
DIGITAL
RESEARCH TM

Concurrent CP/M TM

Operating System

Programmer's
Reference Guide

COPYRIGHT

Copyright @1984 by Digital Research Inc. All righm r~serv~l. No part of this publication
may be relXOduced, transmitted, wan~'ribed, stored in a retrieval system, or translated into
any language or compumr language, in any form or by any means, electronic, rneclmrfical,
magnetic, optical, chemical, mama] or oclm'wi~, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Orove, California, 93950.

DISCLAIMER

Digital Research maims no mprmontations or warranties with respect to the contents hereof
and specifically disclaims any implied wm'ranties of nmchantsbility or fimess for any par-
ficttlar pm'pu~. Furth~, Digital Re~trch mmrvm the right to mvi~ this publication and
to maim changm from time to time in the content horror without obligation of Digital Research
to notify any person of such mvkion or changes.

TRADEMARKS

CP/M and CP/M-86 am mgismmd trademarks of Digital ~ h . ASM-$6, Concurrent
CP/M, DDT, DDT-86, MP/M, MP/M-86, and PL/I am wglcmarks of Digital Research. Intel
and MCS am regis~vd tmdemar~ of Intcl Corporation. ISIS-H is a trademark of Intel
Corporation. IBM is a registered trademark of International Business Machines.

The Concurrent CPIM Operatin8 System Programmer's Reference Guide was printed in the
United States of America.

First Edition: January 1984

Foreword

Concurrent CP/M ~ is a multi- or single-user operating system targeted specifically for
the Intel ® 8086/8088180186 family of microprocessors. It supports multiple CP/M program-
ming environments each implemented on a virtual console. A different task runs concurrently
in each environment.

This manual describes the invariant programming interface to Concurrent CP/M. It sup-
ports the applications programmer who must create applications programs that run in the
Concurrent CP/M environment.

Section 1 offers an overview of the entire operating system.

Section 2 describes the structure of the Concurrent CP/M file system.

Section 3 explains the format, structure, and uses of transient commands in the Concurrent
CP/lVI environment.

Section 4 explains the creation of transient command files in the Concurrent CP/M envi-
ronment.

Section 5 documents the structur¢ and creation of resident system processes or resident
command files permanently installed in the Concurrent CP/M environment.

Section 6 describes all the Concurrent CP/M system calls.

Concurrent CP/M is supported and documented through four manuals:

• The Concurrent CPIM Operating System User's Guide (hereinafter cited as Concurrent
CPIM User's Guide) documents the user's interface to Concurrent CP/M, explaining
the various features used to execute applications programs and Digital Research utility
programs.

• The Concurrent CPIM Operating System Programmer's Reference Guide (hereinafter
cited as Concurrent CPIM Programmer's Reference Guide) documents the applications
programmer's interface to Concurrent CP/M, explaining the internal file structure
and system entry points, information that is essential for creating applications pro-
grams that run in the Concurrent CP/M environment.

fd

• The Concurrent CP/M Operating System Programmer's Utilities Guide (h e ~
cited u Progmmmer'a Utilities Guide) documents the Digital Research utility prv-
grm~ that ~ use to write, debug, and verify applications progrants written
for the Concurrent CP/M environment.

• The Concurrent CP/M Operating 5~ystem System Guide (hereinafter cited as Concur-
rent CP/M System Guide) documents the internal, hardware-d~pendent structures of
Concurrent CP/M.

iv

Table of Contents

2

C o n c u r r e n t CP/M System Overview

1.1 Introduction ... 1-1
1.2 Supervisor (SUP) .. 1-5
1.3 Real-time Monitor (RTM) .. 1-5

1.3.1 Process Dispatching .. 1-5
1.3.2 Queue Management ... I-7
1.3.3 System Timing Functions ... 1-8

1.4 Memory Module (MEM) ... 1-9
1.5 Basic Disk Operating System (BDOS) 1-9
1.6 Character I/O Module (CIO) .. 1-10
1.7 Virtual Console Screen Management 1-10
1.8 Extended Input/Output System (XIOS) 1-11
1.9 Terminal Message Processes (TMP) 1-12
1.10 Transient Programs ... 1-12
1.11 System Call Calling Conventions ... 1-12
1.12 SYSTAT: System Status .. 1-13

The C o n c u r r e n t CP /M File System

2.1 File System Overview .. 2-I
2.1. I File-access System Calls .. 2-2
2.1.2 Drive-related System Calls 2-3

2.2 File Naming Conventions ... 2-5
2.3 Disk Drive and File Organization ... 2-8
2.4 File Control Block Definition ... 2-9

2.4.1 FCB Initialization mid Usage 2-12
2.4.2 File Attributes .. 2-14
2.4.3 Interface Attributes ... 2-16

2.5 User Number Conventions .. 2-17
2.6 Directory Labels and XFCBs ... 2-18
2.7 File Passwords .. 2-22
2.8 File Date and Time Stamps: $FCBs 2-24
2.9 File Open Modes ... 2-26
2.10 File Security .. 2-27
2.11 Extended File Locking .. 2-30
2.12 Compatibility Attributes .. 2-31
2.13 Multisector lYO ... 2-34

Table of Contents (continued)

2.14 Concurrent File Access ... 2-35
2.15 File Byte Counts ... 2-37
2.16 Record Blocking and Deblocking ... 2-38
2.17 Reset. Access. and Free Drive ... 2-39
2.18 BDOS Error Handling .. 2-43

T r a m i ~ t C o m m a n , h

3.1]~ansient Program Load and Exit ... 3-I
3.1.1 Shared Code .. 3-2
3.1.2 8087 Support ... 3-2
3.1.3 8087 Exception Handling ... 3-3

3.2 Command File Format .. 3-3
3.3 Base Page Initialization ... 3-5
3.4 Parent/Child Relationships .. 3-8
3.5 Direct Video Mapping .. 3-8

4 Comrmmd File ~

4. I "/l'zmaicnt ~ c m M o c l ~ .. 4--1
4.1.1 The 8080 Memory Model .. 4--2
4.1.2 The Small Memory Model 4..4
4.1.3 The Compact Memory Model 4..5

4.2 GENCMD .. 4-6
4.3 Intel Hexadecimal lrde Format ... 4-9

Resident System P r o c e g Generat ion

5.1 Introduction to RSPs ... 5-1
5.2 RSP Memory Models ... 5-1

5.2. I 8080 Model RSP ... 5-2
5.2.2 Small Model RSP .. 5-2
Multiple Copies of P, SPs ... 5-3
5.3.1 8080 Model ... 5-3
5.3.2 Small Model .. 5-4
5.3.3 Small Model with Shared Code 5-4
Creating end Initializing an RSP .. 5-4
5.4.1 The RSP Header .. 5-7

5.3

5.4

vi

Table of Contents (continued)

5.4.2 The RSP Process Descriptor 5-8
5.4.3 The RSP User Data Area ... 5-9
5.4.4 The RSP Stack ... 5-9
5.4.5 The.RSP Command Queue 5-9
5.4.6 Multiple Processes within an RSP 5-10

5.5 Developing and Debugging an RSP 5-I 1

System Calls

6, I System Call Summary ..
6.2 Concurrent CP/M System Calls ...

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9

6-13
6-20

Console I/O System Calls .. 6-21
Device System Calls .. 6-41
Disk Drive System Calls .. 6-44
File-access System Calls .. 6-64
List Device I/O System Calls 6-122
Memory System Calls .. 6-128
Process/Program System Calls 6-139
Queue System Calls .. 6-162
System Information System Calls 6-174

Appendixes
A System Call Summary by Function Number A-I

B ASCII and Hexadecimal Conversions ... B-I

C E r r o r Codes .. C-I

D ECHO.A86 Listing ... D-I

E 8087 Exception HandUng .. E-I

Glossary .. Glossary- I

Index ... Index- I

vii

Table of Contents (continued)

Tables

I - I . Registers Used by System Cans ... 1-13

2-I . Hle System Calls .. 2-3
2-2. Valid Filename Delimiters ... 2-6
2-3. Hietype Conventions .. 2-7
2-4. Drive Capacity .. 2-8
2-5. FCB Held Definitions ... 2-11
2-6. File Attribute Definitions .. 2-15
2-7. BDOS Interface Attributes FS' and F 6 ' 2-16
2-8. Directory LeVI Field Definitions .. 2-19
2-9. XFCB Held Definitions ... 2-21
2-10. Pauword Protection Modes .. 2-22
2-11. Compatibility Attribute Definitions .. 2-32
2-12. BDOS Physical Errors ... 2-44
2-13. BDOS Extended Fa'rors .. 2-45
2-14. BDOS Error Codes .. 2-47
2-15. BDOS Physical and Extended Errors 2-49

3-1. cau:p Des:riptor. ... 3-4
3-2. Group Descriptor Fields ... 3-4

4.1. Concurrent CP/M Memory Models .. 4-1
4-2. Intel Hex Held Definitions .. 4-11

6-1. System Call Categories .. 6-2
6-2. Conc tmmt CP/M System Calls ... 6 4
6-3. System Call Summary ... 6-13
6 4 . Data Sa'ucmrea Index .. 6-18
6-5. CX Error Code Reports ... 6-19
6-6. ACB Field Definitions ... 6-22
6-7. C__RAWIO Calling Values ... 6-31
6-8. Conmle Buffer Held Definitions .. 6-M
6-9. C._.READSTR Line-editing Characters 6-34
6-10. DPB Held Definitions ... 6-49
6-11. PFCB Field Definitions .. 6-87
6-12. FCB Initialization .. 6-89
6-13. MCB Field Definitions .. 6-129
6-14. MPB Field Definitions ... 6-130

viii

Table of Contents (continued)

6-15.
6-16.
6-17.
6-18.
6-19.
6-20.
6-21.
6-22.
6-23.

A-1.

B-1.
B-2.

C-l .

Tables
APB Held Definitions ... 6-140
Command Line Buffer Held Definitions 6-143
PD Field Definitions ... 6-147
UDA Field Definitions ... 6-152
CPB Field Definitions ... 6-160
QPB Held Definitions ... 6-163
QD Field Definitions .. 6-169
SYSDAT Table Data Fields .. 6-180
TOD Held Definitions ... 6-186

System Call Summary by Function Number A-I

ASCII Symbols .. B-I
ASCII Conversion Table ... 13-1

Concurrent CP/M Error Codes .. C-1

Figures
1-1. Concurrent CP/M Virtual/Physical Environments . i-I
1-2. Concurrent CP/M Functional Modules 1-3

2-1. FCB - File Control Block ... 2-10
2-2. Directory Label Format .. 2-18
2-3. XFCB - Extended File Control Block 2-20
2-4. Directory Record with SFCB .. 2-24
2-5. SFCB Subfields .. 2-24
2-6. Disk System Reset ... 2-41

3-1. C M D File Header Format .. 3-3
3-2. Group Descriptor Format .. 3-3
3-3. Concurrent CP/M Base Page Values ... 3-6

4-1. Init ial P rog ram Stack ... 4.2
4.2. Concur ren t C P / M 8080 Memory Model 4.3

ix

Table of Contents (continued)

4-3.
4-4.
4-5.

5-1,
5-2.
5-3,
5-4,

6-1.
6-2.
6-3.
6-4,
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
6-18.
6-19.
6-20.
6-21.
6-22.

Concurrent C P / M Small Memory Model . 4.4
Concur ren t C P / M Compact Memory Model . 4-5
Intel H e x a d e c i m a l F i l e Formats .. 4 - 1 0

8 0 8 0 and S m a l l R S P M o d e l s ... 5 - 2

RSP Head Format .. 5-3
RSP Command Queue Message .. 5-5
RSP Data Segment ... 5-7

ACB - Assign Conlzol Block ... 6-21
Console Buffer Format ... 6-33
Drive, R/O, or Login Vector Structure 6-44
DPB - Disk Parametez Block ... 6-48
Disk Free Space Field Format .. 6-63
PFCB - Pane Filename ConU'ol Block 6-86
MCB - Memory Control Block ... 6-128
MPB - Memory PMmete r Block ... 6-129
MFPB - M._FREE Parameter Block 6-132
APB - Abort Parameter Block .. 6-139
CLI Comnmxl Line B u f f ~ ... 6-142
PD - Proceu Descriptor .. 6-146
UDA - User Data Area ... 6-15]
CPB - Call Parameter Block .. 6-159
QPB - Queue Pantmeter Block ... 6-163
QD - Queue Descriptor ... 6-168
BDO$ Ve~ion Number Format ... 6-174
BIOS Descriptor Format .. 6-175
Opeming System Ven/on Number ~ t . 6-176
SERIAL Number Format ... 6-177
SYSDAT Table ... 6-179
TOD T'nue-of-Day Structure .. 6-185

Table of Contents (continued)

Listings
6-1. M e m o r y C o n t r o l B lock D e f i n i t i o n

6-2. M e m o r y P a r a m e t e r Block Def in i t i on

6-3. Queue Parameter Block Definition

D-1 . E C H O . A 8 6 ..

E-l. 8087 Exception Handling ...

6 .129

6-130
6-164

D - I

E-2

xi

Section 1
Concurrent CP/M System Overview

1,1 I n t r o d u c t i o n

Concurrent CP/M is a multi- or single-meG multitasking operating system that lets you
run multiple programs simultaneously by initiating tasks on two or more terminals or virtual
consoles. Applications programs have access to system calls used by Concurrent CP/M to
control the multiprogramming environment. As a result, Concurrent CP/M supports extended
features, such as commmi~on amo~ and s ~ ' m of ~ y running processes.
Figure 1-1 depicts the relationships between applications programs, virtual environments,
virtual consoles, and the user terminal.

__~

I-.=

~ I I M u, l l m

]

Figure 1-1.

p~4Ymc~ bo s v s ~ M

N

t=1,

t=1°

Concurrent CP/M Virtual/Physical Environments

[] ~TTA~ R.~EAKCH*
1-1

~ C~/~ P r s v m m f ' s ~

In the Concurrent CP/M ~vironm~t there is an important distinction between a program
and a process. A program k simply a block of code r=siding somewhere in memory or on
disk; it is essentially static. A process, on the other hand, is a dynamic entity. You can think
of it as a logical rn~hine that executes not only the prognun code, but also the operating
system routines necesmry to support the program's functions,

When Concurrent CP/M loads a program, it cmttcs a process associated with the loaded
program. Subsequently, it is the process, hither than the program, flat obtains access to the
system's resources. Thus, Concurrent CP/M monitors the process, not the program. This
distinction is a subtle one, but vital to your und~tanding of system operation as a whole.

Processes running under Concurrent CP/M fall into two categories: transient processes
and Resident System Processes (RSPs), ~ i ~ n t processes run programs loaded into mem.
ory from d /~ in response to a mser command or system calls made by anofl~r process,
Resident System Processes run code that is a part of the operating system itself. RSPs
become an integral part of the o ~ system image during system get.ration. They are
immediately available to perform operating system tasks, l~or example, the CLJ~K proceu
is an RSP that maintains the time of day within the operating system.

The following list briefly summarizes Concurrent CP/M's capabilities.

[] Inte..prooess umuamieattion, s ~ n r md mutual ~cl,,.ion fu~tions
provided by system queues.

• A logical inm'rulX mechanism using flags allows Concurrent CP/M to inte~ace with
any physical interrupt slz'ucturc.

• S~tem timing functions enable processes running under Concurrent CP/M to com-
pute elapsed times, delay executioa for specified intervals, and to soceu and set the
current date and time.

• Shared file system allows multiple progrsxns to sccem common data flies while
maintaining data integrity.

• Shared code support eliminates program loading of another copy of the same program
and conserves memory space.

• 8087 support takes advantage of fast 8087 math instructions.

• Virtual console handling lets a single user run multiple progren~, each in its own
console environment.

• Real-time process control allows communications and data acquisition without loss
of information.

m I~721"AL I ~ . ~ . H s

I - 2

CP/M Presnmma"s

Functionally, Concurrent CP/M is composed of several
Figure 1-2.

1.1

distinct modules, as shown in

r N~I.ICATION

J

t t I____

PI~NTEII ~IVB

Figure 1-2. Concurrent CP/M Functional Modules

gl DIGITAL RESEARCH •

1-3

C4m~'ml CP/M ~, .e. J ~Ca~i~

" The Superv~r (SUP)
m The ReaLI-time Monitor (RTM)
• The Memory Mauageraem Module (MEM)
m The Character I/O Module (CIO)
m The V'munl Comole Screen Manager
= The Buic Disk OImmiug System (BDOS)
m The Exteoded I/O System (XIOS)
m The Tm-mi~ Meauge Procm~ O'MF)

The SUP module hand~ misce]]aneom system calls such ss returning the version number
orthe addre~ of the System Dam Area. SUP ako calis other system calis when necemuy.

The RTM module monitors the execution of running processes and arbitra~ conflicts for
the system~ rescu.,~.

The MEM modulz allocates and frees memory upon demand fl'om ¢xecuting processes.

The CIO module handles all character I/O for console and lis~ devices in the system.

The Wwnud Console Screen Manager e~tends the CIO to suppm't virttufl console envi-
ronHle~tJ.

The BIX)S is the hardv, lu'v-independe~t modulo th~ conminl the logically invsrhmt pccfion
of the file system for Concurrent CP/M. The BIX)S file systean is ¢xplsined in detail in
Section 2.

The XIOS is the hardware-dependent module that defines the interface of Concurrent
CP/M to s specific hardware environment. See the Concurrent CP/M System OuLde for
an explanation of the XIOS.

When Concurrent CP/M is executin8 a single pcogram on a single virtual console, its
speed approximates that of CP/M-86, But when nmltiple processes are running on several
v/rtual consoles, the execution of each individual process slows according to the proportion
of I/O to CPU resourc~ it requires. A process that performs a large amount of I/O in
proportion to computing exhibits only minor speed degradation. This also applies to a process
that performs a large amount of computing, but runs concurrently with other pro~sses that
are hugely I/O-bound. On the other hand, significant speed degradation occurs where more
than one compute-bound process is running.

m l 2 1 G f f A L / H e
1--4

CP/M P r ~ m m ~ r ' s Guide ~.2 Sapa'~m" (SUP)

1.2 S u p e r v i s o r (SUP)

The Supervisor module (SUP) manages the interface between processes and the operating
system kernel. It also manages internal communication between operating system modules.
All system calls, whether they originate from a transient process or internally from another
system module, go through a common table-driven function interface in SUP. SUP also
handles the P_LOAD (Load Process) and P-CLI (Call Command Line Interpreter) system
calls.

1.3 R e a l - t i m e M o n i t o r (RTM)

The Real-time Monitor (RTM) is the real-time multitasking nucleus of Concurrent
CP/M. The RTM performs process dispatching, queue management, flag management,
device polling, and system timing tasks. User programs can also call many of the RTM
system calls used to perform these tasks.

1.3.1 Process Dispatching

Although Concurrent CP/M is a multiprocess operating system, only one process has
access to the CPU resource at any given time. Unless you specifically write a program to
communicate or synchronize execution with other processes, a process is unaware of other
processes competing for system resources.

The primary task of the RTM is to transfer, or dispatch, the CPU resource from one
process to another. The RTM module called the Dispatcher performs this task. The RTM
maintains two data structures, the Process Descriptor (PD) and the User Data Area (UDA),
for each process running under Concurrent CP/M. The Dispatcher uses these data structures
to save and restore the current state of each running process.

Each process in the system resides in one of three states: ready, running, or suspended.
A ready process is one that is waiting for the CPU resource only. A running process is one
that the CPU is currently executing. A suspended process is one that is waiting for a system
resource or a specified event, such as the occurrence of an interrupt, an indication that polled
hardware is ready, or the expiration of a delay period.

Any existing process is represented on a system list. The Dispatcher removes a process
from one list and places it on another. The Process Descriptor of the currently running
process is the first entry on the Ready List. Other processes ready to run are represented on
the Ready List in order of priority. Suspended processes are on other system lists, depending
on why the processes were suspended.

B DIC41"AL RESF.ARCH •

!-5

1.3 Real-time Monitor (RTM) Ccemn'rmt CP/M Prolp=u~er', G.kk

A dispatch operation can be summarized as follows:

1. The Dispatcher suspends the process from execution and store, s its current state in
the Process Descriptor and the UDA.

2. The Dispatcher pisces the process on an appropriate system list, depending on why
the Dispatcber was called. For example, if a process is to delay for a certain number
of system ticks, its Process Descriptor is placed on the Delay List. When a process
releases a resource, the process is usually placed back on the Ready List. If another
process is waiting for the resource, that process is taken off its current system list
and also placed on the Ready List.

3. The highest priority process on the Ready List is chosen for execution. If two or
more processes have the same priority, the process that has waited the longest executes
first.

4. The Dispatcher restores the state of the selected process from its Process Descriptor
and UDA, and gives it the CPU resource.

5. The process executes tmti] it needs a busy resource, a resource needed by another
prcr.ess becomes available, or an interrupt occurs, At this point, a dispatch occurs,
allowing another process to run.

Only processes on the Ready List are eligible for selection during dispatch, By definition,
a ~ is on tbe P , ~ I ~ t ff it is w a l ~ m~ly for I ~ CPU rmom~. Pm~mm ~
for other system resources cannot execute until the ~ they reqeke m available.
Concurrent CP/IVl blocks a process from e,x~uflon if It is waitb~i for:.

• a queue m e u s e so it can complete a Q_READ operation.

• space to bec, on'~ avalkble in a queue so it can complete a Q_WRITE operation.

• a console or list device tO become available.

• a q~'ified number of system clock ticks before it can be removed from the system
Delay List.

• an I/O event to complete,

These situations are discussod in greater detail in the following sections,

A ~ g process not needing a resource and not releasing one runs until an interrupt
causes a dispatch. While not all interrupts cause dispatches, the system clock generates
interrupts ever/clock tick and forces • dispatch each time. Clock ticks nsu~y occur 60
times a second (approximately every 16.67 milliseconds), and allow time sharing within s
real-time environment.

IID~T~ ~.~J~C H I

I-6

Concurrent CP/M Programmer's Guide 1,3 Real-time Monitor (RTM)

Concurrent CP/M is a priority-driven system. This means that during a dispatch, the
operating system gives the CPU resource to the process with the best priority. The Dispatcher
allots equal shares of the system's resources to processes with the same priority. With priority
dispatching, the system never passes control to a lower-priority process if there is a higher-
priority process on the Ready List. Because high-priority, compute-bound processes tend to
monopolize the CPU resource, it is best to reduce their priority to avoid degrading overall
system performance.

1.3.2 Queue Management

Queues perform several critical functions for processes running under Concurrent CP/M.
A process can use a queue for communicating with another process, synchronizing its
execution with that of another process, and for exclusion of other processes from protected
system resources. A process can make, open, delete, read from, or write to a queue with
system calls similar to those used to manage disk files.

Each system queue consists of two parts: the queue descriptor, and the queue buffer.
Concurrent CP/M implements these special data structures as memory files that contain
room for a specified number of fixed-length messages.

When the Q_MAKE system call creates a queue, this queue is assigned a unique 8-
character name. As the name queue implies, messages are read from a queue on a first-in,
first-out basis.

A process can read from or write to a queue conditionally or unconditionally. If the queue
is empty when a conditional read is performed, or full when a conditional write is performed,
the system returns an error code to the calling process. On the other hand, if a process
attempts an unconditional queue operation in these circumstances, the system suspends it
from execution until the operation becomes possible.

More than one process can wait to read or write a queue message from the same queue
at the same time. When these operations become possible, the system restores the highest
priority process first, processes with the same priority are restored on a first-come, first-
served basis.

Mutual exclusion queues are a special type of queue under Concurrent CPIM. They contain
one message of zero length and their names follow a convention, beginning with the upper-
case letters MX. A mutual exclusion queue acts as a binary semaphore, ensuring that only
one process uses a resource at any time.

M DIGn'AL RESEARCH •
I-7

IJ a e s ~ M ~ (RTM) Cmetwnmt CP/M Prod-ammOs Gtdde

Access to a resource protected by a mutual exclusion queue takes pkce as follows:

1. A process issues an unconditional Q_READ call to the MX queue protecting the
resource, thereby suspending itself if the message is not available.

2. When the message becomes available, the process accesses the protected resource.
Note that from the time the process issues the unconditional reed, any other process
attempting to access the same resource is suspended.

3. The process writes the zero-length message back to the queue when it has finished
using the protected resource, thus freeing the resourc~ for other processes.

As an example, the system mutual exclusion queue, MXdkk, ensures that processes cannot
access the file system shnulta~ously. Note that the BDOS, no~ the application software,
executes the preceding series of queue calls. Therefore the n~tual exclusion process h
uansperent to the programmer, who is only responsible for originating the disk system calls.

Mutual exclusion queues differ from normal queues in another way. When a process reads
a message from a mutual exclusion queue, the RTM notes the Process Descriptor address
within the Queue Descriptor. This establishes the owner of the queue message. If the operating
system aborts the process while it owns the mutual exclusion message, the RTM automalically
writes the message back to all mutual exclusion queues whose messages are owned by the
aborted process. This grants other processes access to protected resources owned by the
aborted Ixoceu.

1.3.3 System Timing Functions

Concurrent CP/M's timing system calls include keeping the time of day and delaying the
mccution of a process for a specified period of time. An internal process called CLOCK
Ixovid~ the time of day for the system. This prneeu issue* DEV_WArI'FLAI3 system calls
on the system's one second flag, Flag 2. When the XIOS Tick Interrupt Handler sets this
flag, it initiates the CLOCK process, which then increments the internal time and date.

