at initialisation (> 50 entries)

519: constant expression stack overfiow { > 16 entries)

520: constant expression stack underflow

524: illegal M-code detected in module McExpnd

525: M-Code BAD detected (usually means illegal operation for
specified operand type)

526: M-Code not vet implemented

527: name table overflow { > 5120 characters)

528: spelling index out of range in procedure GetSpelling

530: string too long (> 128)

531: illegal library routine in procedure EmitSpetling

532: illegal link item in procedure Emitltem

533: label table overflow {> 700 labels)

534: external table overfiow (> 200 entries)

535: type is not array in procedure ParameterbList

540: expression passed to ARRAY OF WORD

541: internal error concerning Open Array passed as Open Array

542: unexpected kind of variable

543: non-global procedure address assignment.

Most of these messages indicate a compiler bug. Please notify us about the problem
by sending us a preferably short listing of a program that provokes the error.

Error Messages
Compiler: Pass 4
Page AF-9

Section 6. Other Errors

Besides these numbered errors, there are some more error messages related to files
and command lines, as well as to internal error conditions.

1. Internal Errors

---- COMPILER ABORTED: Lookahead Too Long at Line xxx

Pass 1 has to decide whether a given statement is an assignment or a
procedure call. This is done by using a lookahead feature. If your
statement is too complicated (i.e. has too many selectors), Pass 1 can't
keep the necessary information in its buffer. Use a WITH statement to
shorten the number of selectors.

~-~- INTERNAL ERROR

Unspecified internal error.

---- Too Many Errors

more than 300 errors occured.

---- Compilation Aborted by “C

you entered “C at the keyboard.

2. Compiler-Parts Related Errors

---- Version Conflict

different parts of the compiler belong to different versions of the system.
Copy your compiler again completely from the newest master disk(s).

Error Messages
Compiler: Pass 4
Page AF-10

3. Commandline Related Errors

---- lllegal Command Line

general command line error.

---- Switch Specifier Expected

you set a '/' without a switch following it.

---- lllegal <switch>-Switch

<switch> does not exist, or you used incorrect arguments.

---- lllegal Module Type

module (= file) type can be but MOD or DEF. MOD is the default file type.

4. File 1/O Related Errors

---- Cannot Open File "filename.typ"
---- Cannot Close File "filename.typ"

This eventually indicates a full directory.

---- Cannot Create File "filename.typ"

The directory has to be full.

---- Cannot Write to File "filename.typ”

---- Cannot Read From File "filename.typ"

may be either an empty or scrambled file.

----~ SUBMIT Aborted

Error Messages
Compiler: Pass 4
Page AF-11

displayed if errors occured and the X switch was specified.

Chapter 2. Linker Error Messages

Normally, linker errors occur only if incorrect assembly language modules are used or
if you made a version mix between definition modules and their associated
implementation modules. All error messages are given literally by the linker. There is
one non fatal error message:

---- Circular Reference Detected - FileName FileName {FileName}

A circular reference can be constructed as follows:

- You have two modules, say M1 and M2,

- M1.MOD imports some items from M2.DEF.

- M2.MOD imports some items from M1.DEF.
That's it. This scheme can be extended to include three and more
modules., Circular references prevent the linker from creating an
'absolutely correct' initialization order. This in turn means that you

shouldn't use any items of the circular referenced modules in one of their
bodies (i.e. initializations).

All other error messages are fatal and lead to no output file at all. They are:

---- <symbol> Twice Declared

A symbol has been defined twice in a single module.

---- <symbol> Not Defined

Undefined symbols can be provoked by compiling a definition module,
then its implementation and then again the definition module with
some more procedures in it, forgetting the implementation.

Error Messages
Linker
Page AF-12

---- No Starting Address Defined
You cannot use an assembler module as your main program; it is
impossible to set the starting address within an assembler moduie.

Negative Load Index (Bad Assembler Module?)

Perhaps you used an assembler module which wasn't correctly

converted.

---- Module Too Big

The maximum module size accepted by the linker is about 25 kBytes.
QOur observations lead to the conclusion that this would be a module
of about 4000 lines. Don't you think that this is a little bit too big

to be put into one single module?

---- Program is > 64k

See linker description for some advice...

Overlapping Code & Data Segments

Using the /C and / or /D switch of the linker, you overlaid code
and data. Look at the statistics that are output in verbose mode,

and correct the /C and /D values appropriately.

Overlapping Code & Shared Segments

The /H switch specifies the end of the shared area. You have to
leave at least the size of the shared module's data between end of

code and start of heap addresses to have enough space.

Overlapping Data & Heap Segments

The only thing to do is to enlarge the /H switch's value.

No Stack-Heap Space

/T and /H cannot have the same value; also the /D value plus the
data size has to be smaller than /H or /T, respectively.

Error Messages
Linker
Page AF-13

---- lllegal Format of Shared Module
Your shared module contains code. You cannot use modules that
contain code (i.e. a module body or procedures) as shared data
module.