Subsequently,. the CLOCK process makes another D E V _ W ~ call and suspends
itself until the flag is set again. Concurrent CP/M provides system calls that allow you to
set and access the internal date and time. In addition, the file system uses the internal time
and date to record when a file is updated, created, or last accessed.

• mc,~ iLr~.sr~A.,,~o

I-8

Coneurrmt CP/M Programmer's Guide 1.3 Real-time Monitor (RTM)

The P_DELAY system call replaces the typical programmed delay loop for delaying
process execution. P_DELAY requires that Flag 1, the system tick flag, be set approximately
every 16.67 milliseconds, or 60 times a second; the XIOS Tick Interrupt Handler also sets
this flag. When a process makes a P_DELAY system call, it specifies the number of ticks
for which the operating system is to suspend it from execution. The system maintains the
address of the Process Descriptor for the process on an internal Delay List along with its
current delay tick count. When a DEV_SETFLAG call occurs, setting Flag 1, the tick count
is decremented. When the delay count goes to zero, the system removes the process from
the Delay List and places it on the Ready List.

Note: The length of a tick might vary from installation to installation. For instance, in
Europe, a tick is commonly 20 milliseconds, yielding 50 ticks per second. The description
of the P_DELAY system call in Section 6 describes how to determine the correct number
of ticks to delay 1 second.

1 .4 M e m o r y M o d u l e (M E M)

Concurrent CP/M supports an extended, fixed partition model of memory management;
the Memory Module handles all memory management system calls. In practice, the exact
method that the operating system uses to allocate and free memory is transparent to the
application program. Therefore you should take care to write code independent of the memory
management model; use only the Concurrent CP/M specific memory system calls described
in Section 6.

1 .5 Bas i c D i s k O p e r a t i n g S y s t e m (B D O S)

Except for auxiliary device support, Concurrent CPIM BDOS is an upward-compatible
version of the single-tasking CPIM-86 BDOS. It handles file creation and deletion, facilitates
sequential or random file access, and allocates and frees disk space. In most cases, CP/M-86
programs that make BDOS calls for I/O can run under Concurrent CPIM without modifi-
cation. Concurrent CPIM's BDOS is extended to provide support for multiple virtual consoles
and list devices. In addition, the file system is extended to provide services required in a
multitasking environment. The major extensions to the file system are

• F'de locking. Files opened under Concurrent CP/M cannot be opened or deleted by
other tasks. This feature prevents accidental conflicts with other tasks.

H DIGITAL RESEARCH •
1-9

1.S ~ ~ OpmmU s r m m Omos9 ~ CP/M l ' r ~ z a m a - ~ C,V~

• Shared access to files. As e special option, independent users can open the same file
in shared or unlocked mode. Concurrent CPIM supports record locking and unlocking
commands for files opened in this mode and protects files opened in shared mode
from deletion by other tasks.

• Date Stamps. The BDOS optionally supports two time and date stamps, one recording
when a file is updated, and the other recording when the file was created or last
accessed.

• Password Protection. The password protection feature is optional at either the file or
drive level. The operator or applications program assigns disk drive passwords, while
application programs can assign file protection passwords in several modes.

• Extended Error Module. Besides the default error mode, Concurrent CP/M has two
options] error-handling n-,odes that return an ~ code to the calling process in the
event of an unrecoverable disk error.

1 .6 C h a r a c t e r I /O M o d u l e (C I O)

The Character I/O module handles all console and list I/O. Under Concurrent CP/M, every
character I/O device is associated with a data structure called a Console Control Block (CCB)
or a List Control Block (LCB). These data structures reside in the XIOS, The CCB contains
the ~ owner, ttatm information, line editing vm.kblm, and the root of a linked list of
Process Descriptort (PI~) that are waiting for access. More than one process can wait for
access to a single console. These processes are maintained on a linked list of Process
Descriptors in priority order. The LCBs contain similar information about the list devices.
See the Concurrent CP/M System Gu/de for more information about LCBs and CCBs.

1,7 V i r tua l Console Sc reen M a n a g e m e n t

Virtual console screen management is coordinated by four separate modules: the CIO,
the PIN (Physical INput) and VOUT (Virtual OUTput) processes, and the XIOS. The line
editing associated with the C...READSTR call is performed in the CIO. The PIN process
handles keyboard input for all the virtual consoles; it also traps and implements the CTRL-C,
CTRL-S, CI 'R~Q, CTRL-P, and CI 'R~O functions. The VOUT process spools console
output from processes running on background buffered mode consoles, and handshakes with
the PIN process to display spooled console output when the background console is brought
to the foreground. The XIOS decides which special keys represent the virtual consoles, and
returns a special code from IO_CONIN when you request a screen switch. The XIOS also
implements any screen saving and restoring when screens are switched. See the Concurrem
CP/M System Guide and the discussion of the IO_SWITCH function.

M DIGrrAL gIMAgCHO
I-I0

Ceamrrmt CWM Pregramm~'l Gelde 1.7 V i r t ~ Cemele Screen Mamqlem~t

The PIN process reads the keyboard by directly calling the XIOS IO_CONIN function.
This is the only place in the operating system IO_CONIN is called. The PIN scans the input
stream from the keyboard for switch screen requests and the special function keystrokes
C'TRL-C, CTRL-S, CTRL-Q, CTRL-P, and CTRL-O. All other keyboard input is written
to the VINQ (Virtual Console INput Queue) associated with the foreground virtual console.
The data in the VINQ becomes a type-ahead buffer for each virtual console, and is returned
to the process attached to that console as it performs console input.

When PIN sees a CTRL-C it calls P_ABORT to abort the process attached to the virtual
console, flushes the type-ahead buffer in the VINQ, turns off CTRL-S, and performs a
DRV_RESET call for each logged-in drive. The P_ABORT call succeeds when the Process
Keep flag is not on, saving the Terminal Message Processes (refer to P_CREATE for
information on the process descriptor). The DRV_RESET calls affect only the removable
media drives, as specified in the CKS field of the Disk Parameter Blocks in the XIOS (refer
to the Concurrent CP/M System Guide for further details on Disk Parameter Blocks).

CTRL-S stops any output to the screen. CTRL-S stays set when a virtual console is
switched to the background.

CTRL-O discards any console output to the virtual console. CTRL-O is turned off when
any other key is subsequently pressed, except for the keys representing the virtual consoles.

CTRL-P echoes console output to the default list device specified in the LIST field of the
process descriptor attached to the virtual console. If the list device is attached to a profess,
a PRINTER BUSY message appears.

All of the above control keys can be disabled by the C_MODE call. When one of the
above control characters is disabled with C..MODE or when the process owning the virtual
console is using the C_RAWIO call, the PIN does not act on the control character but instead
writes it to the VINQ. It is thus possible to read any of the above control characters from
an application program. These control keys are discussed in depth in the Concurrent CP/M
User's Guide.

1.8 Extended Input/Output System (XIOS)

The XIOS module is similar to the CP/M-86 Basic Input/Output System (BIOS) module,
but it is extended in several ways. Primitive operations, such as console I/O, are modified
to support multiple virtual consoles. Several new primitive system calls, such as
DEV_POLL, support Concurrent CP/M's additional features, including elimination of wait
loops for real-time I/O operations.

S DIGffAL RESEARCH •
I-II

1.9 za-t,b~ m m , p Prttm= ta'm,) ~ C~/M ; ' , ,s , " Guide

1.9 Terminal Message Processes (TMP)

The Concurrent CP/M Terminal Message Processes (TMPs) are resident system processes
that ~ command lines from the virtual c, onsolea and call the Command Line Interpreter
(CLI) to ext=ute them. The TMP prints the prompt on the virtual consolea.

Each virtual console has an independent TMP defining that console's vnvironnmnt, includ-
ing defmlt disk, us~ number, printer, and console.

1.10 Transient Programs

Und~ Concurrent CP/M, a transient program is one that is not system-r~idc, nt. The
system must load such programs from disk into avaiiabl~ m=mory e~ch time they c=~cute.
The command file of a transient program is id=ntified by the filetype CMD. When you enter
a command at the console, the operating system searches on disk for the appropfiat~ CMD
file, loads it, and initiates it. Concurr=nt CP/M supports three diffca~nt ex~ution models
for transient programs: the 8080 Model, the Small Model, and the Compact Model.
Sections 4.1.1 through 4.1.3 desorib¢ th=sc models in detail.

1.11 System Call Calling Conventions

When a Concurrent CP/M process makes a system call, it loads values into the registers
shown in Table I-I and initiatos Interrupt 224 (via the INT 224 instruction), reservod by
the Intel Corporation for this purpose.

Sl I]~dl'AL g J ~ S ~ . ~ e
1-12

CP/M Pr~zmm~ '~ Guide 1.11 8 y ~ m Cdi ~ C ~ v ~ l k m

Table 1-1. Registers Used by System Calls

Re~ster

ENTRY PARAMETERS

CL: System Call Number

DL: Byte Ibxan~ter

or
DX: Word Parameter

or

DX: Address - Offset

DS: Address - Segment

Register

RETURN VALUES

AL: Byte Return
or

AX: Word Return
or

AX: Address - Offset
ES: Address - Segment

BX: Same as AX
CX: Error Code

Concurrent CP/M preserves the contents of registers SI, DI, BP, SP, SS, DS, and CS
through the operating system calls. The ES register is preserved when it is not used to hold
a return segment value. Error codes returned in CX are shown in Table 6-5, CX Error Codes.

1 ,12 SYSTAT: Sys t em S ta tu s

The SYSTAT utility is a development tool that shows the internal state of Concurrent
CP/M. SYSTAT describes memory allocation, current processes, system queue activity,
and many informative parameters associated with these system data structures. Further-
more, SYSTAT presents two views: either a static snapshot of system activity, or a
continuous, real-time window into Concurrent CP/M.

I I DIGITAL RESEARCH •
1-13

1.12 SYWI'AT- System Slatm Cone.rrmt CP/M Pro40~emer% Guide

You can spec/~ SYSTAT in one of two modes. If you know which display you want, you
can specify it in thl mvocat~n, usins an option shown'in the menu below. If you do not
specify an opt/on, se.kct a d i~ l ay from this menu by typing

A>S¥ST~Y <or>

The screen clears and the rn~n menu appears:

Which O p t i o n ?

H(elp)
M(emory)
O(verview)
P(rocesses - All)
q(ueuos)
U(ser Processes)
C (o n s o l e s)
E(xit)

P n ~ the ~ . t e le~r to ob~/n a d/splay.

When you select H(elp), t~ HIK.P file demonstrates the proper syntax and available
options:

To use SYSTAT with the senu: At the syetoe proept type $YSTAT <OR>

To use SYSTAT without the menu: At the system prompt type the oomaand

SYS%T [option] -or-
SYSTAT [option C] -or-
SYSTAT [option C ~k ~]

• DIC,~AL RESEAItCHe
1-14

Concurrent CP/M Programmer's Guide 1.12 SYSTAT: System Status

-where-
-> option =

M(enory) P(rocesses) O(verviow) C(onsoles)
U(ser Processes) Q(ueues) H(elp)

-> C = Continuous display
#~= 1-2 digits indicating the period,

in seconds, between display refreshes.

Type any letter to return to the asnu.

The M, P, Q, and U and C options ask you if you prefer a continuous display. If you
type y, Concurrent CP/M asks for a time interval, in seconds, and then displays a real-time
window of information. If you type n, a static snapshot of the requested information appears.
In either case, press any key to return to the menu.

The M(emory) option displays all memory potentially available to you, but it does not
display restricted memory. The partitions are listed in memory-address order. Length param-
eter is shown in paragraph values.

The O(verview) option displays an overview of the system parameters, as specified at
system generation time. The display is not continuous.

The P(rocess) option displays all system processes and the resources they are using.

The Q(ueues) option displays a~I system queues, listing queue readers, writers, and owners.

The U(ser Processes) option displays only user-initiated processes in the same format as
the P(rocess) option.

The C(onsoles) option displays console information; that is, background, foreground,
buffered, suspended, purging, CTRL-Q, and so on.

The E(xit) option returns you to system level from the menu, as does CTRL-C.

End of Section 1

Il l DIGITAL RESEARCH •

1-15

Section 2
The Concurrent CP/M File System

2.1 File System Overview

The Basic Disk Operating System (BDOS) file system supports from one to sixteen logical
drives. Each logical drive has two regions: a directory area and a data area. The directory
area defines the files that exist on the drive and identifies the data area space that belongs
to each file. The data area contains the file dam defined by the directory.

The directory area consists of sixteen logically independent directories. These directories
are identified by user numbers 0 through 15. During execution, a process runs with a system
parameter called the user number set to a single value. The user number specifies the current
active directories for all drives on the system. For example, the Concurrent CP/M DIR
utility displays only files within a directory selected by the current user number.

The file system automatically allocates directory and data area space when a process
creates or extends a file, and returns previously allocated space to free space when a process
deletes or truncates a file. If no directory or data space is available for a requested operation,
the BDOS returns an error code to the calling process. The allocation and retrieval of
directory and data space is transparent to the ceiling process. As a result, you need not be
concerned with directory and drive organization when using the file system calls.

An eight-character filename and a three-character filetype field identify each file in a
directory. Together, these fields must be unique for each file within a directory. However,
files with the same filename and filetype can reside in different user directories without
conflict. Processes can also assign an eight-character password to a file to protect it from
unauthorized access.

[] DIGITAL PY.SSAgCH •

2-1

~.1 z ~ symm ovwvtew Cmsewrmt CP/M Pmlrlmm~'~ Gldde

All system calls that involve file oper~ions specify the requested file by filename and
f i l e type . For some system calls, multiple flies can be specified by a technique called ambig-
uoos reference. This technique uses question marks and asterisks as wildcard characters to
give the file system a pattern to match as it searches a dirt~ory.

The file system supports two categories of system calls: file-access system calls and drive-
related system calls. The file-access system calls have mnemonics be&inning with F_, and
the drive-related system calls have mnemonics beginning with DRV_. The next two sections
introduce the file system calls.

2.1.1 File-ancees System Calls

Most of the file-access system calls can be divided into two groups: system calls that
operate on files within a directory and system calls that operate on records within a file.
However, the file-access category also includes several miscellaneous functions that either
effect the execution of other file-aocess system calls or ere commonly used with them.

System calls in ~ first file-aocnss group include calls to search for cme or more files,
delete one or more files, rename or truncate a file, set file attributes, assign a password to
a file, and compute the size of a file. Also included in this group are system calls to open
a file, to create a file, and to close a file.

~ . o M nle-s~els group indudel syif~'n calli to retd or write ~ to a fi~, eilt~sr
sequent~lly or randomly, by record poaltion. BDOS read and write system calls transfer
data in 128-byte units, which is the basic record size of the file system. This group also
includes system calls to lock and unlock records and thereby allows multiple processes to
have coordinated access to records within a commonly accessed file.

Before making read, write, lock, or unlock system calls for a file, you must first open or
create the file. Creating a file has the side effect of opening the file for record access. In
addition, because Concurrent CP/M supports three different modes of opening files (Locked,
Unlocked, and Read-Only), there can be other restrictions on system calls in this group that
are related to the open mode. For example, you cannot write to a file that you have opened
in Reed-Only mode.

After a process has opened a file, access to the file by other processes is restricted until
the file is closed. Again, the exact nature of the restrictions depends on the open mode.
However, in all cases the file system does not allow a process to delete, rename, or change
a file's attributes if another process has opened the file. Thus, the F_CLOSE system call
performs two steps to terminate record access to a file. It permanently records the current
status of the file in the directory and removes the open-file restrictions limiting access to
the file by other processes.

I I DiC~AL RF.SF.Aa£,H t

2-2

~ a e a r r m t Cl'/M Prevamm~'~ Guide 2.1 trite S~j~tR Ovm4w

The miscellaneous file-access system calls include calls to set the current user number,
set the DMA address, parse an ASCII file specification and set a defanlt password. This
group also includes system calls to set the BDOS Multisector Count and the BDOS Error
Mode. The BDOS Multisector count determines the raxmber of]28-byte records to be
processed by the read, write, lock, and unlock system calls. The Multisector count can range
from 1 to 128; the default value is one. The BDOS Error Mode determines whether the file
system intercepts certain errors or returns on all errors to the calling process.

2.1.2 Drlve-related System Calls

BDOS drive-related system calls select the default drive, compute a drive's free space,
interrogate drive status, and assign a directory label to a drive. A chive's directory label
controls whether the file system enforces file password protection for files in the directory.
It also specifies whether the file system is to perform date and time stamping of files on the
drive.

This category also includes system calls to reset specified drives and to control whether
other processes can reset particular drives. When a drive is reset, the next operation on the
drive reactivates it by logging it in. Logging in a drive initializes the drive for directory and
file operations. The purpose of a drive reset call is to prepare for a media change on drives
that support removable media. Under Concurrent CP/M, drive reset calls are conditional.
A process cannot reset a drive if another process has a file open on the drive.

The following table summarizes the BDOS file system calls.

Table 2-1. Hie System Calls

Mnemonic Description

DRV_ACCESS
DRV_ALLOCVEC
DRV_ALLRESET
DRV_DPB
DRV_GET
DRV_GETLABEL
DRV_FLUSH
DRV_FREE
DRV_LOGINVEC
DRV_RESET
DRV_ROVEC
DRV_SETLABEL

Access Drive
Get Drive Allocation Vector
Reset All Drives
Get Disk Parameter Block Address
Get Default Drive
Get Directory Label
Flush Data Buffers
Free Drive
Return Logged In Vector
Reset Drive
Return R/O Vector
Set Directory Label

D~ffAL RESEARCH®
2-3

1.1 IV~ 8ymm Onnk, w c~/M P ~ e r m e e J C, vhde

'lhble 2-1. (continued)

Mnemonic De#cription

DRV_SET
DRV_SETRO
DRV_SPACE

F_ATTRIB
F_CLOSE
F_DEI.EI'E
F._DMASEG
F_DMAOET
F_DMAOFF
F_ERRMODE
F..LOCK
F_MAKE
F.-MULTISEC
F-OPEN
F-PARSE
F_PASSWD
E.RANDREC
F..READ
F_.READRAND
F_RENAME
F_SIZE
F_SFIRST
F_SNEXT
F_TIMEDATE
F_TRUNCATE
F_UNLOCK
F_USERNUM
F_WRITE
F_WRITERAND
F_WRITEXFCB
F_WRITEZF

Set (Select) Drive
Set Drive To Read-Only

Free Spw~ On Drive

Set File's Auribums
Closc File
Delete File
Set DMA Segment
Get DMA Address
Set DMA Offmct
Set BDOS Error Mode
Lock Record In File
Make A New File
Set BDOS Multis~-tor Count

Parse Irtlename
Set Defmlt Password
R~n'n Record Number For File ReM-Wrim
Read ~ ~ltmntiLlly From File
Read Random Record From File
Rcnanm File
Compute Ftl¢ Size
Din~tory Search First
Din~cto~ Search Next
Return File ~ a t e Stamps I~mword Mode
Truncam File
Unlock Record In File
Sct/C~t ~ r y User Nmnber
Wfim Record Y~:qucntially Into Fde
Wrim Random Record Into Hie
Wrim File's XFCB
Write Random Record With Z~ro Fill

M DIGITAL ~ H e
2-4

Olem, l.mt CP/M Prqp'mmmer's Guide 2.1 File Symm Overvimv

The following sections contain information on important topics related to the file system.
Read these sections carefully before attempting to use the system calls described individually
in Section 6.

2.2 File Naming Conventions

Under Concurrent CP/M, a file specification consists of four parts: a drive specifier, the
filenarne field, the filetype field, and the file password field. The general format for a com-
mand line file specification is shown below:

{d:} filename {.typ} {;password}

The drive specifier field specifies the drive where the file is located. The filenarne and filetype
fields identify the file. The password field specifies the password if a file is password pro-
tected.

The drive, type, and password fields are optional, and delimiters are required only
when specifying their associated fields. The drive specifier can be assigned a letter from A
to P, where the actual drive letters supported on a given system are determined by the
XIOS implementation. When the drive letter is not specified, the current default drive is
assumed.

The filename and password fields can contain one to eight non-delimiter characters. The
filetype field can contain one to three non-delimiter characters. All three fields are left justified
and padded with blanks, if necessary. Omitting the optional type or password fields implies
a field specification of all blanks.

i DIGITAL RLSEAgCH •

2-5

2.2 v h ~ = k s ~ Cmma'nmt CP/M P r ~ r m u w ' s G =s,~.

Under Concun=nt CP/M, tbe P_CLI sysmm call inmpmts ASCII command lines and
loads IX'ograrns. The P_CLI system call ~ F_PARSE symm calls to parse file specifi-
cations from a comnumd line. F_PARSE recognizes certain ASCTI characters as delimiters
when it parses a file specification. These charactexs are shown in 'rsblc 2-2.

Table 2-2. Valid Filename Del/mlters

ASCII Hex Equivalent

null 000H
space O20H
nmu'n 00DH

tab 009H
: 03AH

02EH
; O3BH
= O3DH

02CH 9

[05BH
] 05DH
< 03CH
> 03EH

I 07CH

The F_PARSE sysmm call also excludes all control characters from the file specification
~lds and tnmalatu all low~caso letms to upp~ca~.

Avoid using p a r a n ~ and/he b~,~ssh ~ , \, in the filename and filetype fields
becmse they are commonly used delimiters. Use asterisk and question mark characters, *
and ?, only to mak~ an ambiguous file reference. When F_PARSE encounters an asterisk in
a filename or filetype field, it pads the remainder of the field with question marks. For
example, a filensn~ of X*.* is parsed to X???????.???. The BDOS F_SFIRST, F_SNEXT,
and F _ D ~ system calls match a question mark in the filaname or filetype fields to the
corresponding position of any directory entry belonging to the current user number. Thus, a
sem'ch operation for X???????.?. ~. finds all the files in the current user diroctory beginning
in X. Most other file-access BDOS system calls treat the presence of a question mark in the
fllaname or filetyl~ fields as an =mr.

E D~TAL ~.A~C..H I
2-6

Ceaearreat CP/M ~ ' s Guide 2.2FIkNamingCmvmflom

It is not mandatory to follow the file naming conventions of Concurrent CP/M when you
create or rename a file with BDOS system calls directly from an application program. How-
ever, the conventions must be used if the file is to be accessed from a command line. For
example, the P_CLI system call cannot locate a command file in the directory if its filename
or filetype field contains a lowercase letter.

As a general rule, the filetyl~ field names tl~ generic category of a particular file, and the
filename field distinguishes individual flies within each category. Although they are generally
arbitrary, Table 2-3 lists some of the generic filetype categories that have been established.

Table 2-3. Filetype Conventions

Filetype Description

A86 8086 Assembler Source
ASM 8080 Assembler Source
BAK Text or Source Back-up
BAS BASIC Source File
C C Source File
CMD 8086 Command File
COM 8080 Command File
CON CCP/M Modules
DAT Data File
HEX ASM80 HEX File
H86 ASM86 HEX File
INT Intermediate File
LIB Library File
L86 Library File
LST List File
PLI PL/I Source File
PRL Page Relocatable
REL Relocatable Module
RSP Resident System Process
SPR System Page Relocatable
SUB SUBMIT File
SYM Symbol File
SYS System File
$$$ Temporary File

B DIGITAL RESEARCH"

2-7

2.3 Di~ Drl~ md 1 ~ ~ CP/M Proltrmmmr~ Guide

2.3 Disk D r i v e a n d File O r g m ~ . ~ t i o n

The file system can support up to sixteen logical drives, identified by the letters A through
P. A logical drive usually corresponds to a physical drive on the system, particularly for
physical drives that support removably media such as floppy disks. High-capacity hard disks,
however, are commonly divided into multiple logical drives. If a disk contains system tracks
reserved for the boot loader, these tracks precede the tracks of the disk mapped by the logical
drive. In this mmmal, references to drives mean logical drives, unless e~plicitly stated ¢Xberwise.

The maximum file size supported on a drive is 32 megabytes. The maximum capacity of
a drive is determined by the data block size specified for the drive in the XIOS. The data
block size is the basic unit in which the BDOS allocates space to film. Table 2-4 displays
the relationship between data block size and total drive capacity.

Table 24. Drive Capacity

Data Block Size Maximum Drive Capacity

IK 256 kilobytes
2K 64 megabytes
4K 128 megabytes
8K 256 megtbyms
! 6K 512 megabytes

Each drive is divided into two regions: a directory area and a data area. The directory area
contains from one to sixteen blocks located at the beginning of the drive. The actual number
is set in the XIOS. Directory en~es residing in this area define the files that exist on the
drive. In addition, the directory entries belonging to a file identify the data blocks in the
drive's data area that contain the fiJe's records. The directory area is logically subdivided into
sixteen independent directories identified as user 0 through 15. Each independent directory
shares the actual directory area on the drive.

m D~.~TAL RF-SF.ARCH •
2-8

Concurrent C?/M l~'Olimmm~'. Guide 2.3 D l / D r i w and ~ Orllanizatiom

Each disk file may consist of a set of up to 262,144 (40000H) 128-byte records. Each
record of a file is identified by its position in the file. This position is called the record's
Random Record Number. If a file is created sequentially, the first record has a position of
zero, while the last record has a position one less than the number of records in the file. Such
a file can be read sequentially, beginning at record zero, or randomly by record position.
Conversely, if a file is created randomly, records are added to the file by specified position.
A file created in this way is called sparse if positions exist within the file where a record has
not been written.

The BDOS automatically allocates data blocks to a file to contain the file's records on the
basis of the record positions consumed. Thus, a sparse file that contains two records, one at
position zero, the other at position 262,143, consumes only two data blocks in the data area.
Sparse files can be created and accessed only randomly, not sequentially. Note that any data
block allocated to a file is permanently allocated until the file is deleted or truncated. These
are the only mechanisms supported by the BDOS for releasing data blocks belonging to a
file.

Source files under Concurrent CP/M are treated as a sequence of ASCII characters, where
each line of the source file is followed by a carriage return/line-feed sequence, 0DH followed
by 0AH. Thus, a single 128-byte record could contain several lines of source text. The end
of an ASCII file is denoted by a CTRL-Z character (IAH), or a real end-of-file, returned by
the BDOS read system call. Note that these source file conventions are not supported in the
file system directly but are followed by Concurrent CP/M utilities such as TYPE and
ASM-86 e . In addition, CTRL-Z characters embedded within other types of files such as
CMD files do not signal end-of-file.

2.4 File Control Block Definition

The File Control Block (FCB) is a system data structure that serves as an important channel
for information exchange between a process and BDOS file-access system calls. A process
initializes an FCB to specify the drive location, filename and filetype fields, and other infor-
mation that is required to make a file-access call. For example, in an F_OPEN system call,
the FCB specifies the name and location of the file to be opened. In addition, the file system
uses the FCB to maintain the current state and record position of an open file. Some file-
access system calls use special fields within the FCB for invoking options. Other file-access
system calls use the FCB to return data to the calling program. All BDOS random I/O system
calls require the calling process to specify the Random Record Number in a 3-byte field at
the end of the FCB.

J DIGITAL RESEARCH •
2-9

2.4]me Caulzal]~Igct l)Mklam C, mcm'rs~ CP/M ~ . s m m a , ' s Gs l~

When a process n'm~s a BDOS file-access system call, it passes an FCB address to the
BDOS. This address has two 16-bit components: register DX, which contains the offset, and
register DS, which contains the segment. The length of the FCB data arcs depends on ~c
BIX)S system call. For most system calls, the minimum length is 33 bytes. For the
F_READRAND, F_WRITERAND, F_WRITEZF, F_LOCK, F_UNLOCK, F-RAND
REC, F-SIZE, and F_TRUNCATE system calls, the minimum FCB length is 36 bytes.
When the F_OPEN or F_MAKE system calls open a file in Unlocked mode, the FCB must
be at least 35 bytes long. Figure 2-1 displays the FCB dam structure in two formats.

Ll- i IZIZIZ1 l o o,, I IzlzIm
00 01 . 0g, 12 13 14 15 18 32 33 34 35

00H

08H

10H

18H

20H

DR ~ F1 .+ F2 -8. F3 F4 F5 F6 F7.

DO D1 D2 D3 D4 D5 DIS D7...

I --'----

Ftsure 2-I. FCB - File Control Block

• DIC~AL RESEARCH*
2-10

C m c n n m t CP/M l ~ - a m ~ ' a Guide

The fields in the FCB are defined as follows:

2.4 glle Cemtroi Block De~l t ioe

'Fable 2-5. FCB Held Definitions

Field Definitions

DR Drive Code (0-16).

0 = > use default drive for file
1 = > auto disk select drive A
2 = > auto disk select drive B

FI...Fg

T1 ,T2,T3

EX

CS

RS

RC

16= > auto disk select drive P

Contain the filename in ASCII uppercase, with high bit - 0. FI ' ,
FS' denote the high-order bit of these positions and are called attribute
bits.

Contain the filetype in ASCII uppercase, with high bit = 0. TI ' , 1"2"
and T3' denote the high bit of these positions and are also called
attribute bits.

T I ' = 1 = > Read-Only file,
T2' = 1 = > System file,
T3' = 1 = > File has been archived.

Contains the current extent number. This field is initialized to 0 by the
calling process, but it can range from 0 to 31 during file I/O.

Contains the FCB checksum value for open FCBs.

Reserved for internal system use

Record count for extent EX. This field takes on values from 0 to 255
(values greater than 128 imply a record count of 128).

m DIGITAL RESEARCH •
2-11

~.4 F h ~ mock DdW~m ~ CP~ enVrsmmr's C,~de

2.$. (continued)

Field Definitions

DO...DI5

CR

R0,RI ,R2

Normally filled in by Concurrent CP/M and reserved for system use.
Also used to specify ~ new filmanffi and filetype with the F_RENAME
system call.

Current record to read or write in a sequential file operation. This field
is normally set to zero by the calling process when a file is opened or
created.

Optioual Random Record Number in [he range 0-262,143 ((3 - 3FFFFH).
R0, R1, R2 constitute an 18-bit value with low byte R0, middle byte
RI, and high byte R2.

Note: The 2-byte File ID is returned in bytes R0 and R1 of the FCB when a file is suc-
cessfully opened in Unlocked mode (refer to Section 2.10).

2.4.1 FCB Iniflalimfloa and Usage

The calling procure mint initialLz¢ byes 0 through I 1 of the rderenced FCB bdore
making the following file-access system calls: E.ATTRIB, F_DELETE, F_MAKE,
F_OPEN, F_RENAME, F_SFIRST, E_SIZE, F_SNEXT, F_TIMEDATE, F_TRUN-
CATE, and F_WRITEXFCB. Normally, the DR field specified the drive location of the
file, and the name and type fields specify the name of the file. You must also set the EX
field of the FCB before vailing F_MAKE, F_OPEN, F_SFIRST, and F_WRITEXFCB.
Except for the F_WRITEXFCB system call, you van usually ~ t this feld to zero. Note
that the F_RENAME system vail requires the vailing process to place the new filename
and filetype in bytes D I through D 11.

The remaining file-access calls that use FCBs require an FCB that has been initialized
by a prior file-access system call. For example, the F_SNEXT system vail expects an FCB
initialized by a prior F_SFIRST vall. In addition, the F L O C K , F_READ, E_READ-
RAND, F_UNLOCK, F_WRITERAND, and F_WRITEZF system calls require an
FCB that has been activated for record operations. Under Concurrent CP/M, only the
F_OPEN and F_MAKE system vails can activate an FCB.

• DicdrAI. ~ILC~,,~7.Ho
2-12

CP/M ProSrsEm'~ Calde 2,4 l~e Cmlrol Block Ddnltloa

If you intend to process a file sequentially from the beginning, using the F_READ and
F_WRITE system calls, you must set the CR field to zero before you make your first read
or write call. In addition, when you make an F_LOCK, F_READRAND, F_UNLOCK,
F_WRITERAND, or F_WRITEZF system call, you must set bytes R0 through R2 of the
FCB to the requested Random Record Number. The F_TRUNCATE system call also
requires the FCB random record field to be initialized.

The F_SFIRST, F_SNEXT, and F_DELETE system calls support multiple or ambiguous
reference. In general, a question mark in the filename, filetype, or EX fields matches all
values in the corresponding positions of directory entries during a directory search operation.
File directory entries maintained in the directory area of each disk drive have the same format
as FCBs except for byte 0, which contains the file's user number, and bytes 32 through 35,
which are not present. The search system calls, F_SFIRST and F_SNEXT, also recognize
a question mark in the FCB DR field, and, if specified, they return all dlrectory entries on
the disk regardless of user number, including empty entries. A directory FCB that begins
with ESH is an empty or erased directory entry.

When the F_OPEN and F_MAKE system calls activate an FCB for record operations,
they copy the FCB's matching directory entry from disk, excluding byte O, into the FCB in
memory. In addition, these system calls compute and store a checksum value in the CS field
of the FCB. During subsequent record operations on the file, the file system uses this check-
sum field to verify that the FCB has not been modified by the calling process in an illegal
way. Thus, all read, write, lock, and u~ock operations on a file must specify a valid activated
FCB; otherwise, the BDOS returns a checksum error. The BDOS performs this checking to
protect the integrity of the file system. In general, you should not modify bytes 0 through 31
of an open FCB, except to set interface attributes (see Section 2.4.3). Other restrictions
related to activated FCBs are discussed in Section 2.10.

The BDOS updates the memory copy of the FCB during file processing m maintain the
current position within the file. During file write operations, the BDOS also updates the
memory copy of the FCB to record the allocation of data blocks to the file. At the termination
of file processing, the F_CLOSE system call permanently records this information on disk.

Note that the BDOS does not record the data blocks allocated to a file during write
operations in the disk directory until the calling process issues an F_CLOSE call. Therefore,
a process that creates or modifies fles must close the files at the termination of file processing.
Otherwise, data might be lost.

B DIGITAL RESF.ARCH •
2-13

2.4 lqb CmlzM llloek Dd , eM/m Cmcm.rmt CP/M Pmllmmm"s GMde

2.4.2 Eae AtlHbutm

The high-order bits of the FC"B fileman~ (F/ ' , . . . ,F8') and filetype fields (TI',T2',TY) are
called atlribute bits. Attribute bits are l-bit Boolean fields, where I indicates on or true, and
0 indicates off or false. Atlribut¢ bits indicate two kinds of attributes within the file system:
file attributes and interface atlrilmtes. The file atlributes are described in this section. Section
2.4.3 descx'ibe~ interface atlributes.

The file attribute bits, FI ' , . . . ,F4' and TI' , T2', T3', indicate that a file has a defined
attribute. These bits are recorded in a file's directory FCBs. File am'ibutes can be set or reset
only by the F_ATTRIB system call. When the F_MAKE system call creates a file, it
initializes all file atlributas to zero. A process can interrogate 'file attributes in an FCB
activated by the F_OPEN system call, or in directm'y FCBs returned by the F_SFIRST and
F_SNEXT system calls.

Note: The file system ignores the file attribute bits when it attempts to locate a file in the
directory.

g DIGITAL [U.SF.AItCH I
2-14

C m m r r m t CP/M Pregrammer's Guide 2.4 File Central Biodt Ileflnitiea

The file system defines file attributes Tl ' ,T2' ,and T3' as follows:

Table 2-6. File Attr ibute Definitions

Attribute Definition

TI ' : Read-Only Attribute

This attribute, ff set, prevents write operations to a file.

T2': System Attribute

This attribute, if set, identifies the file as a Concurrent CP/M system
file. The Concurrent CP/M DIR utility does not usually display Sys-
tem files. In addition, user-zero system files can be accessed on a
Read-Only basis from other user numbers.

T3': Archive Attribute

User-written archive programs use this attribute. When an archive
program copies a file to back-up storage, it sets the archive attribute
of the copied files. The file system automatically resets the archive
attribute of a directory entry when writing to the directory entry's
region of a file. An archive program can test this attribute in each of
the file's directory entries using the F_SFIRST and F_SNEXT sys-
tem calls. If all directory entries have the archive attribute set, the
file has not been modified since the previous archive. The Concurrent
CP/M PIP utility supports file archiving.

File attributes F I ' through F4' of command files are defined as Compatibility Attributes
under Concurrent CP/M (see Section 2.12). However, for all other files, attributes F I ' through
F4' are available for definition by the user.

DIGITAL RESEARCH s
2-15

Z4 ~ ~ Wm:k Ddl l i t im

2 . 4 . 3 Interface Attrilmtel

The interface attributes are FS', F6', FT', and FS'. These attributes cannot be used as file
attributes. Interface attributes FS' and F6' request options for BDOS file-access system calls.
Table 2-7 lists the F5' and F6' attribute definitions for the system calls that define interface
attributes. Note that the FS' = 0 and F6' = 0 definitions are not listed if their definition
simply implies the absence of the associated option.

Table 2-7. B D O S Interft tee A t t r i b u t u F$ ' and F6 '

System Call Attribute

F _ A T T R I B FS' = 1 : Maintain extended file lock
F6' = 1 : Set file byte count

F_CLOSE F5' = 1 : Partial Close
F6' = 1 : F . , x ~ file lock

F_DEI.~TE FS' = 1 : Delete file XFCBs only and
maintain extended file lock

F_LOCK FS' = 0 : Fatclmive Lock
FS' = 1 : Shared Lock
F6' = 0 : Lock esisting records only
F6' = 1 : Lock logical records

F _ M A K E

~ 6 t _--

0 : Open in Locked mode
1 : Open in Unlocked mode
1 : Assign pauword to file

F_OPEN 5 t

~ 6 ' =

F 6 ' =

0 : Open in Locked mode
1 : Open in Unlocked mode
0 : Open in mode specified by F5'
1 : Open m Read-Only mode

F _ R E N A M E F5' = 1 : Maintain extended file lock

F_TRUNCATE
F_UNLOCK

F5' = I : Maintain extended file lock
F5' = I : Unlock all locked records

n DIGITAL KF.gEARCHe
2 - 1 6

Cowsr r~ ~ / M Prosrsmm~ C~de 2.4 File C r e d o / B h ~ De lb i l i ~

Section 6 details the above interface attribute definitions for each of the preceding system
calls. Note that the BDOS always resets interface attributes F5' and F6' before returning to
the calling process. Interface attributes F7' and FS' are reserved for internal use by the file
system.

2.5 User Number Conventions

The Concurrent CP/M user facility divides each drive directory into sixteen logically
independent directories, designated as user 0 through user 15. Physically, all user directories
share the directory area of a drive. In most other aspects, however, they are independent.
For example, files with the same name can exist on different user numbers of the same drive
with no conflict. However, a single file cannot extend across more than one user number.

Only one user number is active for a specific process at one time. For this process, the
current user number applies to all drives on the system. Furthermore, the FCB format does
not contain a field that can override the current user number. As a result, all file and directory
operations reference only directory entries associated with the current user number.

However, it is possible for a process to access flies on different user numbers by setting
the user number to the file's user number with the F_USERNUM system call before issuing
the BDOS call. However, if a process attempts to read or write to a file under a user number
different from the user number that was active when the file was opened, the file system
returns an FCB checksum error.

When the P_CLI system call initiates a transient process or Resident System Process
(described in detail in Section 5), it sets the user number to the default value established by
the process issuing the P_CLI system call. The sending process is usually the TMP. How-
ever, the sending process can be another process, such as a transient program that makes
a P_CHAIN call. A transient process can change its user number by making an
F_USERNUM call. Changing the user number in this way does not affect the command
line user number displayed by the TMP. Thus, when a transient process that has changed
its user number terminates, the TMP restores and displays the original user number in the
command line prompt when it regains control.

Ill DIGITAL RESEARCH •
2-17

CWM X~upmz.a.'.

User 0 has special properties under Concurrent CP/M. The file system smomafically opens
files listed under user zero but r e q ~ undm" ~ user number ff the file is not lxcsent
under the current user number, and if the file on user zero has the system attribute ('I'T)
set. This convention allows utilities, including overlays and any other commonly accessed
files, to reside on user zero, but remain aval]abl¢ to othor users. This eliminates the need
to copy commonly used utilities to all user numbers on a directory, and gives the Concurrent
CP/M manager control over which files are directly accessible to the different user areas.

2.6 Directory Labels and XFCBs

The file system includes three special types of FCBs: ~ directory label and the XFCB,
described in this section, and the SFCB, d~cribed in de.taft in Section 2.8.

The directory label specifies for its drive whctber password support is to be activated,
and if date and time stamping for files is to be performed. The format of the directory label
is shown below in Figure 2-2.

loRi N.o° I T, o. loL sl]s lRo I P--or0 I I I
O0 01... 09... 12 13 14 15 16... 25.. 29.

Figure 2-2. Directory Label Format

I I DIC, RAL RF-~AACH •
2-i8

Concurrent CP/M Programmer's Guide 2.6 Dir~' tory Labels and XFCBs

Table 2-8. Directory Label Field Definitions

Field

DR

Name

~pe

DL

S 1 ,S2,RC

Password

TSI

TS2

Definition

drive code (0-16)

directory label name

directory label type

directory label data byte

Bit 7 - enable password support
Bit 6 - perform access time stamping
Bit 5 - perform update time stamping
Bit 4 - perform create time stamping
Bit 0 - Directory Label exists
(Bit references are right to left, relative to 0)

reserved for system use

8-byte password field (encrypted)

4-byte creation time stamp field

4-byte update time stamp field

Only one directory label can exist in a drive's directory area. The directory label name
and type fields are not used to search for a directory label; they can be used to identify a
disk.

You can use the DRV_SETLABEL system call to create a directory label or update its
fields. This system call can also assign a password to a directory label. The directory label
password, if assigned, cannot be circumvented, whereas file password protection on a drive
is an option controlled by the directory label. Thus, access to the directory label password
provides the ability to bypass password protection on the drive.

DIGITAL RESEARCH I

2-19

2.6 IMreetory Labels and XFCk Cohere'rind CP/M I~meds Guide

Note: The file system provides no specific system call to read the directory label FCB
dir~tiy. However, you can read the directory label data byte diz~tly with th= BDOS system
call, D R V _ G ~ B E L . In addition, you can use the BDOS search system calls F_SFIRST
and F_SNEXT to find a directory label. You can identify the directory label by a value of
32 (020H) in byte 0 of the directory FCB.

The XFCB is an extended FCB that can optionally be associated with a file in the directory.
If present, it contains the file's password and password mode. The format of the XFCB is
shown below in Figure 2-3.

O0 01. 09, 12 13 14 15 16 25 29.

Figure 2..3. XFCB - Extended File Conlxol Block

a Dk~.dI"AL ~ H •

2-20

Concurrent CP/M Programmer's Guide

The fields in the XFCB are defined in Table 2-9:

2,6 Directory Labels and XFCBs

Table 2-9. XFCB Field Definitions

Field Definition

DR drive code (0-16)

File filename field

'I~pe filetypc field

PM password mode

Bit 7 - Read mode
Bit 6 - Write mode
Bit 5 - Delete mode
(Bit references are right to left, relative to O)

SI,S2,RC reserved for system use

Password 8-byte password field (encrypted)

Reserved 8-byte area reserved for future use

An XFCB can be created only on a drive that has a directory label, and only if the directory
label enables password protection. For drives in this state, there are two ways to create an
XFCB for a file: with the F_MAKE system call or the F_WRITEXFCB system call. The
F_MAKE system call creates an XFCB if the calling process requests that a password be
assigned to the created file. The F_WRITEXFCB system call creates an XFCB when it is
called to assign a password to an existing file. You can identify an XFCB in the directory by
a value of 16 (Ol0H) + N in byte 0 of the FCB, where N equals the user number.

[] DIGITAL RESEARCH •

2-21

2.7 lelle Pm mma. ~ Cmagrmt CP/M PruW'~mm"g Gmkb

2.7 File P a s s w o r d s

There are two ways to assign passwords to a file: by the F_MAKE system call or by the
F_WRITEXFCB system call. You can also change a file's password or password mode with
the F_WR1TEXFCB system call if you can supply the original password. Note that you
cannot change a file's password or password mode if password protection for the drive is
disabled by the directory label. However. even if you cannot supply a file's password, you
can delete a file's XFCB, thereby removing its password protection, if password protection
is disabled on the drive.

The Concurrent CP/M BDOS provides password protection in one of three modes when
password support is enable by the directory label. Table 2-10 shows the difference in access
level allowod to BDOS system calls when the password is not supplied.

"fable 2-10. Password Protection Modes

Mode Access Level Allowed Without Password

(1) Read

(2) Write

(3) Delete

Cannot be read, modified, or deleted.

Can be read, but not modified or deleted.

Can be read and modified, but not deleted.

If s file is password protected in Read mode, a process must supply the password to open
the fle. Processes cannot write to a file protected in Write mode without the password. A
file protected in Delete mode allows read sod write access, but a process must specify the
password to delete or truncate the file, rename the file, or to modify the file's attributes.
Thus, password protection in mode 1 implies mode 2 and 3 protection, and mode 2 protection
implies mode 3 protection. All three modes require the user to specify the password to delete
or truncate the file, rename the file, or to modify the file's attributes.

• IMGITAL gF.S&t, gr.He
2-22

Coat.rear CP/bi P~lnmmer~ G.kle 2.7 FIk Flsswordm

If a process supplies the correct password or the directory label disables password protec-
tion, then access to the BDOS system calls is the same as for a file that is not password-
protected. In addition, the F_SFIRST and F_SNEXT system calls arc not affected by file
passwords. The following BDOS system calls test for passwords.

DRV_SETLABEL
F_ATTRIB
F_DELETE
F_OPEN
F_RENAME
F_WRITEXFCB
F_TRUNCATE

The BDOS maintains file passwords in the XFCB and directory label in encrypted form.
To make a BDOS system call for a file that requires a password, a process must place the
password in the first eight bytes of the current DMA, or make it the default password with
the F_PASSWD system call, before making the system call.

Note: The BDOS maintains the assigned default password for each process. Processes
inherit the default password of their parent process. You can set a given TMP's default
password using the SET command; all programs loaded by this TMP inherit the same default
password.

n DIGITAL RKSEAgCH •

2-23

~.$ lqle De~ md 1line ~msl : : $FClk c~P/M l~uSnmmm-'m

2 .8 File D a t e a n d T i m e S t a m p s : S F C B s

The Concurrent CP/M file system uses a special type of directory entry called an SFCB
to record date and time stamps for files. When a directory has been initialized for date and
time stamping, SFCBs reside in every fourth position of the directory. Each SFCB maintains
the date and time stamps for the previous three directory entries, as shown in Figure 2-4.

FCB I

FCB 2

FCB 3

21 S T A M P S STAMPS | STAMPS
FORFCB1 FORFCB2 / FORFCB3

BYTE#: 0 1 11 21 31 32

Figure 2-4. Directory Record with SFCB

//
//

This figure shows a 128-byte directory record containing an SFCB. Directory records have
four directory enlries, each 32 bytes long; SFCBs always occupy the last 32-byte entry in
the directory record.

The SFCB itself contains five fields. The first field is a single byte containing the value
021H; this field identifies the SFCB within the directory. The next throe fields, called the
SFCB subfields, arc each 10 bytes in length and contain the date and time stamps for their
corresponding FCB entries in the directory record. The last byte of the SFCB is reserved for
system use. Figure 2-5 shows the detail of the SFCB subfields.

CREATE/ACCESS I UPDATE
TIME AND DATE TIME AND DATE

BYTE # 0 4

PASSWORDMoDE I RESERVED i

9 10

Figure 2-$. SFCB Subfields

i DIGITAL ~ e
2-24

2.8 FBe Dute and Time 8tsm~: 81~Bs

An SFCB subfield only contains valid information if its corresponding FCB in the directory
record is an extent zero FCB. This FCB is a file's first directory entry. For password protected
files, the SFCB subfield also contains the password mode of the file; the password mode field
is zero for files without password protection. You can read SFCBs by making F_SFIRST
and F_SNEXT system calls. In addition, you can make an F_TIMEDATE system call to
retrieve the date and time stamps and password mode of a specified file. Refer to the T_GET
system call definition in Section 6 for the description of the format of a date and time stamp
field.

Concurrent CP/M supports three kinds of file stamping: create, access, and update. Create
stamps record when the file was created, access stamps record when the file was last opened,
and update stamps record the last time the file was modified. Create and access stamps share
the same field. As a result, file access stamps overwrite any create stamps.

The directory label of a properly initialized disk determines the type of date and time
stamping for flies on the drive. The INITDIR utility initializes a directory for date and time
stamping by placing an SFCB in every fourth directory entry. Disks not initialized in this
way cannot support date and time stamping. In addition, date and time stamping is not
performed if the disk's directory label is absent or does not specify date and time stamping,
or if the disk is Read-Only.

Note that the directory label is also time stamped, but these stamps are not made in an
SFCB; time stamp fields in the last eight bytes of the directory label show when it was created
and last updated. Access stamping is not supported for directory labels.

The BDOS file system uses the system date and time when it records a date and time
stamp. This value is maintained in a field in the SYSDAT part of the System Data Segment.
The DATE utility sets the system time and date (refer to the Concurrent CP/M User's Guide
for details of using DATE).

B DIGITAL ~ C H •

2-25

=.9 ~ o p ~ M ~ = C m m ' t ~ CP/M Prt~ 'amm~'l

2 .9 F i l e O p e n M o d e s

The file system provides three different modes for opening files. They arc defined below.

Locked Mode

A process can open a file in Locked mode only if the file is not currently opened by
another process and the file is not a Read-Only file (attribute T I ' set). Once open in
Locked mode, no other process can open the file until it is closed. Thus, if a process
successfully opens a file in Locked mode, that process owns the file until the file is closed
or the process terminates. Files opened in Locked mode support read and write opera-
tions unless the file is.password-protected in Write mode, and the process issuing the
F_OPEN call cannot supply the password. In this case the BDOS allows only read
operations to the file.

If a file opened in Locked mode is a Read-Only file, the F_O PEN system call automati-
cally changes the open mode to Read-Only mode. Read-Only mode is described below.

Note: Locked mode is the I~fault mode for opening files under Concurrent CP/M.

Unlocked Mode

A process can open a file in Unlocked mode if the file is not currently open, or if another
process has already opened the file in Unloclusd mode. This mode allows more than one
process to open the same file. Files opened in Unlocked mode support read and write oper-
ations unless the file is a Read-Only file (attribute TI ' set) or the file is password-prorated
in Write mode and the process issuing the F_OPEN call cannot supply the password.