---- Use of S-Switch Without H-Switch
To use the linker's S switch, it is mandatory to set the H switch,
too, because it defines the shared data module's end address. (See
also Anatomy of a Modula-2 Program in the linker description of
the Implementation Guide).

---- J-Switch < 3
Because the J switch generates a jump around a reserved area at
the program start, you need to specify at least 3 bytes of reserved
space to allow the linker to generate a jump. A jump machine
instruction sequence is 3 bytes long.

---- Unexpected EOF
This error message appears if one of your MRL files has been cut.
Find the file and copy it again from another disk resp. recompile the
module.

——-- Errors in Pass 1 ----
If another error message was issued by Pass 1 of the linker, this
message is written at the end of it.

---- Errors in Pass 2 ----
If another error message was issued by Pass 2 of the linker, this

message is written at the end of this Pass.

---- SUBMIT Aborted

If the X-switch has been specified and error(s) occured, this
message confirms the interruption of the submit process.

Error Messages
Linker
Page AF:14
~~-~ Linker Aborted by ~“C

This message is displayed if you entered “C at the keyboard during
the link process.

-~-- Version Conflict
The linker internally checks if ML.COM and ML.P2.COM belong to the

same linker version. If these versions are different, the link pocess
is aborted.

---- Cannot Find MLP2.COM

Pass 2 couldn't be found on the drives indicated by the program
search path installed into the linker.

Error Messages
Runtime Errors
Page AF-15

Chapter 3. Runtime Error Messages

There are only very few runtime errors generated by the Modula-2 System. The
'System’' consists, in this respect, of the MODLIB routines. Other modules (from
the libraries) may generate more messages. See their detailed description for
this messages. The System messages are:

~---- Modula-2 Runtime Error: Out Of Memory

The abort condition
TopOfStack - HeapLimit >= 256
is tested on every procedure entry. This test cannot be disabled. |f you need a

special version of MODLIB not doing this test because you want to put your
code into ROM, please contact us.

Another error message is

---- Modula-2 Runtime Error: Cannot Execute Chain File

This error message is issued if you try to start a program that was linked using the
/N switch of the linker, omitting the heap initiatization. If you want to build a
system of programs chaining each other and sharing data, the first one has to
initialize the heap.

Should a REAL calculation lead to an overflow, the program gets immediately aborted
and displays the message

---- Modula-2 Runtime Error: REAL Overflow

Error Messages
Runtime Errors
Page AF-16

A fourth message shouldn't get issued at all. There is some really serious error in
your program if it appears. It is: -

~--- Modula-2 Runtime Error: Unknown

These were all the runtime error messages issued by the system.

Error Messages
REL to MRL Converter
Page AF-17

Chapter 4. MR Error Messages

The error messages emitted by MR are fatal but do not interrupt the program. If an
error occurs, the resulting converted file, though, is not correct and therefore not
usable. These are the error messages:

error in conversion file

'conversion file' means the name translation table. Your R2M typed file
does not conform to the specifications given in the Advanced
Programming Guide.

twice used in conversion file

You used the given symbol twice in the name translation file. You cannot
assign the same name to two different symbols.

cannot load bytes outside code segment

As mentioned earlier, initialized data areas aren't supported by the ML
linker.

cannot convert Common item

Common stinks of FORTRAN; no self respecting Modula-2 system would
accept such an item ...

cannot convert Extension item

Your REL file contains one of the two 'reserved for future expansion'
items (See Microsoft REL format description in the L80 linker manual by
Microsoft).

chain address outside of code segment

There seems to be a corrupted file or an incorrectly converted one

around.

illegal item returned from getrel procedure

This indicates that you have initialized data in your REL file.

Error Messages
REL to MRL Converter

Page AF-18
---- DS not allowed in code segment, use DB

As stated earlier, no DS (and no ORG that sets the loading counter back)
statement is supported in the code segment.

---- externai +/- offset not aliowed

Because of different construction of chains, externa!l plus/minus offset
cannot be converted easily from REL to MRL although both formats have

external plus/minus offset constructs. Sorry, you have to do this offsetting

in your code.

Error Messages
Compiler Error Messages Shorthand
Page AF-19

Chapter 5. Compiler Error Messages Shorthand

These last pages are laid out to be copied to have them at hand when working with
the system.

Q

N2AHLP

20:
21
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42;
43:
44:
45;
46:
47:
48:
49;
50:
51:

illegal character in source file

constant out of range

open comment at end of file

string terminator not on this line

too many errors

string too long

to many identifiers (identifier table full)

identifier expected

integer constant expected
"' expected

! expected

block name at the END does not match
error in block

':=' expected

error in expression

THEN expected

error in LOOP statement
constant must not be CARDINAL
error in REPEAT statement
UNTIL expected

error in WHILE statement
DO expected

error in CASE statement
OF expected

"' expected

BEGIN expected

error in WITH statement
END expected

"' expected

error in constant

'=!" expected

error in TYPE declaration
'(' expected

MODULE expected
QUALIFIED expected

error in factor

error in simple type

' expected

error in formal type

Error Messages
Compiler Error Messages Shorthand
Page AF-20

52: error in statement sequence

53: '.' expected

54: export at global level not allowed

55: module body in definition module not aliowed
56: TO expected

57: nested module in definition module not allowed
58: '} expected

59: '..! expected

60: error in FOR statement

61: IMPORT expected

70: identifier specified twice in importlist

71: identifier not exported from qualifying module
72: identifier declared twice

73: identifier not declared

74: type not declared

75: identifier already declared in module environment

77: too many nesting levels

78: value of absolute address must be of type CARDINAL
79: scope table overflow in compiler

81: definition module belonging to implementation not found
82: structure not allowed for implementation of hidden type
83: procedure implementation different from definition

84: not all defined procedures or hidden types implemented
85: name conflict of exported object or enumeration constant in environment
86: incompatible version of symbolic modules

88: function type is not scalar or basic type

90: pointer-referenced type not declared

91: tagfieldtype expected

92: incompatible type of variant-constant

93: constant used twice

94; arithmetic error in evaluation of constant expression
95: incorrect range

96: range only with scalar type

97: type-incompatible constructor element

98: element value out of bound

99: set-type identifier expected

100: structured type too large

101: undeclared identifier in export-list of module

102: range not belonging to base type

103: wrong class of identifier

104: no such module name found

105: modulename expected

107: set too large

109: scalar or subrange type expected
110: case labels out of bounds
111: illegal export from program module

Error Messages
Compiler Error Messages Shorthand
Page AF-21

120: incompatible types in conversion

121: this type is not expected

122: variable expected

123: incorrect constant

126: set constant out of range

127: error in standard procedure parameters
128: type incompatibility

129: type identifier expected

130: type impossible to index

131: field not belonging to a record variable
132: too many parameters

134: reference not to a variable

135: illegal parameter substitution

136: constant expected

137: expected parameter

138: BOOLEAN type expected

139: scalar type expected

140: operation with incompatible type

141: only global procedure allowed as procedure variable value
142: incompatible element type

143: type incompatibie operands

144: no selector allowed for procedures

145: only function calls allowed in expression

146: arrow not belonging to a pointer variable
147: standard function or procedure must not be assigned
148: constant not allowed as variant

149: SET type expected

150: illegal substitution' to WORD parameter

151: EXIT only in LOOP

152: RETURN only in PROCEDURE

153: expression expected

154: expression not allowed

155: type of function expected

156: integer constant expected

157: procedure call expected

158: identifier not exported from qualifying module

223: case label twice specified

331: no priority allowed
337: more than 16 LOOP-Statements nesteted
338: different identifier with same significant base

360: illegal definition

361: illegal declaration

362: illegal block identifier

364: filename incompatible with modulename

365: filename extension incompatible with module type
366: illegal position of BEGIN

Error Messages
Compiler Error Messages Shorthand
Page AF-22

367:

401:
402:
403:

500:
501:
502:
503:
504:;
505:
506:
507:
508:
509:
510:
511
512:
513:
514:
515:
516:
517:
518:
519:
520:
524:
525;

526:
527:
528:
529:
530:
531:;
532:
533:
534:
635:
540:
541;
542:
543:

hidden type only allowed in DEFINITION MODULE

case label range too big (maxLabe! - minlabel > 256)
overlapping case ranges
expression too complicated

type conflict in expression

unexpected token from interpass file

structured function return value not allowed

name in factor is not constant, variable or function

array or record constant not allowed

illegal standard name in procedure/function

illegal standard name in constant

illegal type conversion

module name not exported

more then 16 LOOP statements nested

loop stack overflow

name is not variable in procedure: AccessVariable

name is not constant in procedure: Constant

type is not array in procedure: IndexVar

type is not record in procedure: FieldVvar

name is not field in procedure: FieldVar

type is not procedure in procedure: PointVar

name is not variable in procedure: Variable

peephole table overflow at initialisation (> 50 entries)

constant expression stack overflow (> 16 entries)

constant expression stack underflow

iltegal M-code detected in module McExpnd

M-Code BAD detected (usually means illegal operation for
specified operand type)

M-Code not yet implemented

name buffer overflow (> 5120 characters)

spelling index out of range in procedure GetSpelling

too many labels (> 32767)

string too long (> 128)

illegal library routine in procedure EmitSpelling

illegal link item in procedure Emitltem

label table overflow (> 700 labels)

exterpal table overflow (> 200 entries)

type is not array in procedure ParameterList

expression passed to ARRAY OF WORD

internal error concerning Open Array passed as Open Array

unexpected kind of variable

non-global procedure address assignment.