When opening a file in Unlocked mode, a prvceu must reserve 35 bytes in the FCB
because the F_OPEN system call remrm a 2-bym valtm called tim File ID in tim R0 and R1
bytes of the FCB. The File ID is a required Iau~rnetvr for the F_LOCK and F_UNL(X.~K
system calls. These BDOS system calls work only for files opened in Unlocked mode.

Read-Only Mode

A process can open a file in Read-Only mode if the file is not currently opened by another
process or if another process has opened the file in Read-Only mode. This mode allows more
thin one process to open the same file for Read-Only access.

• D~TAL RE.~ARCH"
2-26

Cmeurrmt CP/M Programmer's Guide 2.~ rae Ot~e Modes

The F_OPEN system call performs the following steps for files opened in Locked or Read-
Only mode. If the current user number is nonzero, and the file to be opened does not exist
under the current user number, the F_OPEN system call searches the user zero directory for
the file. If the file exists under user zero and has the system attribute T2' set, the BDOS
opens the file under user zero. The open mode is automatically forced to Read-Only when
this is done.

The F_OPEN and F_MAKE system calls use FCB interface attributes FS' and F6' to
specify the open mode. The interface attribute definitions for these functions are listed in
Table 2-7.

Note: The F_MAKE system call does not allow opening the file in Read-Only mode.

2 .10 F i le S e c u r i t y

In general, the security measures implemented in the file system prevent accidental col-
lisions between runningprocesses. It is not possible to provide total security under Concurrent
CP/M because the file system maintains file allocation information in open FCBs in the user's
memory region, and Concurrent CP/M does not require memory protection. However, the
file system is designed to ensure that multiple processes can share the same file system without
interfering with each other by

• performing checksum verification of open FCBs.
• monitoring all open files and locked records via the system Lock List.

The BDOS validates the checksum of user FCBs before all I /O operations to protect
the integrity of the file system from corrupted FCBs. The F_OPEN and F_MAKE system
calls compute and assign checksums to FCBs. The F_READRAND, F_READ,
F_WRITERAND, F_WRITEZF, F_WRITE, F_LOCK, and F_UNLOCK system calls
subsequently verify and rccompute the checksums when they change the FCB. The
F_CLOSE system call also verifies FCB checksums. Note that FCB verification by these
system calls can be disabled (see Section 2.12), but Concurrent CP/M's file security is
reduced when this is done. If the BDOS detects an FCB checksum error, it does not
perform the requested command. Instead, it either returns to the calling process with an
error code, or if the system call is F_CLOSE and the BDOS Error mode is in the default
state (see Section 2. IS), it terminates the calling process with an error message.

B DIGH'AL RESEARCH.
2-27

2.10 F b S , = ~ Cmlcllrrmt CP/M PrOllmmm~'s

Concurrent CP/IVl uses a system data structure, called the Lock List, to manage file opening
and record locking by running processes. Each time a process opens n file or locks a record
anccesal~ily, ~ c file system allocmm an entry in the system Lock List to ~ the fact.
The file system uses the following information to

• prevent a process from deleting, truncating, r e r ~ , or updating the attributes of
another process's open file.

• prevent a process from opening a file curTentiy opened by another process, unless
both processes open the file in unlocked or Read-Only mode.

• prevent a process from rescuing a drive on which another process has an open file.

• prevent a process from reading, writing, or locking a record currently locked by
another process. Refer to Section 2.14 for more information on record locking and
unlocking.

The file system only verifies whether another process has the FCB-specified file open for the
following file-access system calls: F_OPEN. F_MAKE, F _ D E L E ~ , F_RENAME,
F_.ATTRIB, and F_TRUNCATE.. For file-access system calls that require an open FCB, the
FCB checksum controls whether the oalling process can use the I~B. By definition, a valid
F-,CB checksum implies that the file has been successfully opened and an entry for the file
r~ides in the system Lock List.

T ~ most common way a process mteme, s a lock entry for an open file is by closing the
file. A close operation is permanent if it cJames the removal of the file's open Lock List enlry.
The file system invalidates the FCB checksum field on permanent close operations to prevent
continued open file operations with the FCB.

However, not all close operations am l~mnenent. For czample, if a tz'ocess makes rnultiplc
F_OPEN or F_MAKE calls to an open file, a matching number of F_(R.OSE calls must bc
made before the file system Im'manently closes the file. Of course, if you only open a file
once, a single close operation permanently closes the file. In addition, a process can optionally
make partial F_CLOSE calls to a file by setting interface attribute FS'. A partial close
opexation does not affect the open state of a file. In the above example, a partial close
operation would not count against an F_OPEN or F_MAKE call. A partial close operation
simply updates the directory to reflect the curnmt state of the file.

AS a general rule, under C o n c ~ t CP/M a process should close files as soon as it no
longer needs them, even if it has not modified them. While a process has a file open, access
by other processes to the file is restricted. For example, after a process has opened a file in
Locked mode, the file cannot be opened by other processes until the file is closed or the
process terminates.

I I~..dTAL RF.~.ARClte
2-28

O m e u r r ~ CP/M ~gmmmer ' s Guide 2.10 File Security

Furthermore, space in the system Lock List is limited. If a process attempts to open a file
and no space remains in the system Lock List, or if the process exceeds the open file limit,
the BDOS denies the open request and usually terminates the calling process. You can change
the way the file system handles this error by making an F_ERRMODE system call. Note
that the size of the system Lock List and the process open file limit are OENCCPM parameters.

There are several other situations where the file system removes open file entries from
the system Lock List for a process. For example, ira process makes an F_DELETE call
for a file it has op~m in Locked mode, the file system deletes the file and also purges the
file's entry from the system Lock List. Deleting an open file is not recommended under
Concurrent CP/M but it Ls supported for flies opened in Locked mode to provide
compatibility with software written under earlier releases of M P/M TM and CP/M®. The
file system does not allow deletion of a file opened in Unlocked or Read-Only mode.

To ensure that the process does not use the open FCB corresponding to the deleted file,
the file system subsequently checks all open FCBs for the process. Each open FCB is checked
the next time it is used with a file-access system call that requires an open FCB. If a Lock
List entry exists for the file, the BDOS allows the operation to proceed; if not, it indicates
that the file has been purged and the file system returns an FCB checksum error.

The file system performs this verification of a process's open FCBs whenever it purges an
open file entry from the system Lock List. The following list describes these situations:

• A process makes an F_ATTRIB, F_DELETE, F_RENAME, or F_TRUNCATE
system call to a file it has open in Locked mode. These operations cannot be performed
on a file open in Unlocked or Read-Only mode.

• A process issues a DRV_FREE call for a drive on which it has an open file.

• The BDOS detects a change in media on a drive that has open files. This is a special
case because a process cannot control the occurrence of this situation, and because it
can impact more than one process. Refer to Section 2.17 for more details on this
situation.

Open FCB verification can affect performance because each verification operation requires
a directory search operation. In general, you should avoid such situations when creating new
programs for Concurrent CP/M.

mm DIGITAL RESEARCHO

2-29

2.11 lb:tundmd Fib r.,ecldu8 Coucm'r~ CP/M Prelrumma'~ Guide

2.11 Extended File Locking

Extended file locking enabl~ a Concurrent CP/M process to maintain 8 lock on a file
after the file is permanently closed. This facility allows a process to set the attributes, delete,
remind, or truncate a file without interferen<~ from other processes. In addition, this tech-
nique avoids the problems ammciat~ with using these system calls on open files (see Section
2.t0).

A process can also reopen a file with an extended lock and continue open file processing.
To illuslrate how extended file locking might he used, a process can close an open file,
renan~ the file, reopen the file under its new name, and continue with file operations without
ever losing the file's Lock List item and control over the file.

A process can oaly specify extended file locking for a file it has openml in Locked mode.
To extend a file's lock, set interface attribute F6' when closing the file. The F_CLOSE
system call interrogam this atu-ibute only when it is closing a file perrmnently. Thus,
interface attribute FS', signifying a partial close, rrmt he reset when the F_CLOSE call is
made. In addition, the close operation must be permanent. If s pro~ss has opened a file N
tim~, the F_CLOSE system call ign(m)s the F6' attribute until the file is closed for the Nth
time.

Note that t ~ access rules for a file with an extended lock arc !dentical to the rules for a
file open in Locked mode. In addition, you cannot extend the lock of a Read-Only file
(attribute TI ' set), because a Read-Only file cannot be opened in Locked mode.

To maintain an extended file lock through an F_ATTRIB, F_RENAME, or F_TRUN-
CATE system call, sot interface attribute FY of the referenced FCB when making the call.
The BDOS honors this attribute only if the file has been closed with an extended lock.
Setting attribute FY also maintains an extended file lock for the F_DELETE system call,
but setting this atlribute also changes the nature of the delete operation to an XFCB-only
delete. If successful, all four of these system calls delete a file's extended lock item if they
are called with attribute FS' reset. However, the extended lock item is not deleted if they
return with an error code.

• I~d'FN. IU~SF.,N~H •
2-30

Cmmrrmt CP/M Pre~ammer'~ Gu~e 2.11 Exteaded File Lodda8

You can make an F_OPEN call to resume record operations on a file with an extended
lock. Note that you can also change the open mode when you reopen the file. The following
example illustrates the use of extended locks.

1. Open file EXLOCK.TST in Locked mode.

2. Perform read and write operations on the file EXLOCK.TST using the open FCB.

3. Close file EXLOCK.TST with interface attribute F6' set to retain the file's lock
item.

4. Use the F_RENAME system call to change the name of the file to EXLOCK.NEW
with interface attribute FS' set to retain the file's extended lock item.

5. Reopen the file EXLOCK.NEW in Locked mode.

6. Perform read and write operations on the file EXLOCK.NEW, using the open FCB.

7. Close file EXLOCK.NEW again with interface attribute F6' set to retain the file's
lock item.

8. Set the Read-Only attribute and release the file's lock item by making an F_ATTRIB
system call with interface attribute F5' reset.

At this point, the file EXLOCK.NEW becomes available for access by another process.

2.12 Compatibility Attributes

Compatibility attributes provide a mechanism to modify some of the Concurrent CP/M
file security rules for specific command files. Concurrent CP/M includes this facility because
some programs developed under earlier Digital Research operating systems do not run
properly under Concurrent CP/M. Most of the problems encountered by these programs
occur becau~ they were designed for single-tasking operating systems where file security
is not required. For example, a program might close a file and then continue reading and
writing to the file. Under CP/M-86, this does not cause a problem. However, under Con-
current CP/M, the file system intercepts open file operations with a deactivated FCB to
ensure the integrity of the file system. With compatibility attributes, you have a tool for
dealing with these kinds of situations.

You should use compatibility attributes only with existing programs that run properly
under CP/M or CP/M-86 ®. Do not use compatibility attributes with new programs you
develop under Concurrent CP/M.

U DIGITAL RES[ARCH •
2-31

c m m - m ~ c e ~ e n ~ m e s ~ , c.,.me

Compatibility attributes are defined as file a~'ibutes FI ' through F4' of IX'ngnun (CIV[D)
files. You can use ti~ Concurrent CP/M SET utility to set these file attributes from the
command line. However, setting a command file's compatibility attributes has no effect
unless the GENCCPM COMPATMODE option has been selected during system generation.
If this has been done, the P_CLI system call intexro~,ates file attributes FI' through F4' of
the command file during program loading and modifies the Concurrent CP/M file security
rules for the loaded program.

The Concurrent CP/M BDOS defines the Compatibility Attributes as shown in Table
2-11.

Tsble 2-11. Compatibility Attrlbnte Definitions

Attribute Definition

FI' Modify the rules for Locked mode.

When a process running with FI ' ~ t opens a file in Loclaxi mode,
it can perform read and write operations to the file as normal. How-
ever, to other processes on the system, it appeml as if the file was
opened in Read-Only mode. Thus, another process running with FI '
a.-t can opea the Jmme fde in Locked nmd~ and also perfm'rn write
opinions to the file. In addition, if a process with FI ' reset atmml~
to open the file in Locked or Read-Only mode, the open attempt is
allowed but the open mode is forced to Read-Only. Furthermore,
write operations are not allowed when the process has FI ' reset.

This compatibility mode is designed to allow multiple COl~S of the
same pro~m~ to run concurr~fly, even though the program might

read and write calls to a common file that it has opened in
Locked mode. In addition, this compatibility mode allows other pro-
grams not in this compatibility mode to access the file on a Read-
Only basis. Note that record locking is not supported for this modified
open mode. In addition, to be safe, make all static files such as
program and help files Reed-Only if]~u use this compatibility atlributc.

There is an alternative to using this attribute if a program only
makes read calls to the common file. By setting the file's Read-
Only attribute, you force the open mode to Read-Only when the
file is opened in Locked mode.

I DIC~I'AL RI~SLA R...r.li.
2-32

Concmrrmt CP/M Progrsmm~'s Guide 2.12 ComlmliNllty AtU-ilmtm

Table 2-11. (continued)

Attribute Definition

F2' Change F_CLOSE to partial close.

Processes running with F2' set only mal~ partial F_CLOSE system
calls. This attribute is intended for programs that close a file to update
the directory but continue to use the file. A side effect of this attribute
is that flies opened by a process are not released from the system
Lock List until the process terminates. When using this attribute, it
might be necessary to set the system Lock List parameters to higher
values when you generate a system with GENCCPM.

FY Ignore close checksum errors.

This attribute changes the way the F_CLOSE system call handles
Close Checksum errors. Normally, the file system prints an error
message on the console and terminates the calling process. However,
if this attribute is set, the F_CLOSE system call ignores the check-
sum error and performs the close operation. This interface attribute
is intended for programs that modify an open FCB before closing a
file.

F4' Disable FCB Checksum verification for read and write operations.

Setting this attribute also sets attributes F2' and FY. This attribute
is intended for programs that modify open FCBs during read and
write operations. Use this attribute very carefully, and only with
software known to work, because it effectively disables Concur-
rent CP/M's file security.

Use the Concurrent CP/M SET utility to specify the combination of compatibility attributes
you want set in the program's command file. For example,

A>SET filespec [fl=on]
A>SET filespec [fl=on, f3=on]
A>SET filespeo [f4=on]

R DIGITAL RESEARCH •

2-33

2,12 Cemlxtflbflfly Attributes Concummt CP/M Prozmmm~s Guide

If you have a program that rum under CP/M or CP/M-86 but does not mn properly
Concurrent CP/M, use the following guidelines to select the proper compatibility attributes
for the program.

• If the program ends with the "File Currently Opened" message when multiple copies
of the program are run, set comp~bility attribute FI', or place all common static
files under User 0 with the SYS and Read-Only attributes set.

• If the program terminates with the message "Close Checksum Error", set compati-
bility attribute FY.

m If the program terminates with an I/O error, try running the program with attribute
F2' set. If the problem persists, then try attribute F4'. Use attribute F4' only as a last
resort.

2.13 M u l ~ r I / O

The BDOS file system provides the capability to read or write multiple 128-byte records
in a single BIX)S system call. This nmltisector facility can be visualized as a BDOS burst
mode, enabling a process to complete multiple I/O operations without interference from other
running proceases. In ~dition, the BDOS file system bypasses, when possible, all inter-

~ h~'=i~g dari~ rmldm:~ I/0 opemiom. Data ~ mmsfmzd din=tly between
the calling lXOCeSS'S memory and ~ drive. The BDOS also informs the XIO$ when it is
reading or writing multiple physical records on a drive. The XIOS can use ~ information
to further optimize the I/O operation resulting in even better performance. As a result, the
use of this facility in an application program can improve its performance and also enhance
overall system throughput, particularly when performing sequential I/O.

The number of records that can be u'ansferred with multisector I/O ranges from 1 to 128.
This value, call~i the BDO$ Multiw.~tor Count, can be set by the F_MULTISEC system
call. The P_CLI system call sets the Multi~ctor Count to I when it initiates a transient
program for execution. Note that the greatest potential performance increases ate obtained
when the Multisector Count is set to 128. Of course, this requires a 16K buffer. The Con-
current CPIM PIP utility performs its sequential I/O with a Multisector Count of 128.

The Multisector Count determines the number of operations to be performed by the fol-
lowing BDOS system calls:

• F_READ and F_WRITE system calls
• F_READRAND, F_WRITERAND, and F_WRITEZF
• F_LOCK and F_UNLOCK

II DIfdl'AI. ~ C H *
2-34

Cmeerreat CP/M ~ ' s Geide 2.13 ~ I/0

If the Multisector Count is N, calling one of the above system calls is equivalent to making
N system calls. With the exception of disk I/O errors encountered by the XIOS, if an error
interrupts a multisector read or write operation, the file system returns the number of 128-
byte records successfully transferred in register AH. Section 2.14 describes how the Multi-
sector Count affects the F_LOCK and F_UNLOCK system calls.

2.14 Concurrent File Access

Concurrent CP/M supports two open modes, Read-Only and Unlocked, which allow con-
currently running processes to access common files for record operations. The Read-Only
open mode allows multiple processes to read from a common file, but processes cannot write
to a file open in this mode. Thus, files remain static when they are opened in Read-Only
mode. The Unlocked open mode is more complex because it allows multiple processes to
read and write records to a common file. As a result, Unlocked mode has some important
differences from the other open modes.

When a process opens a file in Unlocked mode, the file system returns a 2-byte field called
the File ID in the R0 and RI bytes of the FCB. The File ID is a required parameter of
Concurrent CP/M's record locking system calls, F_LOCK and F_UNLOCK, which arc only
supported for files open in Unlocked mode. Note that these system calls return a successful
error code if they are called for files opened in Locked mode. However, they perform no
action in this case, because, by definition, the calling process has the entire file locked.

The F_LOCK and F_UNLOCK system calls allow a process to establish and release
temporary ownership to particular records within a file. You most set the FCB Random
Record field and place the File ID in the first two bytes of the current DMA buffer before
making these calls. The file system locks and unlocks records in units of 128 bytes, which
is the standard Concurrent CP/M record size. The number of records locked or unlocked
is controlled by the BDOS Multisector Count, which can range from I to 128 (see
Section 2.13). In order to simplify the discussion of record locking and unlocking, the
following paragraphs assume the Multisector Count is one. However, as discussed later in
this section, the more general case of multiple record locking and unlocking is a simple
extension of the single record case.

The F_LOCK system call supports two types of lock operations: exclusive locks and
shared locks. Interface atlributo F5' specifies the type of lock. F5' = 0 requests an exclusive
lock; F5' = I requests a shared lock. If a process locks a record with an exclusive lock,
other processes cannot read, write, or lock the record. The locking process, however, can
access the record with no restrictions. You should use this type of lock when exclusive control
over a record is required.

[] DIGITAL RESEARCH •
2-35

2.14 ~ l~b Acmm C.mcm'mJ CI'/M l 'mlmmmm~ ~

If a process locks a record with a shared lock, ocher processes cannc~ write to the record
or make an exclusive lock of the n~m:l. However, o@~r processes are allowed to read the
record and make their own nlmmd locks on the record. No process, including the locking
process, can write to a record with a shared lock. Shared locks are useful when you wsnt to
ensure that a record does not change, but you want to allow otber processes to read the record.

The F...LOCK system call also lets you change the lock of a record if ~re is no conflict.
For example, you can convert an exclusive lock into a shared lock with no restrictions. On
the other hand, a process cannot convert a renord's shar~ lock to an e~clusive lock if another
process has a shared lock on the record.

The F_LOCK system call has another option, specified by interface attribute F6',
which controls whether a record murat exist in order to be locked. If you make an
F-LOCK system call with F6'= 0, the file system returns an error code if the specified
record does not exist within the file. Setting F6' to l requests a logical lock operation.
Logical lock operations are only limited by the maximum Concurrent CP/M file size of
32 megabytes, which corresponds to a maximum Random Record Number of 262,143.
You can use logical locks to control extending a shared ftle.

The F_UNLOCK system call is similar to the F._LOCK call except that it removes locks
instead of creating them. There are few restrictions on unlock operations. Of course a
promu can only remove locks tha~ it b.M made. The F_UNLOCK sFatem call has one
option, controlled by interface attribute FS'. If F~'is set to one, the F_UNLOCK syst¢m
call removes all locks for the file made by the calling process. Otherwise, it removes the
locks specified by the Random Record field and the BDOS MuRisector Count. Note that
the F_CLOSE system call also removes all locks for a file on permanent close operations.

If the BDOS Multisector Count is grimier than one, the F ~ and F_UNLOCK sysmrn
calls perform multiple record locking or unlocking. In general, multiple r~-,ord locking ancl
unlocking can be viewed u a ~quence of N incl~pendent operations, wbem N equals the
Multisoctor Count. However, if an error occurs on any record within the sequence, no locking
or unlocking is performed. For example, both F_LOCK and F_UNLOCK perform no action
and return an error code if the sum of the FCB Random Record Number and the BDOS
Multisector Count is greater that 262,144. As another example, the F_LOCK system call
also returns an error code if another process has an exclusive lock on any record within the
sequence.

II DIC~AL RL~ARCH"
2-36

~ t CP/M Pregrmlmer~ Gaide 2.14 C ~ File Aeeem

When a process makes an F_LOCK system call, the file system allocates a new entry in
the system Lock List to record the lock operation and associate it with the calling process.
A corresponding F_UNLOCK system call removes the locked entry from the list. While the
lock entry exists in the system Lock List, the file system enforces the restrictions implied by
the lock item.

Because each lock item includes a record count field, a multiple lock operation normally
results in the creation of a single new entry. However, if the file system must split an existing
lock entry to satisfy the lock operation, an additional entry is required. Similarly, an unlock
operation can require the creation of a new entry if a split is needed. Thus, in the worst case,
a lock operation can require two new lock entries and an unlock operation can require one.
Note that lock item splitting can be avoided by locking and unlocking records in consistent
units.

These considerations are important because the Lock List is a limited resource under
Concurrent CP/M. The file system performs no action and returns an error code if insufficient
available entries exist in the system Lock List to satisfy the lock or unlock request. In addition,
the number of lock items a single process is allowed to consume is a GENCCPM parameter
established at SYSGEN time. The file system also returns an error code if this limit is
exceeded.

The file system performs several special operations for read and write system calls to a
file open in Unlocked mode. These operations are required because the file system maintains
the current state of an open file in the calling process's FCB. When multiple processes have
the same file open, FCBs for the same file exist in each process's memory. To ensure that all
processes have current information, the file system updates the directory immediately when
an FCB for an unlocked file is changed. In addition, the file system verifies error situations
such as end-of-file, or reading unwritten data with the directory before returning an error.
As a result, read and write operations are less efficient for files open in Unlocked mode when
compared to equivalent operations for files opened in Locked mode.

2.15 File Byte Counts

Although the logical record size of Concurrent CP/M is restricted to 128 bytes, the file
system does provide a mechanism to store and retrieve a byte count for a file. This facility
can identify the last byte of the last record of a file. The F_SIZE system call returns the
Random Record Number, + l, of the last record of a file.

Jl DIGITAL RESEARCH •
2-37

2.15 File Byte Counts Concurrent CP/M ProIFsmmer's Guide

The F_A'f ' I~B system call can set a file's byte count. This is an option controlled by
interface attribute F6'. Conversely, the F_OPEN system call can return a file's byte count to
the CR field of the FCB. The F_SFIRST and F_SNEXT system calls also return a file's byte
count. These system calls return the byte count in the CS field of the FCB returned in the
current DMA buffer.

Note that the file system does not access or update the byte count value in BDOS read or
write system calls. However, the F_MAKE system call does set the byte count value to zero
when it creates a file in the directory.

2 .16 R e c o r d B lock ing , and D e b l o c k i n g

Under Concurrent CP/M, the logical record size for disk I/O is 128 bytes. This is the basic
unit of data transfer between the operating system and running processes. However, on disk,
the record size is not restricted to 128 bytes. These records, called physical records, can
range from 128 bytes to 4K bytes in size. Record blocking and deblocking is required on
systems that support drives with physical record sizes larger than 128 bytes.

The process of building up physical records from 128-byte logical records is called record
blocking. This prooeu is required in write operations. The reverse process of breaking up
physical records into their component 128-by~ logical r~.ca'da is called record deblocking.
This process is required in read operations. Under Concurrent CP/M, record blocking and
deblocking is normally performed by the BDOS.

Record deblocking implies a read-ahead operation. For example, if a process reads a logical
record that resides at the beginning of a physical record, the entire physical record is read
into an internal buffer. Subsequent BDOS read calls for the remaining logical records access
the buffer instead of the disk. Conversely, record blocking results in the postponement of
physical write operations but only for data write operations. For example, if a u'ansient
program makes a BDOS write call, the logical record is placed in a buffer equal in size to
the physical record size. The write operation on the physical record buffer is postponed until
the buffer is needed in another I/O operation. Note that under Concurrent CP/M, directory
write operations are never postponed.

i DICn'AL ~ C H ¢
2-38

Ceaearrmt CP/M Provarmna"s Guide 2.16 Record BiodtJag ami IM31ocklng

Postponing physical record write operations has implications for some application pro-
grams. For programs that involve file updating, it is often critical to guarantee that the state
of the file on disk parallels the state of the file in memory after an update operation. This is
only an issue on drives where physical write operations are postponed because of record
blocking and deblocking. If the system should crash while a physical buffer is pending, data
would be lost. To prevent this loss of data, the F_FLUSH system call can be called to force
the write of any pending physical buffers associated with the calling process.

Note: The file system discards all pending physical data buffers when a process terminates.
However, the file system automatically makes an F_FLUSH call in the F_CLOSE system
call. Thus, it is sufficient to make an F_CLOSE system call to ensure that all pending physical
buffers for that file are written to the disk.

2.17 Reset, Access, and Free Drive

The BDOS system calls DRV_ALLRESET, DRV_RESET, DRV_ACCESS, and
DRV_FREE allow a process to control when to reinitialize a drive directory for file opera-
tions. This process of initializing a drive's directory is called logging-in the drive.

When you start Concurrent CP/M, all drives are initialized to the reset state. Subsequently,
as processes reference drives, the file system automatically logs them in. Once logged-in, a
drive remains in the logged-in state until it is reset by the DRV_ALLRESET or DRV_RESET
system calls or a media change is detected on the drive. If the drive is reset, the file system
automatically logs in the drive again the next time a process references it. The file system
logs in a drive immediately when it detects a media change on the drive.

Note that the DRV_ALLRESET and DRV_RESET system calls have similar effects except
that the DRV_ALLRESET system call affects all drives on the system. You can specify the
combination of drives to reset with the DRV_RESET system call.

Logging-in a drive consists of several steps. The most important step is the initialization
of the drive's allocation vector. The allocation vector records the allocation and deallocation
of data blocks to files, as files are created, extended, deleted and truncated. Another function
performed during drive log-in is the initialization of the directory checksum vector. The file
system uses the checksum vector to detect media changes on a drive. Note that permanent
drives, which do not support media changes, usually do not have checksum vectors.

B DIGITAL RESEARCH •

2-39

2.17 Rmet, Aeee~ mad Free Drive Cm~m'rlmt CP/M ProVammer's Guide

Under Concurrent CPfM, the DRV_RE.~;ET o~eration is conditional. The file system
cannot reset a drive for a process if another process has an open file on the drive. However,
the exact action taken by a DRV..RESET operation depends on whether the drive to be reset
is permanent or removable.

Concurrent CP/M determines whether a drive is permanent or removable by interrogating
a bit in the drive's Disk Parameter Block (DPB) in the XIOS. A high-order bit of 1 in the
DPB Checksum Vector Size field designates the drive as permanent. A drive's Removable
or Nonremovable designation is critical to the reset operation described below.

The BDOS first determines whether there are any files currently open on the drive to be
reset. If there are "none, the reset takes place. If there are open files, the action taken by the
reset operation depend~ on whether the drive is removable and whether the drive is Read-
Only or Read-Write. Note that only the DRV_SETRO system call can set a drive to Read-
Only. Following log-in, a drive is always Read-Write.

If the drive is a permanent drive and if the drive is not Read-Only, the reset operation is
not performed, but a successful result is returned to the calling process.

However, if the drive is removable or set to Read-Only, the file system determines whether
other processes have open files on the drive. If they do, then it denies DRV_RESET operation
and remrm an eu'ror code to the ¢slling process.

If all the open files on a removable drive belong to the calling process, the process is said
to own the drive. In this case, the file system performs a qualified reset on the drive and
returns a successful result. This means that the next time a process accesses this drive, the
BDOS performs the log-in operation only if it detects a media change on the drive. The logic
flow of the drive reset operation is shown in Figure 2-6.

m Dk~TAL RESEarCH*
2-4O

Commrrem CI'/M ~ ' s Glide 2.17 Reset, Actess, and Free Drive

I OPEN FILES I ~ ON DRIVE?

NO
I DRIVE [YES

REMOVABLE?
; NO

I DRIVE R/O? [I

I NO

 ESET I I OONOTRESET I DRIVE DRIVE

YES

OPEN FILE8
BELONG TO
ANOTHER
PROCESS?

~ NO

I QUALIFIED
RESET

PERFORMED

YES

DISK I I DISK RESET ~ RESET
SUCCESS DENIED

Figure 2-6. Disk System Reset

If the BDOS detects a media change on a drive after a qualified reset, it purges all open
files on the drive from the system Lock List and subsequently verifies all open FCBs in file
operations for the owning process (refer to Section 2.10 for details of FCB verification).

In all other ca~s where the BDOS detects a media change on a drive, the file system
purges all open files on the drive from the system Lock List, and flags all processes owning
a purged file for automatic open FCB verification.

a DIGITAL RESEARCH e
2-41

Z17 Reset, Ao:e~ ~ Free Drive C..mrr , m CWM ~ ~

Note. If a process references a purged file with a BDOS command that requires an open
FCB, the file system retm'ns to the process with an FCB checksum error.

The primary purpose of the drive reset functions is to prepare for a media change on a
drive. Because a drive reset operation is conditional, it allows a process to test wl~ther it is
saYe to change disks. Thus, a process should make a successful drive reset call before prompt-
ing the user to change disks. In addition, you should close all your open files on the drive,
particularly files you have written to, before prompting the user to change disks. Otherwise,
you might lose data.

The DRV_ACCESS and DRV_FREE system calls perform special actions under
Concurrent CP/M. The DRV_ACCESS system call inserts a dummy open file item into the
system Lock List for each specified drive. While that item exists in the system Lock List,
no other process can reset the drive. The DRV._.FREE system call purges the Lock List of
all items, including open file items, belonging to the calling process on the specified drives.
Any subsequent reference to those files by a BDOS system call requiring an open FCB ~ u l t s
in an FCB checksum error return.

The DRV_FREB system call has two important side effects. F'L~t of aLl, any pending
blocking/deblocking buffers on a specified drive that belong to the calling process are dis-
carded. Secondly, any data blocks that have been allocated to files that have not been closed
arc lear. Be sure to close your film befcee making this system c~l.

The DRV_SETRO system call is also conditional under Concurrent CP/M. The file system
does not allow a process to set a drive to Read-Only if another process has an open file on
the drive. This applies to both removable and permanent drives.

A process can prevent other processes from resetting a Read.Only drive by opening a file
on the drive or by issuing a DRY_ACCESS call for the drive and then making a
DRV_SETRO system call. Executing DRV_$ETRO before the F_OPEN or DRV_ACCESS
call leaves a window in which another process could set the drive back to Read-Write. While
the open file or dummy item belonging to the process resides in the system Lock List, no
other process can reset the drive to take it out of Read-Only status.

l l ~ , ~ ' p d , p.,p.5~,,X,CH •

2,-+1.2

Concurrent CP/M Pro|rsmmer's Guide 2.18 BDOS Error Handllnl

2.18 BDOS Error Handling

The Concurrent CP/M file system has an extensive error handling capability. When an
error is detected, the BDOS responds in one of three ways:

1. It can return to the calling process with return codes in the AX register identifying
the error.

2. It can display an error message on the console and terminate ~ e process.

3. It can display an error message on the console and return an error code to the calling
process, as in method I.

The file system handles the majority of errors it detects by method l. Two examples of this
kind of error are the "file not found" error for the F_OPEN system call and the "reading
unwritten data" error for the F_READ call. More serious errors, such as disk I/O errors, are
normally handled by method 2. Errors in this category, called physical and extended errors,
can also be reported by methods l and 3 under program control.

The BDOS Error mode, which has three states, determines how the file system handles
physical and extended errors. In the default state, the BDOS displays the error message and
terminates the calling process (method 2). In Return Error mode, the BDOS returns control
to the calling process with the error identified in the AX register (method l). In Return and
Display Error mode, the BDOS returns control to the calling process with the error identified
in the AX register and also displays the error message at the console (method 3).

While both return modes protect a process from termination because of a physical or
extended error, the Return and Display mode also allows the calling process to take advantage
of the built-in error reporting of the file system. Physical and extended errors are displayed
on the console in the following format:

CP/M Error on d: error message
BDOS Function = nn File = filenarne.typ

where d is the name of the drive selected when the error condition occurs; error message
identifies the error; nn is the BDOS function number, and filename.typ identifies the file
specified by the BDOS function. If the BDOS function did not involve an FCB, the file
information is omitted.

Tables 2-12 and 2-13 detail BIX)S physical and extended error messages.

III DIGITAl. RESEARCH •
2-43

2.111BDOS Error HandUnl Cohere-rent CP/M Prolrsmm~'s Guld~

Table 2-12. BDOS ~ Errm's

Messose Mea.ing

Disk I/0

The "Disk PC)" error results from an error condition return~ to uhe
BDOS from the XIOS module. The file sys~m makes XIOS read
and write calls to execute BDOS file-access system calls. If the XIOS
read or write routine det~ts an error, it returns an error code to the
BDOS, causing this error message.

Invalid Drive

"Invalid Drive" ~ also restttts f~om an ~ condition nmu~d
to the BDOS from the XIOS module. The BDOS makes an XIOS
Select Disk call before accessing a drive to perform a requcst~i
BDOS function. If the XIO$ does not support the sclect~ disk, it
n=vans an error code resulting in this error.

Read/Only File

TI~ BDOS murm the "P, mJ/Only File" en~ n~aa~ when a ixocem
attempts to write to a file with the R/O attribute set.

Read/Only Disk

The BDOS returns the "Read/Only Disk error" message when a
process makes a wri~ operation to a disk that is in Read-Only status.
A drive can be placed in Read-Only st.ms explicitly with the
DRV_SETRO syst=m call.

U DIGffAL ~ o
2-44

Concurrent CP/M Programmer's Guide 2.1g BDOS Error Handling

Table 2-13. BDOS Extended Errors

Message Meaning

File Opened in Read/Only Mode

The BDOS returns the "File Opened in Read/Only Mode" error
message when a process attempts to write to a file opened in Read-
Only mode. A process can open a file in Read-Only mode explicitly
by setting FCB interface attribute F6'. In addition, ifa process opens
a file in Locked mode, the file system automatically forces the open
mode to Read-Only mode when:

• the process opens a file with the Read-Only attribute set.

• the current user number is not zero and the process opens a user
zero file with the SYS attribute set.

The BDOS also returns this error if a process attempts to write to a
file that is password-protected in Write mode, and it did not supply
the correct password when it opened the file.

File Currently Open

The BDOS returns the "File Curmndy Open" error message when
a process attempts to delete, rename, or modify the attributes of a
file opened by another process. The BDOS also returns this error
when a process attempts to open a file in a mode incompatible with
the mode in which the file was previously opened by another process
or by the calling process.

Close Checksum Error

The BDOS returns the "Close Checksum Error" message when the
BDOS detects a checksum error in the FCB passed to the file system
with an F_CLOSE call.

Password Error

The BDOS returns the "Password Error" message when passwords
are required and the file password is not supplied or is incorrect.

B DIGITAL RESEARCH •

2-45

2.15 BDOS Error Hand l~ Concurrent CP/M Prolramm~'* GuMs

Table 2-13. (continued)

Message Meaning

File Already Exists

The BDOS returns the "File Already Exists" error message for the
F_MAK~ and F_RENAME system calls when the BDOS detects a
conflict on filename and filctype.

Illegal ? i n FCB

The BDOS remrus the "Illegsl ? in FCB" error message when the
BDOS detects a ? character in the fibmune or flletype of the passed
FCB for the F__ATTRIB, F_OPEN, F_RENAME, F_TIMEDATE,
F_WRITEXFCB, F_TRUNCATE, and F_MAKE system calls.

Open F i l e L i m i t E x c e e d e d

The BDOS returns the "Open File Limit F_.x~ed" error message
when a process exceeds the process fik lock limit specified by
GENCCPM. The F_OPEN, F_MAKE, and DRV_ACCESS system
talk can return this ~ror.

No Room i n S y s t e m Look L i s t

The BDOS returns the "No Room in System Lock List" error mes-
sage when no room for r~w entries exim within the system Lock
L/st. The F_OPEN, F_MAKE, and DRV_ACCESS system calls
can return this error.

The following paragraphs describe the error return code conventions of the file system
calls. Most file system calls fall into three categories in regard to return codes: they return
an error code, a directory code, or an error flag. The error conventions let programs written
for CP/M-86 run without modification.

• DiStaL KLW:AItOie
2-46

Concurrent CP/M Programmer's Guide 2.18 BDOS Error Handling

The following BDOS system calls return a logical error in register AL:

F_LOCK
F_READ
F_READRAND
F_UNL(X~K
F_WRITE
F_WRITERAND
F_WRITEZF

Table 2-14 lists error code definitions for register AL.

Table 2-14. BDOS Error Codes

Code Definition

00H:
01H:

02H:
03H:
04H:
05H:
06H:
08H:

09H:

0AH:
* 0BH:
** 0CH:
** 0DH:
** 0EH:

OFFH:

Function successful
Reading unwritten data
No available directory space (Write Sequential)
No available data block
Cannot close current extent
Seek to unwritten extent
No available directory space
Random record number out of range
Rezord locked by another process
(restricted to files opened in Unlocked mode)
Invalid FCB (previous BDOS F_CLOSE system call
returned an error code and invalidated the FCB)
FCB checksum error
Unlocked file unailocated block verify error
Process record lock limit exceeded
Invalid File ID
No room in System Lock List
Physical error : refer to register AH

* - returned only for files opened in Unlocked mode
** - returned only by the F_LOCK and F_UNLOCK system calls for

files opened in Unlocked mode

DIGITAL RESEARCH •

2-47

Z I | BDOS Error Handling Coaeurtem CP/M Prollrm~mer's Guide

For BDOS read and write system calls, the file system also sets register AH when the returned
~ 'o r code is a value oth~ than zero or 0FFH. In this case, register AH contains the number
of 12g-byte records successfully read or w~tten before the error was encountered. Note that
register AH can only contain a nonzero value if the calling process has set the BDOS
Multisector Count to a value other than one; otherwise register AH is always set to zero. On
successful system calls (Error Code ffi 0), register AH is also set to zero. If the Error Code
is 0FFH, register AH contsL~ a physical error code (see Table 2-15).

The following BDOS system calls return a ~ code in register AL:

DRV_Sh-'YLABEL
F_ATTRIB
F_CLOSE
F_DELETE
F_MAKE
F_OPEN
F_RENAME
F_SIZE
F_SFIRST
F_SNEXT
F_TIMEDATE
F_TRUNCATE
F_WRITEXFCB

The directory code definitions for register AL follow.

00H - 03H : successful function
0FFH : unsuccessful function

With the exception of the F_SFIRST end F_SNBXT system calls, all functions in this
category return with the directory code set to zero upon a successful return. However, for
these two system calls, a successful directory code identifies the relative starting position of
the directory entry in the calling process's current DMA buffer.

Is DIC~AL ~ o
2-48

Concurrent CP/M Programmer's Guide 2.18 BDOS Error Handling

If a process uses the F_ERRMODE system call to place the BDOS in Return Error mode,
the following system calls return an error flag in register AL on physical errors :

DRV_GETLABEL
DRV_ACCESS
DRV_SET
DRV_SPACE
DRV_FLUSH

The error flag definition for register AL follows.

OOH : successful function
OFF/-I : physical error : refer to register AH

The BDOS r e t u r ~ nonzero values in register AH to identify a physical or extended error
if the BDOS Error mode is in one of the return modes. Except for system calls that return a
Directory Code, register AL equal to 0FFI-I indicates that register AH identifies the physical
or extended error. For functions that return a Directory Code, if register AL equals 255, and
register AH is not equal to zero, register AH identifies the physical or extended error. Table
2-15 shows the physical and extended error codes returned in register AH.

Table 2-15. BDOS Physical and Extended Errors

Code Explanation

01H
02H
03H

04H
05H
06H
07H
08H
09H
0AH
0BH

Disk FO Error : permanent error
Read/Only Disk
Read/Only File, File Opened in Read/Only Mode, or File Password Pro-
tected in Write Mode and Correct Password Not Specified
Invalid Drive : drive select error
File Currently Open in an incompatible mode
Close Checksum Error
Password Error
File Already Exists
Illegal ? in FCB
Open File Limit Exceeded
No Room in System Lock List

|I] DIGITAL RESEARCH •
2-49

2.11 BDOS Error Hmldlfm| Ccmem'rem CP/M Projrmumer's Guide

The following two system calls ~ t a special case becmse they return an address in
regimr AX.

DRV._ALLOCVEC
DRV_DBP

When the calling process is in one of the BDOS return error modes and the BDOS detects
a physical error for these system calla, it returns to the calling process with registers AX and
BX set to 0FFFFH. Otherwise, they return no error code.

Under Concurrent CP/M, the following system calis also represent a special case.

DRV...ALLR~ET
DRV_RESET
DRV_SETRO

These system calls return to the calling process with registers AL and BL set to 0F~-I if
another proce , has an open file or has made a DRV_ACCESS call that prevents the reset or
write protect operation. If the calling process is not in Return Error mode, these system calls
also display an error message identifying the process that prevented the requested operation.

End of Section 2

• DIC4TAL R.F.SE,~CH •

2-50

Section 3
Transient Commands

3.1 T r a n s i e n t P r o g r a m L o a d a n d E x i t

A transient program is a file of type CMD that is loaded from disk and resides in memory
only during its operation. A resident system program is a file of type RSP that is included
in Concurrent CEM during GENCCPM. Section 4 describes the three system memory models
that determine the initial values of segment registers in transient processes.

You can initiate a transient process by entering a command at a system console. The
console's TMP (Terminal Message Processor) then calls the Command Line Interpreter system
call (refer to the P_CLI system call), and passes to it the command line entered by the user.
If the command is not an RSP, then the P_CLI system call locates and then loads the proper
CMD file. P_CLI then calls the F_PARSE system call to parse up to two filenames following
the command, and place the properly formatted FCBs at locations 005CH and 006CH in
the Base Page of the initial Data Segment.

The P_CLI system call initializes memory, the Process Descriptor, and the User Data
Area (UDA), and allocates a %-byte stack area, independent of the program, to contain the
process's initial stack. If 8087 processing is required (see Section 3.1.2) P_CLI allocates
an additional 96 bytes for the UDA. Concurrent CP/M divides the DMA address into the
DMA segment address and the DMA offset. P_CLI initializes the default DMA segment to
the value of the initial data segment, and the default DMA offset to 0080H.

The P_CLI system call creates the new process with a P_CREATE system call and sets
the initial stack so that the process can execute a Far Return instruction to terminate. A
process also ends when it calls DRV_ALLRESET or P_TERM.

You can also terminate a process by typing a single CTRL-C during console input. See
C_MODE for details of enabling/disabling CTRL-C. CTRL-C, when typed at the
prompt, forces a DRV_RESET call for each logged-in drive. This operation only affects
removable media drives.

Note: Additional UDA space is allocated for 8087 processing only if the process is ini-
tialized by the P_CLI or P_LOAD system call. Other processes (such as RSPs) that require
8087 processing and do not use P_CLI or P_LOAD must allocate this additional UDA space
themselves.

DIGITAL RF.SF.ARCH •
3-1

&l "lkamlmt Pr~ 'aw I .~d xtd iklt ~ C~/M Prolrmmm~ Gat~

3.1.1 Shared Code

Concurrent CPIM allows processes m share program code. This cap~ility of sharing
program code avoids unnecessary program loading of a code segment a l . ~ y in memory
and conserves memory space since multiple copies of the same program code do not have
to occupy different memory space. During program load ors =sharablc" l~ogram code, the
system allocates the code group separately from the rest of the program. This code group
is maintained in memory even after the program has m'mimted. Subsequent loading of the
same program does not load the code group, but uses the existing one inrtend. Obviously,
programs written with separate code and data can take advmtage of ~ feature.

The system maintains a shared code group in memory until a memory req~st or a reset
drive forces its release. The system maintains r~red code groups in memory in Least
Recently Used (LRLD order on the Shared Code List. If s memory request is made that
cannot be satisfied, the list is drained, or~ at a time, until the memory request is satisfied,
or the Shared Code List is emptied. If a drive it reset, the system p,.u'ges all code groups
from the Shared Code List loaded from that drive.

A shared code program is flagged by the value 09H in the G_Type field of the Code
Group Descriptor in the CMD file header (see Section 3.2). The user may set this field by
using the CH SET utility (see Concurrent CP/M User's Guide). Note that programs using
the 8080 memory model cannot be set to shared code.

3.1.2 8/}87 Support

Concurrent CP/M provides optional 8087 support for systems that use the 8087 processor.
This support is indicated by ~e Program Flag, byte 127 (07FH), of the CMD file header.
Setting bit 6 (bit 0 is least significant bit) of the Program Flag indicates optional 8087
support, which me~.s that if the 8087 is present, the program uses it; otherwise, the program
will emulate it. If bit 5 of the Program Flag is set, it indicates that the 8087 rnu~ be present
in order for the program to run. If no 8087 is present and bit 5 of the Program Flag is set,
the sysmm returns an error when it tries to load the program. The CHSET utility can be
used to set the program's header record for optional or required 8087 support.

If you use the P_CLI or P_LOAD system call to initiate and execute a process, the system
allocates an extra 96 bytes to the UDA for 8087 support. If you require 8087 support and
do not use the P_CLI or P_LOAD system call, you must specifically allocate this additional
96 bytes to the UDA, turn on the 8087 flag in the PD, and initialize the CW and SW fields
in the 8087 UDA extension (see description of these fields in Section 6 under the P_CREATE
system call).

i DIC41'AL P~.SF.AP~H ¢
3-2

O ~ r r m t CP/M P r o s r a m m ~ O ~ 3.1 Traule~ Pregram Lead aml]gzlt

3.1.3 8087 Exception Handling

Although the system provides its own 8087 exception handling routine, the user might
want to write his own 8087 exception handier. Appendix E includes instructions and infor-
mation required by the user to write his own 8087 exception handler, with a sample listing
of an 8087 exception handler routine.

3.2 Command File Format

A CMD file consists of a 128-byte header record followed immediately by the memory
image. The command file header record is composed of 8 group descriptors (GDs), each 9
bytes long. Each group descriptor describes a portion of the program to be loaded. The
format of the header record is shown in Figure 3-I.

I oo' Ioo~ I oo31 oo' I oo' I oo61 oo' I oo' I I
128 BYTES m,

Figure 3-1. CMD File Header Format

In Figure 3-1, GD l through GD 8 represent group descriptors. Each group descriptor
corresponds to an independently loaded program unit and has the format shown in Fig-
ure 3-2.

00H 01H 03H 05H 07H 09H
I I I I

Figure 3-2. Group Descriptor Format

G_Type determines the group descriptor type. The valid group descriptors have a G_Type
in the range 1 through 8, as shown in Table 3-I. All other values are reserved for system
use. For a given CMD file header only a Code Group and one of any other type can be
included.

B DIGITAL RESEARCH •

3-3

3.2 Cammmd Free l~rmm Camarnm CP/M Pram-mmm~ Gak~

If a program uses either the Small or Compact Model, the code group is typically pure;
that is, it is not modified during program c, xccution.

Table 3-1. Group Descriptors

G_Type Group Type

01H Code Group (non-
shared)

02H Data Group
03H Extra Group
04H Stack Omup
05H Auxiliary Group #1
06H Auxiliary Group @2
07H Auxiliary Group #3
08H Auxiliary Group @4
09H C, odc Croup (shared)

All remaining values in the group descriptor arc given in increments of 16-byte paragraph
units with an assum~i low-order 0 nibble to complete the 20-bit address.

Table 3-2. Group Descriptor Fields

Field Description

G_Length

A._Base

G_Min/G_Max

Gives the number of lm'agmphs in the group. Given a G_length
of 080H, for cxunplc, the size of the group is 0800H (2048
decin~) bytes.

Defines the base paragraph address for a nonrclocatable group.

Define the minimum and maximum size of the memory area to
allocate to the group.

E DIGffAL ~ R C H *
3-4

C.meurrmt CP/M Pregrammer's Gaide 3.3 Brae l~le laltializatioa

The memory model described by a header record is implicitly determined by the group
descriptors (refer to Section 4. l). The 8080 Model is assumed when only a code group is
present, because no independent data group is named. The Small Model is assumed when
both a code and data group are present but no additional group descriptors occur. Otherwise,
the Compact Model is assumed when the CMD file is loaded.

3 .3 Base Page In i t i a l i za t ion

The Concurrent CP/M Base Page contains default values and locations initialized by the
P_CLI and P_LOAD system calls and used by the transient process.

The Base Page occupies the regions from offset 0000H through 00FFH relative to the
initial data segment, and contains the values shown in Figure 3-3.

U DIGITAl. PJESEARCH •
3-5

3.3 Kme R t l e] [m~lJ=alJm c e m m ~ c P ~ P r ~ r i = ~ c~B=

0

6

C

12

18

E

!4

!A

30

L M H L H
1 2 3 4 5 6
!]

CODE LENGTH
t 4
DATALENGTH

CODE BASE

DATA BASE

MSO

RESERVED

EXTRA LENGTH EXTRA BASE RESERVED

STACK LENGTH STACK BASE RESERVED
t

AUX1 RESERVED

AUX 2 RESERVED

AUX 3 RESERVED

AUX 4 RESERVED

AUX 1

AUX 2

AUX 3

AUX 4
4

BYTES 030H THROUGH 04FH ARE NOT CURRENTLY USED AND
ARE RESERVED FOR FUTURE USE BY DIGITAL RESEARCH

DRIVE PASSWORD 1 ADDR P1 LEN
4

P2 LEN RESERVED FOR FUTURE USE
t '+ ("f

+
PASSWORD 2 ADDR

P

DEFAULT FILE NAME1

4 t + -I +

DEFAULT FILE NAME2

F ÷ +

CR RANDOM RECORD NUMBER (OPT)

DEFAULT 128-BYTE DMA BUFFER

Figure 3-3. Concurrent CP/M Base Page Values

U DIGIT/U. RESEARCHe
3-6

cWM Pr~'m.m-~ Gzdde

The fields in the Base Page are defined as follows:

• The M80 byte is a flag indicating whether the 8080 Memory Model was used during
load. The values of the flag are defined as:

1 = 8080 Model

0 = not 8080 Model

If the 8080 Model is used, the code length never exceeds 0FFFFH.

• The bytes marked Aux 1 through Aux 4 correspond to a set of four optional inde-
pendent groups that might be required for programs that egecute using the Compact
Memory Model. The initial values for these descriptors ate derived from the header
record in the memory image file.

• Length is stored using the Intel convention: low, middle, and high bytes.

• Base refers to the paragraph address of the beginning of the segment.

• The drive byte identifies the drive from which the transient program was read. 0
designates the default drive, while a value of 1 through 16 identifies drives A through
P.

• Password I Addr (bytes 0051H-O052H) contains the address of the password field of
the first command tail opersnd in the default DMA buffer at O080H. The P_CLI
system call sets this field to 0 if no password is specified.

• P1 Len (byte 0053H) contains the length of the password field fur the first command
rail operand. The P_CLI system call sets this to 0 if no password is specified.

• Password 2 Addr (bytes OO54H-0055H) contains the address of the password field of
the second command tail operand in the default DMA buffer at O080H, The P_CLI
system call sets this field to 0 if no password is specified.

• P2 Len (byte 0056H) contains the length of the password field for the second command
tail operand. The P_CLI system call sets this field to 0 if no password is specified.

• File Namel (bytes O05CH-O067H) is initialized by the P_CLI system call for a
transient program from the first command tail opersnd of the command line.

• File Name2 (bytes O06CH-O077H) is initialized by the P_CLI system call for a
transient program from the second command tall opersnd of the command line.

Note: File Namel can be used as part of a File Control Block (FCB) beginning at
05CH. To preserve File Name2, copy it to another location before using the FCB in
file I/O system calls.

• The CR field (byte 007CH) contains the current record position used in sequential
file operations with the FCB at 05CH.

! DIGITAL RESEARCH •

3-7

3.3 sue pqe zatt~tSoa Coucarrmt CP/M PrelFummer~ Reference Guide

• The optional Random Record Number (bytes 007DH-007FH) is an extension of the
F-'CB at 05CH, used in random record processing.

• The Dcfmlt DMA buffer (bytes 0080H-00FFH) contains the command tail when the
P_CLI system call loads a Iransient program.

3.4 Pm'ent/Child Relationships

Under Concurrent CP/M when one process creates another process, there is a parent/child
relationship between them. The child process inherits most of the default values of the parent
process. This includes the default disk, user rmmber, console, list device, and password. The
child process also inhafi~s interrupt vectors O, 1, 3, 4, 224, and 225, which the parent process
initialized.

3.$ Direct Video Mapping

Processes which bypass Concurrent CP/M Character I / O system calls ana use a video
map or screen buffer directly cannot be monitored by the system and continue to display
characters on the screen even when running in the background. Consequently, any screen
displayed by the program in the foreground console is interspersed with characters
displayed by the program in the background taing direct video map I/O. To avoid the
screen problems created by using direct video I/0, set bit 3 of the Program Flag to
indicate to the system that the process is to be put in suspend mode whenever it is running
in the background and may continue running only when it is switched to the foreground.
The CHSET utility (see the Concurrent'CP/M User's Guide) can be used to set bit 3 of the
Program Flag.

Note that bypassing the system Character I/O system calls negates the concurrency ot a
process, since the system suspends it from running (if bit 3 of Program Flag is set) unless it
is running in the foreground.

E ~ c ~ n 3

• DICdTAL LL,,~It, CH •

3-8

Section 4
Command File Generation

4.1 Trans ien t E x e c u t i o n M o d e l s

When the program is loaded, the initial values of the segment registera, the instruction
pointer, and the stack pointer are determined by the specific type of memory model used
by the transient process, indicated in the CMD file header record.

There are three memory models, the 8080 model, the Sn~I Model, and the Compact
Model, summarized in Table 4-1.

Table 4-1. Concurrent CP/M Memory Models

Model Group Relationships

8080 Model

Small Model

Compact Model

Code and Data Groups Overlap

Independent Code and Data Groups

Three or More Independent Groups

The 8080 Model supports programs that are directly translated from an 8080 environment
where code and data are intermixed. The 8080 Model consists of one group that contains all
the code, data, and stack areas. Segment registers are initialized to the starting address of
the region containing this group. The segment registers can, however, be managed by the
application program during execution so that multiple segments in the code group can be
addressed.

The Small Model is similar to that defined by Intel, where the program consists of an
independent code group and a data group. The code and data groups often consist of, hut
are not restricted to, single 64K byte segments.

l i l DIGITAL PI~SEARCH •

4-1

4.1 ~ Eaxatkm Mbdds ~ C e ~ I ~ S r a m = ~ ' , C.m~

The Compact Model occurs when any of the exu'a, stack, or auxiliary groups are pr-~-.ent
in program. Each group can consist of on= or n'sa= segrae.nts, but if any group ¢xccods one
segment in size, or if auxiliary groups are present, then the application program n'mst manage
its own segment registers during execution in order to address all code and data areas.

These three models differ primarily in how the operating system initializes the segment
registers when it loads a [ransient process. The P_LOAD system call determines the memory
model used by a transient program by examining the program group usage, as described in
the following sections.

For all models, the system initializes an int~'nal 96-byte stack area. The first two words
of this stack are reserved for the double word mtorn for termination by a RETF (Far Return)
instruction. The initial program stack for all models is shown in Figure 4-1 below.

Far Return Address
88:8P

Rot Segment

Rot OffsEt

92BYTE8

Figure 4-1. I n i ~ Progrmn Stack

The transient program can terminate by using the P_TERMCPM or P_TERM system call
or by executing a RETF (Far Return) i~truction when the SS and SP still point to th= initial
program stack.

4.1 ! The 8080 Memory Model

The 8080 Model is assumed when the transient program contains only a cod= group. In
this case, the Command Line Interpreter (P_CLI) system call initializes the CS, DS, and ES
registers to the beginning of the code group and sets the SS and SP registers to a 96-byte
initial stack area that it allocates.

• DIGITN. ~Lq~CHO
4-2

CP/M ProSrsm~ ' s Guide 4.1 ~ ~ M z d ~

Note: The P_CLI system call initializes tic stack so that if the process executes a Far
Return instruction, it terminates. This system call sets the Instruction Pointer (IP) Register
to 10OH, thus allowing Base Page values at the beginning of the code group. Following
program load, the 8080 Model appears as shown in Figure 4-2.

CS:IP ~ > 0100t"1

CS:O,DS:O,ES:O ~ > O000H

Figure 4-2.

CODE/DATA

CODE/DATA

BASE PAGE

Concurrent CP/M 8080 Memory Model

The intermixed code and dam areas are indistinguishable. The Base Page values are described
in Section 3.3. The following ASM-86 example shows how to code an 8080 Model transient
assembly language program.

cseg
org 100h

(code)
endcs equ $

dseg
org offset endcs

(data)
end

m DIGITAL RESEARCH •
4-3

4.1 ~rmdmt JCsm:mtkm Mmi~ GaKm'rmt CP/M Pmlrmmu~q Gdde

4.1.2 The Small Mmmry Model

The Small Model is usurned when the 1~aneient program contains both a codc and data
group. (In ASM-g6, ell code is generated following a CSEG directive. Data is defined
following a DSEG directive, with the origin of the Data Segment independent of the Code
Segment.) In this model, the P_CLI system call sets the CS register to the beginning of the
code group, the IP to 0000H, the DS and ES registers to the beginning of the data group,
and the $8 and SP registers to s 96-byte initial stack area that it initializes. Following program
load, the Small Model appears as shown in Figure 4--3.

I

CODE

cs.~),lP:O ~ 0000H

Fllpn-e 4-3.

01001"1

DS:0,ES:0 "--~ 0000H

Concurrent CP/M Small Memory Model

DATA

BASE PAGE

The machine code begins at CS + O000H, the Base Page values begin at DS + 0000H, and
the data area starts at DS+0100H. The following ASM-86 example shows how to code a
Small Model transient assembly language program.

cscg

(code)

dseg
org 100h

(~ta)
end

m Dlc.~1-.~j. ~ H O
4-4

~ r m t CP/M ~ ' s Guk~ 4.1 lhnml=~ Kmcutlkm Modeh

4.1.3 The Compact Memory Model

The Compact Model is assumed when code and data groups am present, along with one
or more of the remaining stack, extra, or auxiliary groups. In this case, the P_CLI system
call sets the CS, DS, and ES registers to the base addresses of their respective areas, with
the IP set to 0000H, and the SS and SP registers set to a 96-byte stack area allocated by this
system call.

Figure 4-4 shows the initial configuration of the segments in the Compact Model. The
values of the various segment registvra can be changed during execution by loading from the
initial values placed in Base Page. This allows access to the entire memory space.

CS,IP
O000H

CODE

Figure 4-4.

0100H

DS:00OOH

DATA

BASE PAGE

ES:0000H

Concurrent CP/M Compact Memory Model

DATA

If the assembly language transient program intends to use the stack group as a stack area,
the SS and SP registers must be set upon entry. The SS and SP registers remain in the initial
stack area, even if a stack group is defined.

Although it appears that the SS and SP registers should be set to address the stack group,
there are two contradictions. First, the assembly language transient program might be using
the stack gmup as a data area. In that case, the stack values set by the P_CLI system call to
allow a far return to terminate a transient program could overwrite data in the stack area.
Second, the SS register would logically be set to the base of the group, while the SP would
be set to the offset of the end of the group. However, if the stack group exceeds 64K, the
address range from the base to the end of the group exceeds a 16-bit offset value.

mg DIGITAL RF.SEARCH •
4-5

4.1 ~ t Exeeutkm Models Concurrmt CP/M P r ~ ' s Guide

The following ASM-86 example shows how to code a Compact Model assembly language
mmsicnt program.

c~eg

(ooc~)
dseg
org 100h

(dam)
a~g

s~cg

end

(morn clam)

(stack area)

4 .2 G E N C M D

The OENCMD utility mmttm a CMD file from an input I-I86 file. GENCMD doe, not ~ter
the original I-I86 file. The OENCMD invocation Ires ~ following form:

OENCMD filenanm ~'ameter-list}

where the filename corresponds to the H86 input file with an assu.mezl and unspecified filctype
of H86. GENCMD accepts optional panmmmn to slmoifio~Uy klentify the 8080 Model and
to describe memory requirements of each segment group. The GENCMD parameters are
lismd following tlm filensn~, as shown in the conmmnd lirm above where the pm'mmt~ list
consists of a sequence of kcywords (shown below) and values separamcl by commas or blanks.

8080 CODE DATA EXTRA STACK X l X2 X3 X4

The 8080 kcyword forces a single code group so that the P_LOAD sysmm call sets up the
8080 Model for ex~ution, allowing intcrmLxod code and data in a single segment. The form
of this command is

GENCMD filenarne 8080

1 D~,rrAL RESEARCH •
4--6

Ceacerrtm CP/M ~ ' s G ~ t e 4.2 GENCMD

The remaining keywords follow the filename or the 8080 option and define specific memory
requirements for each segment group, corresponding one-to-one with the segment groups
defined in the previous section. In each case, the values corresponding to each group arc
enclosed in square brackets and separated by commas. Each value is a hexadecimal number
representing a paragraph address or segment length in paragraph units denoted by hhhh,
prefixed by a single letter that defines each value:

Ahhhh Load the group at absolute location hhhh
Bhhhh The group starts at hhhh in the hex file
Mhhhh The group requires a minimum of hhhh * 16 bytes
Xhb_hh The group can address a maximum of hhhh * 16 bytes

Generally, the CMD file header record values are derived directly from the H86 file and the
parameters shown above need not be included. The following situations, however, require
the use of GENCMD parameters.

• The 8080 keyword is included whenever ASM-86 is used in the conversion of 8080
programs to the 8086/8088 environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and DSEG directives in the source
program.

• An absolute address (a hexadecimal value) must be given for any group that must be
located at an absolute location. This value is not usually specified, as Concurrent
CP/M cannot ensure that the required memory region is available. In that case the
CMD file cannot be loaded.

• The B value is used when GENCMD processes a HEX file produced by Intel's OH86
or a similar utility program that contains more than one group. The output from OH86
consists of a sequence of data records with no information to identify code, data,
extra, stack, or auxiliary groups, in this case, the B value marks the beginning address
of the group named by the keyword, causing GENCMD to load data following this
address to the named group (refer to the examples below). Thus, the B value is usually
used to mark the boundary between Code and Data Segments when no segment
information is included in the HEX file. Files produced by ASM-86 do not require
the use of the B value because segment information is included in the H86 file.

M DIGITAL RESEARCH*
4-'/

4.2 G~+CMD Ca, em'nU Cl'/M P m l r s m ~ ' ,

• The minimum memo~ value (M value) is included only when the HEX recorde do
not define the minimum memoxT requirements for the named group. C#.ncnJly, the
code group size is determined precisely by the data records loaded into the area. The
total space required for the group is defined by the range between the lowest and
highest data byte addresses, The data group, however, might contain unlnltialized
storage at the end of the group. Thus no data records are present in the HEX file that
define the highest referenced data item. The highest addr~s in the data group can be
defined within the source program by including the ASM86 directive DB 0 as the
last data item in the assembly language source file. Alternatively, the M value can
he included to allocate the additional space at the end of the group. Similarly, the
stack, extra, and auxiliary group sizes must be defined using the M value unless the
highest addresses within the groups are implicitly defined by dam records in the HEX
file.

• The maximum reentry size, given by the X value, is generally used when additional
free memory might be needed for such purposes as I/0 buffers or symbol tables. If
the data area size is fixed, then the X parameter need not be included. In this case,
the X value is assumed to be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the assembly language transient
program must be aware that a three-byte length field is produced in the Base Page for
this group where the high-order byte might be nonzero. Programs converted directly
from an 8080 environment or programs that use a 2-byte pointer to address buffers
should re,trOt this value to ~ or less, producing • maximum allocation length of
0~'FOH bytes.

The following GENCMD command line transforms the file X.H86 into the file X.CMD
with the proper header record:

A>GENCMD x oode[a40] data[m30,xfff]

In this case, the code group is forced to paragraph address 40H or its equivalent, byte address
400H. The data group requires a minimum of 300H bytes, but can use up to 0FFFOH bytes,
if available.

Assuming a file Y.H86 exists on drive B containing Inml HEX records with no interspersed
segment information, the command

A>GENCMD b:y data[b30,m20] extra[b50] stack[m40] x1[m40]

R DIGITAL L~,.,Vj~tCH*
4-8

CP/M ~ ' s Guide 4.2 GENCMD

produces the file Y.CMD on drive B by selecting records beginning at address 0000H and
less than 0300H for the Code Segment, with records starting at 0300H and less than 0500H
allocated to the Data Segment. The Extra Segment is filled from records beginning at 0500H
and higher, while the Stack and Auxiliary Segment #1 are uninitialized areas requiring a
minimum of 0400H bytes each. In this example, the data area requires e minimum of 0200H
bytes. Note again that the B value need not be included if the Digital Research ASM-86
assembler is used.

4.3 Intel Hexadecimal File Format

GENCMD input must be in Intel hexadecimal file format, produced by both the Digital
Research ASM-86 assembler and the standard Intel OH86 utility program. (Refer to Intel
MCS-86 Software Development Utilities Operating Inatructiona for II-I1 ~ Users, published
by Intel.) The CMD file produced by GENCMD contains a lmadex record defining the memory
model and memory size requirements for loading and executing the CMD file.

An Intel hexadecimal file consists of the traditional sequence of ASCII records where the
beginning of the record is marked by an ASCII colon, and each subsequent digit position
contains an ASCII hexadecimal digit in the range 0-9 or A-E

There are four kinds of hexadecimal record formats. The Start Address Record
specifies the starting address of the execution file. The Extended Address Record specifies
the bits 4-19 of the Segment Base Address, where bits 0-3 of the S BA are zero. The Data
Record contains a string of hexadecimal ASCII code that represents a portion of the 8086
memory image. The End-of-File record specifies the end of the object file.

Figure 4-5 shows the four record formats, their fields, and the contents of these fields.
The fields are defined in Table 4-2.

lira DIGITAl. RESF.kRCH •

4 -0

4,3][,nid ~ lZ'lh]L~lza¢ C 4 m z r n m (:]P/'M ;", ,,w "z C , M ~

L . I I . ~ .l = o. 1.. . . ,[B 1
REC MARK REC LEN ZEROES REC TYPE C-SEG CHECKSUM

STARTING ADDRESS RECORD

REC MARK REC LEN ZEROES REC TYPE USBA CHECK8UM

EXTENDED ADDRESS RECORD

REC MARK REC LEN LD ADDR REC T Y P E CHECKSUM

DATA RECORD

f " ~ - - 1
co oooo oi | E ~

i m
REC MARK REC LEN ZEROES REC ~PE CHEOKSUL~I#!

END OF FILE RECORD

F/sure 4-5. Intel Hexadecimal File Formats

am DIG/'I"N. K,F.S~H x
4-]O

Camearremt CP/M Pregrxmma"~ G u ~ 4.3 Iatel tlezxdedml File Fermat

Table 4-2. Intel Hex Field Detinitions

Field Contents

Rec Mark

Rec Len

zeros

Ld Addr

Rec 'l'~,pe

C-Seg

USBA

data

Specifies start of record

Record Length 00-FF (0-255 in decimal)

Extended Address Record: 0000H
Starting Address Record: 0000H
End-of-File Record: 0000H

Data Record: SBA offset defining address of byte 0 of data

00 = Data Record
01 = End-of-File Record
02 = Extended Address Record
03 = Starting Address Record

The following are output from ASM-86 only:

81 same as 00, data belongs to Code Segment
82 same as 00, data belongs to Data Segment
83 same as 00, data belongs to Stack Segment
84 same as 00, data belongs to Extra Segment
85 paragraph address for absolute Code Segment
86 paragraph address for absolute Data Segment
87 paragraph address for absolute Stack Segment
88 paragraph address for absolute Extra Segment

Four hexadecimal digits specifying the Code Segment address.
The high-order and low-order digits are the 10th and 13th char-
acters of the record, respectively.

Four hexadecimal digits specifying the Upper Segment Base
Address. The high-order and low-order digits are the 10th and
13th characters of the record, respectively.

Pairs of hexadecimal digits representing the ASCII code for each
data byte. The high-order digit is the first digit of each pair.

~ol DIGITAL RESEARCH e

4-11

4.3 Iatd Hezndechml File Fro'mat Cmscurreut CP/M Prosrmnmer's Reference Guide

Table 4-2. (continued)

Fie~ Contents

Checksum Exmndsd Address Record: Checksum of Rec /.zn, zeros, Rec
Type, and USBA fields.

Starting Address Record: Checksum ofRec Len, zeros, Rec Type,
C-Seg, end IP fields.

Data Record: Checksum of Rec Len, Ld Addr, Rec "I~e, and data
fields.

End-of-File Record: Contains ASCII code 4646H, checksum of
Rec Len, zeros, and Rec ~ype fields.

* 85, 86, 87, and 88 are Digital Research Extensions.

All characters preceding the colon for each record are ignored. See MC5®-86 Absolute
Object File Formats, published by Inml, for additional information on hexadecimal file record
format.

End of Section 4

Section 5
Resident System Process Generation

5.1 Introduction to RSPs

Resident System Processes are programs that become part of the C o n c ~ t CP/M oper-
ating system. They can be useful in severei ways: to create a turnkey system, autoloading
programs when Concurrent CP/M is booted; to build customized user interfaces or shells at
the consoles, for monitoring hardware not supported in the XIOS; and to avoid disk loading
time for frequently-used commands.

The source code for the ECHO RSP is included in Appendix D. Study this listing carefully
while reading this section. The discussion of the P_CREATE system call in Section 6 is
also helpful in understanding RSPs.

Resident System Processes are included in Concurrent CP/M during system generation.
GENCCPM searches the directory for all files with the filetype RSP and prompts the user
to choose whether it is to be included in the generated system file, CCPM.SYS. An RSP
file is created by generating a CMD file and renaming it with an RSP filetype. The GENCCPM
program is documented in the Concurrent CP/M System Guide.

5 . 2 R S P M e m o r y M o d e l s

Under Concurrent CP/M. there are two basic memory models for RSPs. They are similar
to the 8080 Model and the Small Model of transient programs. However, several important
distinctions exist between the transient program and RSP memory models. The RSP has no
equivalent to the Base Page of the wansient program's Data Segment. The RSP is responsible
for its own Process Descriptor (PD) and User Data Area (UDA). The RSP must also allocate
an additional 96 bytes at the end of the User Data Area if 8087 processing is required. The
system creates and initializes these data structures for the transient programs automatically
at load time. RSPs, on the other hand, must initialize these structures within their own Data
Segments (See P_CLI and P_CREATE system calls for PD and UDA descriptions).

Note that Concurrent CP/M does not support compact model RSPs. Extra and Stack
Segments must be part of the Data Segment.

N DIGITAL RF-SF.ARCH •

5-I

$.2 RSlP Memm'y M=¢i~ Ceacm'nm CWM l = r q m m = ~ C, glde

Although there is no Base Page in an RSF. them is an RSP header that must exist at offset
00H of the Data Segment. In the 8080 Model, this implies that the RSF header is in the
Code Segment. The RSF header and the associated data structures are discussed in
Section 5.4.

5.2.1 8080 Model RSP

The 8080 Model consists of mixed code and data. When the system gives control of the
CPU to an 8080 Model RSP, it initializes the Code, Data, Extra and Stack Segment registers
to the same value. Use GENCMD with the 8080 option to generate an 8080 Model RSP.
GENCCPM assumes the 8080 Model if the CMD File Header Record of the RSP has a
single Code Group Descriptor and no other Group Descriptors (refer to Section 3.2). When
discussing an 8080 Model RSP, any reference to the Data Segment also refers to the Code
Segment.

$.2.2 Small Model RSP

The Small Model RSP implies separate Code and Data Segments. Before the system gives
control of the CPU to a Small Model RSP, it initializes the Data, Extra and Stack Segment
Registers to the Data Segment address, while the Code Segment register is initialized to the
Code Segment address. There is no guarantee where GF~CCPM will place the Code Segment
in memory relative to the Data Segment. The CMD Header Record for this kind of RSP
must have both Data and Code Group Descriptors.

MIXED
CODE
AND
DATA

RSP HEADER

DS:

CS',DS ~ CS.

DATA

RSP HEADER

CODE

8080 MODEL 8MALL MODEL

HIGH

LOW

Figure 5-1. 8080 and Small RSP Models

DIGITAL gI~.,ARC H e
5-2

Coueurremt CP/M ~ ' s Gak~ $.3 Mmlfli~ Cotmk ol']L~SPs

5.3 Multiple Copies of RSPs

At system generation, GENCCPM can make up to 255 extra copies of an RSP, such that
each copy generates a separate process running under Concurrent CP/M. GENCCPM accom-
plishes this by making multiple copies of the RSP, and initializing each to be a separate
RSP. The number of copies made by GENCCPM can be fixed, or dependent on a byte value
in the System Data Area. To determine the number of copies to make, GENCCPM looks
at two fields in the RSP Header. The format of the RSP Header is shown in Figure 5-2.

BYTE: 00H 02H 04H 05H 010H

LINK SDATVAR NCP RESERVED
~. . I . ~ 4

Figure $-2. RSP Header Format

If the SDATVAR field is nonzero, it is used as an offset of a byte value in the System Data
Area, which contains the number of copies to be generated. The offset should indicate a
value that is set by the user during GENCCPM. The TMP RSP uses this feature by placing
the offset of the NVCNS (Number of Virtual Consoles) field into the SDATVAR field. This
way, a TMP is generated for each System Console specified by the user. If SDATVAR is 0
then the NCP byte in the RSP header is used as the number of extra copies to make. If beth
of these fields in the RSP Header are 0 then no exlra copies are made, and only a single
RSP is created. The ECHO RSP is an example of the latter.

If the number of extra copies is determined by GENCCPM to be greater than 0, each
copy of the RSP is given a unique copy number. The copy number is placed in the NCP
field and the ASCII equivalent is appended to the end of the Process Descriptor NAME field
of each copy. If there is not enough space for the number in the PD NAME, part of the PC)
NAME is over written. For the example TMP RSP, GENCCPM makes the specified number
of copies and changes the NAME field in each copy to be TMPO, TMPI, TMP2 and
sets the NCP field to 0, l , 2 respectively.

$.3.1 8080 Model

When GENCCPM makes copies of an 8080 Model RSP, the CS, DS, ES, and SS fields
in each copy's User Data Area are set to the paragraph address where the RSP is in memory
after loading.

-1 DIGITAL RESEARCH I
5-3

S.3 Mumt~ ~ + m,,SP1 Concurrmt CP/M Prolp'anm~'l Reference Guide

$.3.2 Small Model

If multiple copies of a Small Model RSP ere to he generated, GF~CCPM copies both
the Code and Data Groups of the RSP, if the MEM field of the Process Descriptor is 0. See
the P_CREATE system call for a description of the Process Descriptor format. GENCCPM
sets the UDA fields CS to the Code Segment of the RSP and DS, ES and SS to the Data
Segment of the RSP.

$.3,3 Small Model with Shared Cede

If a Small Model RSP has a nonzero MEM field in its Process Descriptor, the Code
Segment is assumed to he reentrant. When copies are made of this type of RSP only the
Data Group is copied. GENCCPM sets the UDA CS field for each copy to the paragraph
addreu of the one Code Segment for the RSP's. The DS, ES, and SS, in each copied Date
Segment, are set by GENCCPM to the paragraph addr~s of the Data Segment for that
particular copy.

5 .4 C r e a t i n g a n d In i t ia l iz ing a n R S P

An RSP that is to he invoked from a console, or through the P_CLI system call, must
create a special queue called an RSP Command Queue. Such an RSP is called a Command
RSP. This ~ of RSP usually ix~forms some initialization r~mtine ~ then goes into a
Loop. The initiatization routine consists of creating and openhlg an RSP Command Queue
as well es chang/ng the priority to the default transient process priority. (Priority values with
regard to RSPs are dlscut~..d below.)

The first step of the loop reeds a message from the RSP Command Queue. The process
that writ~ the message to the RSP Command Queue activates the associated RSP. After the
RSP returns from the Q_READ system call, it obtains the system resources it needs, such
as the calling process' console. Typically, the RSP process is assigned the console process
by the CLI after the CLI has succeeded in writing the command tail to the RSP Queue. This
is only l~'ue if the RSP Process Descriptor nsme matches the RSP Command Queue name.
Refer to the P_CLI (Call Command Line Interpreter) system call description for information
about how the CLI handles a command.

II I~JIT.4,L RP..~r.,+4,P~H •
5-4

Concurrent CP/M Programmer's Guide 5.4 Creating and Initializing an RSP

When the RSP completes its activities for the given command, it releases any system
resources it has acquired, including the console, and restarts the loop by reading from its
RSP Command Queue. A Command RSP is a single process and is a serially reusable
resource; in other words, the RSP acts on one message at a time. When several processes
attempt to invoke a single Command RSP, they wait as described in the Q_READ and
Q_CREAD system call in Section 6. Refer to these and to the Q_WRITE and Q_CWRITE
system calls for further details.

Note: It is certainly possible to create RSPs that are invoked differently.

The format of the RSP Command Queue Message is shown in Figure 5-3.

Byte: 00H lY2H... 082H

I PDADDRES8 I COMMAND TAlL (12g bytes) I

Figure $-3. RSP Command Queue Message

The PDADDRESS is the offset relative to the System Data Area segment of the Process
Descriptor of the process calling the RSP. A program that wants to invoke an RSP and is
forming an RSP Command Queue Message, can find its Process Descriptor address by
calling the P_PDADR system call. The COMMAND TAIL usually contains what the TMP
sends to the CLI minus the command name, and is terminated with a zero byte.

When a command is entered at a console, the TMP performs a P_CLI system call. The
P_CLI system call attempts to open a queue that has the RSP Flag on and has the same
name as the command sent to the CLI. If the Q_OPEN is successful, the P_CLI system
call attempts to assign the calling process's console to a process with the same name as the
command. The P_CLI system call then creates an RSP Command Queue Message with the
command tail sent to the CLI from the TMP, and writes it to the RSP Command Queue
(refer to the discussion of the P_CLI and Q_WRITE system calls in Section 6). A transient
program can use a Command RSP in the same manner by writing directly to the appropriate
RSP Command Queue. An advantage of using the P_CLI system call is that it looks for an
RSP first and only searches on disk for a CMD file if the the RSP is not found.

M DIGITAL RF.sEAgCH •
5-5

5.4 Eruttln| and lnfthtlJzinl an RSP Concurrent CP/M ProIFsm~.~s Gukle

When an RSP reads an RSP Command Queue Message, it often needs information about
the calling process, such as which console, list device, drive, or us~ nttmber to use. If an
RSP is invoked through the P_CLI system call, the RSP is assigned the calling process's
console, but if the RSP Command Queue is written to directly, the calling process might or
might not assign its console to the RSP. A Command RSP can use the PD address in the
Comnumd RSP Message to find out what the default devices of the calling process are. The
RSP should release any resources it assigns to itself when it is finished.

The beginning of the RSP Data Segment has a fixed format starting at offset 0. This data
structure is the RSP Header. Note that in the 8080 Model, the RSP Header is also in the
Code Segment. After the RSP Header is a Prrx:ess Descriptor starting at offset 010H. A
User Data Area and a stack must also be within the Data Segment, with the UDA placed
at a paragraph boundary relative to the beginning of the Data Segment. If system calls
assuming a default DMA buffer am used, a 128-bym DMA Buffer must also exist. The
DMA OFFSET field in the User Data Area should be set to the address of the DMA buffer.
When the process is created by Concurrent CP/M, the DMA SEGMENT field is initialized
to the same value as the DS register. The DMA SEGMENT and OFFSET can also be set
by calling F_DMASEG and F_DMAOFF once the RSP is running. The beginning of the
RSP Data Segment is shown in Figure 5-4.

m INGffAL IUF=EAgCHe
5-6

Coneurreat CP/M Programmer's Guide 5.4 Creating and Initializing an RSP

DS"

F igu re 5-4.

PROGRAM
DATA
AND
RSP

STACK

Optional 8087
UDA extenalon

USER
DATA
AREA

PROCESS DESCRIPTOR

RSP HEADER

01AOH

0140H

0040H

D010H

0 0 ~ H

RSP Data Segment

The RSP Header must be located at offset zero in the RSP Data Segment, the RSP Process
Descriptor must be at offset 010H, and the RSP User Data Area must begin on an even
paragraph boundary.

$.4.1 The RSP Header

As disc Jssed in Section 5.2, the number of copies made of an RSP is dependent on the
values of the SDATVAR and NCP fields in the RSP Header. If no copies are desired, these
fields must be zero. As a convenience, when Concurrent CP/M creates the RSP process,
the LINK field in the RSP Header is set to the paragraph address of the System Data Area.
The System Data Area can always be obtained by an RSP or transient program with the
S_SYSDAT system call.

B DIGITAL RESEARCH e
5-7

5.4 Creaflnl mid Inl t la~a | an RSP Coueunmt CPIM Prolp'mmn~'s Gulde

5 . 4 . 2 The RSP Process Descriptor

The RSP Process DeacripCor should be initialed to zeros, except for the PRIORrI'Y,
FLAGS, NAME, and UDA SEGMENT tields. The PRIORITY field is usually initialized
to 190. This is higher than mmsient l~'OgnUns and TMPs (200 and 198 respectively), but
lower than the INIT ~ , which has • priority of 1. The description of the P_PRIORITY
system call in Section 6 contains more information about system priority assignments.

Starting an RSP at a priority of 190 ensures that the RSP is able to create and open an
RSP Command Queue before it can be invoked through a TMP. RSPs such as ECHO usually
set their priority to 200 after creating and opening their RSP Command Queue and before
attempting to read from the queue.

Note' There are no guarantees about the order in which the RSP processes are created by
the Concurrent CP/M operating system. If one RSP must run before another, it must have
a higher pt'iority. Such is the case when one RSP uses a m;ot~e created by a second RSP;
the second must run (at leut during initialization) with a priority higher than the tint.

The Process Descriptor SYS and KEEP Flags can be ini 'ttalized in the RSP Data Segment
(refer to P_CREATE in Section 6 for furth~ flag details). The SYS Flag allows a process
to read and write to and from restricted system queues, This is discussed below with regard
to RSP Command Queues. The KEEP flag signals to the operating system that this process
cannot be tin'rain/ted. Tnh/kS is necesm7 if an RSP is not to be terminafed wben a CTRL-C
is typed on a console being used by the RSP, The 8087 flag tolls the system that a process
is actively using the 8087 processor.

The NAME field of the RSP's Process Descriptor is 8 bytes long. It is assumed to be left-
justified and padded with blanks on the right. If an RSP Command Queue is going to be
used to invoke the RSP through the CLI, the PD rmmt have the same uppercase name as
the Command Queue. The UDA field in the Process Descriptor must be the offset in para-
graphs of the UDA relative to the RSP dam segment. GBNCCPM restores the UDA field
in the Process Descriptor to the actual UDA paragraph address when the system is generated.

If the PD field name is not the same as the Command Queue, the console is not assigned
to the RSP by the CLI.

II DIGII"AL ~ H e
5-8

Concurrent CP/M Prolntmmer's Guide -¢.4 Creating and Initializing an RSP

5.4.3 The RSP User Data Area

The User Data Area must have its SP field set to the offset of a three-word IRET structure,
in the RSP's Data Segment. The offset is relative to the beginning of the Data Segment.
The first of the three words is the offset of the code entry point for the RSP, relative to the
beginning of the RSP Code Segment. Concurrent CP/M executes an IRET instruction to
start the RSP using these three words for the IP, CS and Flag registers respectively. The CS
value on the stack is initialized to be the CS field of the UDA, while the Flag value is set
to 0200H (interrupts on). The RSP stack must come immediately before these three words.

The initial values of the AX, BX, CX, DX, DI, SI, and BP registers are taken from the
appropriate fields in the UDA.

The DMA OFFSET field should be set to the offset of the DMA buffer in the RSP's Data
Segment. Except for the SP and DMA OFFSET fields, and possibly the AX, BX, CX, DX,
DI, SI, and BP fields, the remainder of the UDA fields should be initialized to 0. The CS,
DS, ES, and SS fields are set by GENCCPM as discussed in Section 5.3.

If you include the 8087 extension in the UDA, you must initialize the CW field (Control
Word) to 03FFI-I and the SW (Status Word) field to O before system generation.

$.4.4 The RSP Stack

The RSP must reserve space for its stack, which is assumed to lie within the RSP's Data
Segment. This stack must be large enough to accommodate what the RSP code needs, plus
four levels (eight bytes) to handle possible hardware interrupts. We highly recommend that
you reserve more than four extra levels of stack.

The SP field in the RSP's UDA points to the top of this stack; the top contains the three-
word IRET instruction discussed above.

5.4.5 The RSP Command Queue

The RSP's Command Queue contains information that determines when it begins
execution, and to which console it is attached. If an RSP is to be accessible from a console
via the TMP, the Command Queue name must be in uppercase. The FLAGS field in the
RSP Command Queue Descriptor must have the RSP bit on. If this flag is not on, the CLI
will not write a message to the RSP Command Queue, and instead attempts to load a
transient program. The KEEP flag should be set on to protect the RSP QUEUE from
inadvertent use of the Q_DELETE system call.

Im DIGITAL RESEARCH •
5-9

$.4 L3reat~l a~l Inltlall~ I u liSP Coumu'r~t CPIM l ~O ln~me 's (}tide

The REE~ICTED flag (refer to the Q_MAKE system call in Section 6) makes a queue
anveslible only by privileged prc~eules. Privileged l~o~ses hive the SYS Flag on in their
Process Descriptor. If the RF_,EI~C'I'ED Flag is on in an RSP Command Queue, then only
privileged processes can invoke the related RSP. A lowercase letter in the RSP Command
Queue name and the RESTRIL'WED Flag provide two methods of filtering access to an RSP
QUEUE.

The Queue Descriptor of the RSP Cornmeal Queue mast have a message length of 131
bytes. The format of this message is shown above. The number of mesutges is usually 1.
If the Queue Descriptor is within 64K bytes of the beginning of the System Data Area,
buffer space for the Queue Descriptor must be allocated in the RSP. The BUFFER field in
the Queue Descriptor must be the offset of this buffer, relative to the beginning of the l~P's
Data Segraent. The buffer size is the message length times the mmber of messages, usually
131 bytes.

Note: The queue buffer should be before the Queue Descriptor within the RSP Data
Segment.

An RSP can certainly create other queues besides the RSP Command Queue used with
Command RSPs. However, any queue an RSP creates that lies within ~ K of the System
Data Area must have a buffer area pointed to by the BUFFER field in its Queue Descriptor.
To be ~ , the buffer ~ocid come before the Queue Descriptor in the RSP's Data Segment.
It is assumed the BUFFER field points to a buffer that is also wi~n 64K of the System
Data Area. If the Queue Descriptor is farther than 64K from the System Data Area, Con-
current CP/M uses buffer space in the System Data Area. Refer to the Q_MAKE system
call in Section 6 for further details.

In order to open the RSP Command Queue and subsequently read from it, a Queue
Parameter Block and its associated buffer must be allocated in the RSP's Data Segment.
These structures are treated just m in a tnmsient process. For any queues created by an RSP,
it is s t r e ~ l that the queue buffer areas associated with the Queue Descriptor and the Queue
Parameter Block are separate, distinct areas of storage.

5.4.6 MultiOe ~ within an RSP

An RSP can create child processes by calling the P_CREATE system call. Note that if
the Process Descriptor of the process being created is within 64K bytes of the beginning of
the System Data Area, the PD structure is used directly by Concurrent CP/M. Otherwise
the PD structure is copied into the PD table in the System Data Area.

U DIGITAL ~ C I , , l O
5-10

Concurrent CP/M Programmer's Guide $.$ Developing and Debugging an RSP

$.$ Developing and Debugging an RSP

The first RSP you attempt should be very simple, on the order of complexity of the ECHO
RSP listed in Appendix D. New RSPs should be developed and debugged as if they were
transient processes, such as Concurrent CP/M CMD utilities, then converted into RSPs.

An RSP debugging session should proceed like an XIOS debugging session: first load
CP/M-86, then invoke DDT-86~. and then bring up Concurrent CP/M. The Concurrent
CPIM System Guide provides more information about running Concurrent CP/M under
CP/M-86,

After reading in the CCPM.SYS file under DDT-86, find the RSPSEG field of the System
Data Segment (SYSDAT). The paragraph address of the SYSDAT is found in the A._.BASE
field of the Data Group Desoriptor in the CCPM.SYS command file header. The CMD header
is described in Section 3.2 and the SYSDAT a_~a is described in the S_SYSDAT system
call in Section 6. The RSPSEG field contains the paragraph address of the Data Segment
of the first RSP in a linked list of the RSPs included by GENCCPM.

By using the Display Memory (D) command of DDT-86 to show memory at the segment
RSPSEG, the name of the first RSP can be identified in the RSP's Process Descriptor. The
LINK field in the RSP Header, which will be the first word in the RSPSEG segment, is the
paragraph value of the next RSP's Data Segment. A zero in the LINK field means the end
of the list of RSPs. Note that linkage information is lost once Concurrent CP/M is initialized.
The LINK field of the RSP Header contains the System Data Segment once an RSP begins
execution.

Once the RSP to be debugged is located, the initial code entry point can also be found.
As di~ussed previously, the SP field in the RSP's UDA is the offset from the beginning of
the RSP's Data Segment of the three-word IRET structure. The first word of the IRET
structure contains the initial value of the IP register when Concurrent CP/M creates the RSP
process. The initial value of the CS register is in the CS field also in the RSP's UDA. Once
this is done, you can set break points in the RSP, similar to setting break points in XIOS
system calls.

End of Section 5

!1 DIGITAL RESEARCH •
5-11

Section 6
System Calls

This section describes the Concurrent CP/M system calls in tabular form. It is intended
both as an introduction to the calls and as a reference for use during programming. You
should he familiar with the material in Sections I through 5 before proceeding.

The first table, Table 6-I, describes the categories of Concur~nt CP/M system calls and
their g~nvral uses. Table 6-2 summarizes the Concurrent CP/M system calls. Use it as a
quick reference to find the system call you reed while progrmmning. The system calls are
broken down into functional groups. Immediately following is Table 6-3, a cross-reference
showing the system calls in mmefical order. Table 6-4 is an index providing the page numbers
and figure titles of commonly used data structures. Table 6-5 lists the error codes returned
in register CX.

i n D{GrFAL RESEARCH •

6-I

6 System Calb Cont'ummt CP/M Progmmm~s Guide

Tabk 6-1. Symm Can Catesorks

Category Use

C_ Console System Calls

The Console System Calls handle I/O operations for virtual consoles
on a character, string, and line buis, attach and detach consoles from
processes, and return or change the number conwponding to the
default virtual console.

DEV_ Device System Calls

The Device System Calls deal with flags and polling in managing
system resources.

DRV_ Disk Drive System Call

The Disk I~ve SysWn Calls manase ~ CY/M logical chives.

F_ File-Access System Calls

The F~e-Ac~m Sylem ~ include ~ that opera: on files within
a directory, calls that opentte on records w/thin files, and m/soelk-
neous system cal]s related to file I / a

L List Device System Calls

The List Device System Calls write characters ~r strings to the default
list device, attach and detach the default list device from calling
lXOcet~, and return ~ change the number corresponding to the
default list device.

M._ MP/M-86@ Memory Management System Calls

The M._ Memory Management System Calls are included for corn-
patibility with MP/M-86. These calls allocate and free memory seg-
ments according to the MP/M-86 segmentation algorithm.

m D~C~TN. ~ H G

6-2

Concurrent CP/M Progrsmmer's Guide

Table 6-1. (eont|nued)

6 System Calls

Category Use

MC_ CP/M-86 Memory Management System Calls

The MC_ Memory Management System Calls allocate and free
segments according to the CP/M-86 segmentation algorithm.

P_ Process/Program System Calls

The Process/Program System Calls create and terminate processes,
call other processes, and perform other operations on processes.

Q_ Queue Management System Calls

The Queue Management System Calls create, delete, open, read
from, and write to queues.

S_ System Calls

The System Calls return various types of systems data, such as ver-
sion numbers and addresses.

T_ Time System Calls

The Time System Calls set the system calendar and clock and return
the time from them in hours and minutes or in hours, minutes, and
seconds.

B DiGiTAL RESEARCH I
6-3

i System Calk Coneurrem CP/M Programmer's Guide

Table &2. Concurrent CP/M Sym~ Cslls

Number
Mnemonic Definition

Dec Hex

Console I/O System Calls

149 95 C_ASSIGN Assign default virtual console to another
proceu.

146 92 C-ATTACH

162 A2 C_CATTACH

110 6E C-DELIMIT

147 93 C-DETACH

153 99 C_GET

1 ~ 6D C_MODE

6 ~ C-RAWIO

1 01 ~ R ~ D

10 0A C._READSTR

Establish ownership of the default vir.
tual console to the calling process; sus-
pend process until console becomes
available.

Cceditionally establish owner~p of the
default virtual console by the calling
process; return an error message if the
device is unavailable.

Set or return current String Output
Delimiter. Used with C..WRITESTR.

Iktach default virtual console from the
calling process.

Return the virtual console number of
the calling process.

Set or return Console mode.

Perform Raw mode I/0 with the default
virtual console.

Read a character from the default vir-
console.

Read an edited line from the default
virtual console.

B DIC2TAL ~ C H e
6-4

Concurrent CP/M Programmer's Guide

Table 6..2. (continued)

Number
Mnemonic Definition

Dec Hex

148 94 C_SET

6 System Calls

11 OB C_STAT

2 02 C_WRITE

111 6F C...WRITEBLK

9 09 C_.WRITE, SrR

133 85

132 84

131 83

38 26

27 IB

13 0D

31 IF

Set or change the default virtual con-
sole for the calling process.

Obtain the input status of the default
virtual console.

Write a character to the default virtual
console.

Write a specified number (block) of
chamctvn to the defmk virtual console.

Write a string to the default virtual con-
sole until delimiter.

Device System Calls

DEV_SETFLAG Set a system flag.

DEV_WAITFLAG Wait for a system flag to be set before
restoring the current process.

DEV_POLL Poll a noninterrupt-driven device.

Disk Drive System Calls

DRV_ACCESS Indicate access to specified drives.

DRV_ALLOCVEC Get the address of the disk Allocation
Vector.

DRV_ALLRESET Reset all disk drives.

DRV_DPB Return the segment and offset address
of the Disk Parameter Block for the
default disk of the calling process.

I DIGIT.~ RL~L~RCH I
6-5

6 Systm Calls Concurrent CP/M Prolrxmmtq"s Guldl

Table 6-2. (continued)

N v . ~ r
Mnemonic Definition

Dec Hex

48 30 DRV_FLUSH

39 27 DRV_FREE

25 19 DRV_GET

101 65 DRV_GE'YLABEL

24 18 DRV_L(~INVEC

37 25 DRV_RESET

29 1D DRV_ROVEC

14 0E DRV_SET

100 64 DRV_SETLABEL

28 1 C DRV_SETRO

46 2E DRV_SPACE

30 1E

16 10

19 13

Write internal pending blocking/
deblocking data buffers to disk.

Rclinqukh access to specified drives.

Return the default drive of the calling
pt'ocess.

Return the directory label data byte for
the specified drive.

Ret t~ bit map of logged-in disk drives.

Reset the specified drives.

Return bit map vector of drives set to
Read-Only.

Set defattlt drive of calling proce~.

Create or update a directory label.

Set the default drive to Read-Only.

Return unallocated space on the spec-
itied drive.

Disk File System Calls

F_ATTRIB Set file at~'ibutes.

F_CLOSE Close file.

F_DELETE Delete file.

I DIC~T;~ RJF.SF.ARCHI
6-6

Concurrent CP/M Programmer's Guide

Table 6-2. (continued)

6 System Cal'-

Number
Mnemonic Definition

Dec Hex

52 34 F_DMAGET

26 IA F_DMAOFF

51 33 F_DMASEG

45 2D F_ERRMODE

42 2A F_LOCK

22 16 F_MAKE

44 2C F_MULTISEC

15 OF F_OPEN

152 98 F_PARSE

106 6A F_PASSWD

36 24 F_RANDREC

20 14 F_READ

33 21 F_READRAND

23 17 F_RENAME

17 1 ! F_SFIRST

Return segment and offset address of
Direct Memory Address buffer.

Set the Direct Memory Address offset
address.

Set Direct Memory Address buffer seg-
ment address.

Set the BDOS Error mode.

Lock record within file opened in
Unlocked mode.

Create file.

Set the BDOS Multisector Count.

Open file for record access.

Parse an ASCII string and initialize an
FCB.

Set the default password.

Set the Random Rec.ord field in the FCB
from the sequential record position.

Read record sequentially.

Read random record.

Rename file.

Search for first matching directory FCB
that matches the specified FCB.

I-I DIGITAL RESEARCH •

6-7

6 System can. Concarrent CP/M Prolp, anmnm"s Guide

Table 6-2, (continued)

Number
Mnemonic Definition

Dec Hex

35 23 F_SIZE Return the size of a file.

18 12 F_SNEXT

102 66 E_TIMEDATE

99 63 F_TRUNCATE

43 2B F_UNLOCK

32 20 F_USERNUM

21 15 F_WRITE

34 22 F_WRITERAND

103 67 F_wRrrEXFCB

40 28 F_WRITEZF

158 9E

161 AI

Search for rw.xt mmching directory
that matches the FCB specified in the
F_$FIRST system call.

P~t'm'n fle's date and time stamps
password mode.

lt'uncam file to the specified Random
Record Number.

Remove record locks.

Set or mmrn the ctefmli user number of
the calling process.

Write reco~ S~lmnfially.

Write random records.

Cream or updam file's XFCB.

Write random mc.o~ and zero-fill any
pmv/omly unsllocate.d data blocks.

List Device System Calls

L._A'I"rACH Establish ownership of the dvfsult list
device by the calling process; smpand
the process until the device is available.

L_.CATTACH Cond~'onally establish ownership of the
defadt list device by the c~ling process;
return error code if the device is
unavailable.

• DIC~TAL gI~L~tCH •

6-8

Concurrent CP/M Programmer's Guide

Table 6-2. (continued)

6 System Calls

Number
Mnemonic Definition

Dec Hex

159 9F L_DETACH Relinquish ownership of the default list
device.

164 A4 L._GET

160 A0 L_SET

Return the default,list device number
of the calling process.

Change the default list device for the
calling process.

5 05 L_WRITE Write a character to the default list
device.

112 70 L__WRITEBLK Write the specified number of charsc-
mrs (block) to the default list device.

MP/M Compatible Memory Allocation System Calls

128 80 M_ALLOC

129 81 same as128

130 82 M_FREE

Allocate the memory segment be=
tween the sizes specified in the Mem-
ory Parameter Block to the calling
process.

Free the specified memory segment.

CP/M Compatible Memory Allocation System Calls

54 36 MC_ABS

58 3A MC_ALLFREE

55 37 MC_ALLOC

Allocate the maxhmm amount of RAM
available at a specified address.

Free all memory owned by the calling
process.

Allocate a segment of RAM, as spec-
ified in the Memory Control Block, to
the calling process.

ml DIGITAL RESEARCH •
6-9

i System Cmlk Concurrent CP/M l~brolp~mer'm Guk~

6-2. (eontlmg.d)

Number
Mnemonic Definition

Dec Hex

56 38 MC_ALLOCABS

57 39 MC._FP~E

53 35 MC_MAX

Allocate a specified an~unt of RAM,
as above, but beginning at a specific
address.

Free an area of RAM beginning at a
specified address, and extending to the
end of the previously-allocated mem-
ory area.

Allocate fl~e maximm~ amoem of RAM
available in the system.

Process/Program System Calls

157 9D P_ABORT

47 2F P_CHAIN

150 96 P_CLI

144 90 P_CREATE

141 8D P_DELAY

142 8E P_DISPATCH

59 3B P_LOAD

"lbrminate a process specified by name
or Process Descriptor address,

Load, inid~izo, m l jump to dw Fo-
specified in the DMA buffer.

Int~rp~t and c~cute the specified
c(xnmar, d line by caUing Command Lir~
l a t ~ (CLI).

Create a subpm~ss.

Suspend the callinB process for a spec-
ified number of system clock ticks.

Force a dispatch operation; give up the
CPU resource to the highest priority
process ready to run.

Load the specified CMD file in mem-
o17; return its base page segment
address.

~IO

Concurrmt C P / M Programmer's Guide

Table 6-2. (continued)

6 System Calls

Number
Mnemonic Definition

Dec Hex

156 9C P_PDADR Return the address of the Process
Descriptor of the calling process.

145 91 P_PRIORITY

151 97 P_RPL

143 8F P_TERM

0 00 P_TERMCPM

138 8A Q_CREAD

140 8C Q_CWRITE

136 88 Q_DELETE

134 86 Q_MAKE

135 87 Q_OPEN

137 89 Q_READ

Queue System

Set the priority of the calling process.

Invoke a system call from a Resident
Procedure Library.

Terminate the calling process.

Terminate calling process uncondition-
ally, release all owned resources.

Calls

Conditionally read a message from a
system queue; return error code if a
message is not available.

Conditionally write a message to a sys-
tem queue; return an error code if space
is not available.

Delete a system queue.

Create a system queue.

Open a system queue for subsequent
queue operations.

Read a message from a system queue;
suspend calling process until message
is available.

I I DIGITAL RF.SEARCH •
6-11

| S y s t ~ c-n- Cormunmt CP/M Prolr~mme~'s Gukle

Table (,-2. (continued)

Number
Mnemonic Definition

Dec Hez

139 8B Q_WRITE

12 0C S_BDOSVER

50 32 S._BIOS

163 A3 S_OSVER

107 6B S._SERIAL

154 9A S..SYSDAT

105 69 T_GET

155 9B T_SECONDS

104 68 T_SET

Write a message to a system queue; sus-
pend ~ling proceu until spece becoazs
available.

System System Calls

BDOS v~ldon mmlx~, ~ end
operating syste, nl type.

Call specified CP/M-86 BIOS charac-
ter I/O routine.

Return type and version number of
Concurrent CP/M.

Return the Concurrent CP/M system
serial rmmber.

Rctum address of the System Data Scg-
mcnt (Sy~lat)

Tune System Calls

Obtain the sysmu calendar and clock,
hours and minutes only.

Return current system date and time;
hours, minutes, seconds.

Set intc, rnal system calendar and clock
to specified value.

• D4GTAL ~qF.Altr.J.4*
6-12

Cow-urrent CP/M Programmer's Guide 6. I System Call Summary

6.1 System Call Summary

Table 6.3 lists the Concurrent CP/M system calls in summary form, including the param-
eters a process must pass when calling the system call, and the values the system returns
to the process.

Appendix A lists the Concurrent CP/M system calls by function number, and includes all
the information in Table 6-3.

Table 6-3. System Call Summary

Mnemonic Dec Hex Input Returned Values
Parameters

C_ASSIGN 149 95 DX = .ACB AX -- Rtn Code
C_ATTACH 146 92 none none
C_CATTACH 162 A2 none AX --- Rm Code
C_DELIMIT I l0 6E DX = Out Delim AL = Out Delim
C_DETACH 147 93 none none
C_GET 153 99 none AL -- con #
C._MODE 109 6D DX = Con Mode none

= 0FFFFH AX = Con Mode
C_SET 148 94 DL = Console none
C_RAWIO 6 6 see clef see def
C__READ l 1 none AL = char
C_READSTR l0 A DX = .Buffer see def
C_STAT l l B none AL = 00/01
C_WRITE 2 2 DL = char none
C_WRITEBLK 111 6F DX = .CHCB none
C__WRITESTR 9 9 DX = .Buffer none

DEV_POLL 131 83 DL = Device none
DEV_SETFLAG 133 85 DL = Flag AX = Rtn Code
DEV_WAITFLAG 132 84 DL = Flag AX = Rtn Code

DRV_ACCESS 38 26 DX = drive Vect none
DRV_ALLOCVEC 27 IB none AX = .Alloc
DRV_ALLRESET 13 D none see def
DRV_DPB 31 I F none AX -- .DPB
DRV_FLUSH 48 30 none see def

a DIGITAL RESEARCH •
6-13

6.1 Sym~m CslI Summary C0acarrmt CP/M PrOllmmmer~ Guide

Table 6-3. (continued)

Mnemonic Dec Hex Input Returned Values
Parameters

DRV_FREE 39 27 DX = drive Vect none
DRV_GET 2.5 19 none AL = Cur Drive #
DRV_GETLABEL 101 6.5 DX = Drive # AL = Label Data Byte
DRV_L(XHN','EC 24 18 none AX -- Login Vect.
DRV_RESET 37 25 DX = drive Vect AL ffi Err Code
DRV_ROVEC 29 ID none AX ffi R/O Vect.
DRV_SET 14 E DL = Drive # see def
DRV_SETLABEL I00 64 DX = .FCB AL -- Dir Code
DRV_SETRO 28 1C none see def

F_ATTRIB 30 1E DX -- .FCB see clef
F_CLOSE 16 10 DX = .FCB AL -- Dir Code
F_DELETE 19 13 DX -- .IK~B Aid ---- Dir Code
F_DMAGET 52 34 none AX -- DMA Offset
F_DMADFF 26 1A DX = .DMA none
F_DMASF.£~ 51 33 DX = .DMA Seg none
F_ERRMODE 45 2D DL = Err Mode none
F_J.OCK 42 2A DX = .IK~B AL = Fat Code
F_MAKE 22 16 DX = .FCB AL = Dir Code
F_MULTISEC 44 2(2 DL = # of Records AL ffi Rm Code
F_OPEN 15 F DX = .FCB AL = Dir Code
F_PARSE 152 98 DX = .PFCB see def
F_PASSWD 106 6A DX = .Password none
F_RANDREC 36 24 DX = .FCB R0, R1, R2
F_READ 20 14 DX = .FCB AL -- Err Code
F_READRAND 33 21 DX = .FCB AL -- Err Code
F_RENAME 23 17 DX = .FeB AL = Dir Code
F_SFIRST 17 .I 1 DX = .FeB AL = Dir Code
F_SIZE 35 23 DX = .FCB R0, RI , R2

AL = Dir Code
F_SNEXT 18 12 none AL = Dir Code
F_TIMEDATE 102 66 DX = .XFCB AL = Dir Code
F_TRUNCATE 99 63 DX = .FCB see clef
F_UNLOCK 43 2B DX = .FCB At, -- Err Code
F_USERNUM 32 20 DL = 0FFH (get) AL -- User #

= User # (set) none

I ~ RF...~gCH •
6-14

C e ~ - u r r e n t CP/M P r e g r a m m e r ~ Guide

Table 6-3. (continued)

6.1 System Call Sunmmry

Mnemonic Dec Hex Input Returned Values
Parameters

F _ W R I T E 21 15 D X = .FCB A L = Err Code

F _ W R I T E R A N D 34 22 D X = .FCB A L = Err Code

F _ W R I T E X F C B 103 67 D X = .XFCB A L = Dir Code
F _ W R I T E Z F 40 28 D X = .FCB A L = Err Code

L _ A T T A C H 158 9E none none

L__CATTACH 161 AI none A X ffi Rtn Code

L _ D E T A C H 159 9F none none

L _ G E T 164 A4 none A L -- list #

L._SET 160 A0 D L = List # none

L _ W R I T E 5 5 D L = char none

L _ W R I T E B L K 112 70 D X = .CHCB none

M _ A L L O C 128 80

M _ A L L O C 129 81 D X = .MPB A X = Rtn Code

M _ F R E E 130 82 D X = .MPB none

M C _ A B S A L L O C 56 38 D X = .MCB ~ de f

M C _ A B S M A X 54 36 D X - .MCB see d e f

M C _ A L L F R E E 58 3A none none

M C _ A L L O C 55 37 D X = .M C B see d e f

M C _ F R E E 57 39 D X = .M C B see d e f

M C _ M A X 53 35 D X = .M C B see d e f

P _ A B O R T 157 9D D X = .ABP A X = Rtn Code

P _ C H A I N 47 2F see dcf none

P _ C L I 150 96 D X = .C L B UF none

P _ C R E A T E 144 90 D X = .PD none

P _ D E L A Y 141 8D D X = # t i ck s none

P _ D I S P A T C H 142 8E none none

P _ L O A D 59 3B D X = .FCB A X = BP Addr

P _ P D A D R 156 9C none A X = PD Addr
P _ P R I O R I T Y 145 91 D L = Priority none

P _ R P L 151 97 D X = .CPB A X = result

P _ T E R M 143 8F D L = Te rm.Code A X = Rtn Code

P - T E R M C P M 0 0 none A X = Rm Code

[] DIGITAL RESEARCH •

6-15

6.1 S~mt CaU Summ-y Cen~'rmtCPfM PeosrmmMr~ GgMe

Table 6-3. (continued)

Mnemonic Dee Hex Input Returned Falues
Parameters

Q_CRRAD 138 8A DX ffi .QPB
Q_CWRI'I~ 140 8(2 DX ffi .QPB

Q _ D ~ 136 88 DX = .QPB
Q_MAKE 134 86 DX ffi .QD
Q_OPEN 135 87 DX ffi .QPB
Q_READ 137 89 DX -- .QPB
Q_WRITE 139 8B DX ffi .QPB

S._BDOSVER 12 C none
S...BIOS 50 32 DX ffi .BD
S_.OSVER 163 A3 none
S_SERIAL 107 613 DX ffi .serialnmb
S._.SYSDAT 154 9A none

T_GET 105 69 DX ffi .TOD
T_SECONDS 155 9B DX ffi .TOD
T_SET 104 68 DX ffi . ' r o d

AX ffi Rta Code
AX ffi Rm Code
AX ffi Rtn Code
none
AX ffi Rm Code

none
nol~

AX ffi Version@
AX ffi BIOS r m
AX = Version #
serialnmb set
AX = Sys Data Addr

AL = seconds
TOD filled in
non~

Note: System calls 3, 4, 7, and 8 are not supported by Concurrent CP/M.

• DIGITAL RL~AgCHe

6-16

CP/M Prqlramala"~ Gaid¢ 6.1 S r u a C.d S m ~ w y

Conventions used in Table 6-3:

= Address of
= Number
ACB = Assign Control Block
APB = Abort Parameter Block
Addr = Address
BD = Bios Descriptor
BP = Base Page
Char = ASCII Character
CHCB = Character Control Block
CLBUF = Command Line Buffer
CPB = Call Parameter Block
Con = Console
Cur = Current
Delim = Delimiter
Dir = Directory
DMA = Direct Memory Address
Err = Error
FCB = File Control Block

MCB = Memory Control Block
MPB = Memory Parameter Block
Num = Number
Out = Output
PD = Process Descriptor
PFCB = Parse F~ename Control Bkr.k
QD = Queue Descriptor
QPB = Queue Parameter Block
Rec = Record
Rtn = Return
Sys -- System
Term. = Termination
TOD = Time of Day
Vect = Vector

Uppercase mnemonics refer to Data Structures; see the function definition. A . before a
Data Structure means the byte offset of the Data Structure. A Return Code is either 0 for
success or 0FFFH-I to indicate failure. When the Return Code in AX is 0FFFFH, CX is the
Error Code (see Table 6-5). An error code returned in AL is specific to the BDOS system
call that was made.

l i DIGITAL RESEARCH •

6-17

1.i s m m c d s . n . = ~ c . = m - r ~ c t , ~ ~ m a . . e , c , ,~ .

'13tble 6-4. Data S~ruetures I a d ~

F/sure Tit/e Pase

2-I FCB - File Control Block 2-10
2-2 Directory Label Format 2-18
2-3 XF.CB - Extended F ~ Control Block 2-20
2-4 Directory Record with SFCB 2-24
2-5 SFCB Subfields 2-24
2-6 Disk System Reset 2-41

3-1 CMD File Header Format 3-3
3-2 Group Descriptor Format 3-3
3-3 Concurrent CP/M Base Page Values 3-6

4-1 Initial Program Stack 4-2
4-2 Concurrent CP/M 8080 Memory Model 4-3
4-3 Concurrent CP/M Small Memory Model 4-4
4-4 Concurrent CP/M Compact Memory Model 4-5
4-5 Intel Hexadecimal File Formats 4-10

5-1 808(3 and Small RSP Models 5-2
5-2 RSP Header Format 5-3
5-3 RSP Command Queue Message 5-5
5-4 RSP Data Segment 5-7

6-1 ACB - Assign Control Block 6-21
6-2 Console Buffer Format 6-33
6-3 Drive, R/O, or Login Vector Structure 6-44
6-4 DPB - Disk Parameter Block 6-48
6-5 Disk Free Space Field Format 6-63
6-6 PFCB - Parse Hlename Conlxoi B]ock 6-86
6-7 MCB - Memory Control Block 6-128
6-8 MPB - Memory Parameter Block 6-129
6-9 MFPB - M_FREE Parameter Block 6-132
6-10 APB - Abort Parameter Block 6-139

• D~ITAL RF, S r ~ H "
6-18

Ceacm'rmt CP/M P r e ~ l n a m " s

Table 6.4. (continued)

6.1 8 ~ a n Odl Smnnary

Figure Title Page

6-11 CLI Command Line Buffer 6-142
6-12 PD - Process Descriptor 6-146
6-13 UDA - User Data Area 6-151
6-14 CPB - Call Parameter Block 6-159
6.15 QPB - Queue Parameter Block 6-163
6-16 QD - Queue Descriptor 6-168
6-17 BIX)S Version Number Format 6-174
6.18 BIOS Descriptor Format 6-175
6-19 Operating Systems Version Number Format 6-176
6-20 SERIAL Number Format 6-177
6.21 SYSDAT Table 6-179
6.22 TOD Time-of-Day Structure 6-185

Table 6-5. CX Error Code Reports

Dec Hex Error Report

0 00H No error
I 01H System call not implemented
2 02H Illegal system call number
3 03H Cannot find memory
4 04H Illegal flag number
5 05H Flag overrun
6 06H Flag underrun
7 07H No unused Queue Descriptors
8 08H No free queue buffer
9 09H Cannot find queue
10 0AH Queue in use
12 0CH No free process descriptors
13 0DH No queue access
14 0EH Empty queue
15 0FH Full queue
16 10H CLI queue missing
17 I I H No 8087 in system
18 12H No unused Memory Descriptors
19 13H Illegal console number

m DIGITAL RES~AgCHe

6-19

e.l Sywtm Cm S m ~ r l Cssem.rmt CP/M ~ ~ G ~ e

Table 6-$. (continued)

Dec Hex Error Report

20 14H No Prvceu Descriptor match
21 15H No conmle match
22 16H No CLI process
23 17H Illegal disk number
24 IgH Illegal filenmr~
25 19H Illegal filetype
26 IAH Cheraoter not ready
27 IBH Illegal memory descriptor
28 1CH Bed return from BDOS load
29 1DH Bed return from BDOS read
30 1EH Bad return from BDOS open
31 1FI-I Null command
32 20H Not owner of resource
33 21H No CSEG in load file
34 22H Process Descriptor exists on Thread Root
35 23H Could not te~inate process
36 ~AH Cannot attach to process
37 25H Illegal list device number
38 26H IJlegal pamwc~d
40 28H External termination occurred
41 29H Fixup error upon load
42 2AH Flag set ignored.

6 .2 C o n c u r r e n t C P / M Sys t em Cal ls

This section presents detailed information on the Concurrent CP/M system calls. Read the
entire section through before attempting to use the system calls in a program, as many of
them interact with one another.

• DICCI'AI. ItLVAgr~e
6-20

Concurrent CP/M Progmmmer~ Guide

6.2.1 Console I/O System Calls

C_ASSIGN

C_ASSIGN

Assign Default Console Device
To Another Process

Entry Parameters:
Register CL: 095H (149)

DX: ACB Address - Offset
DS: ACB Address - Segment

Returned Values:
Register AX: 0 if assign "OK"

0 F ~ - ' ~ on Failure
BX: Same as AX
CX: Error Code

0400 ~..~!MATCH~ ~ P D NAMEI

Figure 6-1. ACB - Assign Control Block

[] DIGITAL RESEARCH •
6-21

C..ASSIGN Concurrent CP/M Prolrtmmer'z Guide

~ b l e 6-6. ACB Fleki Deflnitloas

Field Definitionx

CNS

MATCH

PD

NAME

Console to assign

Boolean; if OFH-I, the process being assigned the console must have
the CNS as its default console for a successful Assign. If OH, no check
is made.

Process ID of the process being assigned the console. If this field is
zero, a search is made of the Thread List for a process whose name is
NAME. This field must be either zero or a valid Process ID. If this
value is not a valid PD, an error occurs.

8-byte process name to search for. An error occurs if a process by this
name does not exist.

The C_.ASSIGN system call directly assigns the specified console to a specified process.
This system call overrides the normal mechanism of the C...ATTACH and C...DETACH
system calls. The system call returns an error code if a process ocher than the calling process
owns the console. The system call ignores other processes waiting to attach to the specified
console, and they continue to wait until the current owner either calls the C_DETACH system
call, or terminates.

Refer to Table 6-5 for a list of error codes returned in CX.

• IYf,='I'AL I~ . . .~H •
6-22

CP/M Progntmm~'s Guide C_ATTACH

C_ATTACH

Attach Default Console
To Calling Process

Entry Parameters:
Register CL: 092H (146)

The C_ATTACH system call attaches the default console to the calling process. If the
console is already owned by the calling process or if it is not owned by another process, the
C_ATTACH system call immediately returns with ownership established and verified. If
another process owns the console, the calling process waits until the console becomes available.

Refer to Table 6-5 for a list of error codes remrnod in CX.

in DIGITAL RESEAR.CH •

6-23

C._CA'FrACH Cemem'rmt CP/M ~ - ~ - 1 "m

C_CAI'rACH

Conditionally Attach Default
Console To Calling Process

Entry Parameters:
Register CL: 0A2H (162)

Returned Values:
Register AX: 0 if attach 'OK'

OFFFFH on failure
BX: Same u AX
CX: Error Code

The C_CATTACH system call attaches the default console of the calling process only if
the console is currently unattached.

If the console is currently attached to another process, the system call returns n value of
0FFH indicating that the console could not be attached. The system call returns a value of 0
to indicate that either the console i t already attached to the pt~x:eu or that it was unattached
and a successful attach operation was made.

Refer to Table 6-5 for a list of error codes returned in CX.

I I DIGITAl. ~ e
6-24

CoKm'rmt CP/M ~ ' ~ C_mide C__DELIMIT

C_DELIMIT

Set Or Return Output Delimiter

Entry Parameters:
Register CL: 06EH (110)

DX: 0FFFFH (get) or
DL: Output Delimiter (set)

Returned Values:
Register AL:

BL:

Output Delimiter or
(no value if set)
Same as AL

A program can set or interrogate the current Output Delimiter by calling C_DELIMIT. If
register DX = 0F'F'F'~; then the current Output Delimiter is returned in register AL. Other-
wise, C_DELIMIT sets the Output Delimiter to the value in register DL.

C._DELIMIT sets the string delimiter for C_WRITFSI'R. When a new process is created,
the default delimiter value is set to a dollar sign, $. The default delimiter is not inherited
from the parent process.

I l l DIGITAL RESEARCH •

6-25

C...DI~ACH C e m r r ~ CP/M ~ ~

C_DETACH

Detach Default Console
From Calling Process

Entry Parameters:
Register CL: 093H (147)

Returned Values:
Registe~ AX: 0 ff detach 'OK'

0FFFFH on failure
BX: Same as AX
CX: Faror Code

The C_DETACH system call detaches the defeult console from the calling process. If the
defeLdt console is not attached to the ceiling process, no action is taken. If other processes
are waiting to attach to the conmle, the process with the highest priority attaches the console.
If there is more than one process with the same priority waiting for the console, it is given
to the queue writing processes on a first-corue, first-serve basis.

Refer to Table 6-5 for a list of error codes returned in CX.

• DiC21"AL Rf~AItCHe
6-26

C_GET

C_GET

Return The Calling Proccss's
Default Console

Entry Parameters:
Register CL: 099H (153)

Returned Values:
Register AL: Console number

BL: Same as AL

The C_GET system call returns the default console number of the calling process.

m D~'I"AL RESEARCH •

6-27

C - M O D E Concurrent CP/M Prolrammer's Guide

C-MODE

Set Or Return Console mode

Entry Psremetm:
R e # s ~ CL:

DX:

Returned Value, s:
Register AX:

BX:

06DH (]09)
0FFFFH (got) or
Comole Mode (set)

Console Mode or
(no vIIuo)
S ~ s A X

A process can ~ t or interrogate the Console Mode by calling C._MODE. If register
DX ffi 0FFFFH, thvn the currant Conml¢ Mode is returned in register AX. Otherwise,
C_MODE sets th= Console Mode to the value contained in register DX.

• ~TAL RF...~:.M, CH •
6-28

Concurrent CP/M Programmer's Guide C_.MODE

The Console Mode is a 16-bit system parameter that determines the action of certain
Console I/O functions. Note that the Console Mode bits ere numbered from fight to left. The
Console Mode is set to zero when a new process created; it is not inherited from its parent.
The definition of the Console Mode is

bit 0 = 1 - C'IR~C only status for C_STAT.

= 0 - Normal status for C_SIAT.

bit l = I - Disable stop soroll, CTRL-S, start scroll, CTRL-Q, support.

= 0 - Enable stop scroll, start scroll support.

bit 2 = 1 -

= 0 -

Raw console output mode. Disables tab expansion for C._WRITE,
C_WRITESTR, and C_WRITEBLK. Also disables printer echo,
C I R ~ P , support.
Normal console output mode.

bit 3 = 1 - Disable CTRL-C program termination
= 0 - Enable CTRL-C program termination

bit 7 = 1 - Disable ~ O console output byte bucket
= 0 - Enable CTRL-O console output byte bucket

[] DIGITAL RESEARCH •
6-29

C_RAWIO Concurrent CP/M Pro|rammer's Guide

C_.RAWIO

Perform Direct Console I/O
With Defauk Console

Entry Pammeten:
Register CL:

DL:

Returned Values:
Register AL:

BL:

06H (6)
0FH-I (Input/

Stetus) or
0FEH (Status) or
0FDH (Input) or
Che~ te r (Output)

(Input/Status)
= OH (No Character)
= Character

(S t e ~)
= OH - N o
= 0FP'H - Ready

(Inpu0
= Character

(Output)
No rel~trn value

Same as AL

The C_RAWIO system call allows the calling process to do raw console I/O to its default
console. Concurrent CP/M verifies that the calling process owns its default console before
allowing any I/O.

A process calls the C..RAWIO system call by passing one of three different values shown
in Table 6-7.

II DIGITAL ~ e
6-30

Concurrent CP/M Programmer's Guide

Table 6-7. C_RAWIO Calltag Values

C...RAWIO

Value Description

OF'FH

0FEH

OFDH

ASCII
character

Console input status command (if no charac~ is ready, a 00H is r e ~ ,
else the character is returned).

Console status command (on return, register AL contains 00H if no
character is ready; otherwise it contains OFFH).

Console input command (if no character is ready, the calling process
waits until one is typed). Input characters are not echoed to the screen.

If the parameter is less than 0FDH, C_RAWIO system call assumes
register DL contains a valid ASCII character and sends it to the console.

The C_RAWIO system call places the calling process in Raw mode. The CTRL-C, CTRL-P,
CTRL-S, and CTRL-O characters are not acted on by the PIN (Physical Input Process) but
are passed on to the calling process when C__RAWIO is used.

Note: If the virtual console is in CRTL-S mode, and the process that owns the virtual
console then performs a C_RAWIO call, the CTRL-S state is reset. Characters read with
C_RAWIO are not echoed on the screen, thus allowing passwords and so forth to be
entered in a secure manner.

me DIGITAL RF-SF.A~CH •
6-31

C..RKAD

C_READ

Read A Character From
The Default Console

Entry Parameten:
Register CL: 01H (1)

Remraod Values:
Register AL: Character

BL: Same as Aid

The C_READ system caU reads a character from the ddmlt c(msole of the calling process.
Before attempting the read, Concurrent CP/M internally verifies the ownership of the cansole.
If the caUing process does not own the console, it relinquishes the CPU resource until the
calling process can attach to the console. 1~ypic, elly, a process that is created through the
P_CLI system call owns its defenlt console when it begins ~ecution.

C_READ echoes characten read from the console. This includes the carriage relnrn, line
feed, md ~ c h m c t m . It e~p, md, tab c h a r s c ~ (CTRIA) in colum~ of e i~ t
characters.

C_READ igncces the termination character (CTRL-C) if the calling process cannot ter-
minate (refer to the P_TERM system ca]]). C_READ does not return until a character is
typed on the console. The system suspends the calling process until a character is ready.

I I DKTdTAL ~ m
&32

C o n c u r r e n t CP/M P r o g r a m m e r ' s G u i d e C_READSTR

C_READSTR

Read An Edited Line From The
Def~,lt Console

Entry Parameters:
Register CL:

DX:
DS:

OAH (10)
BUFFER Address - Offset
BUFFER Address - Segment

The C_READSTR system call reads characters from the calling process's default
console and places them into the specified buffer. The format of the buffer is shown in
Figure 6-2. C__READSTR performs line-editing system calls on the line as it is read from
the console; it completes a line and returns upon receiving a terminator character
(carriage return or line feed) from the console or when the maximum number of charac-
ters is reached. As in the C_READ system call, C_.READSTR echoes all graphic
characters read from the console. Concurrent CP/M verifies that the calling process owns
its default console before allowing I /O to begin.

0 1 MAX + 2
I ~ ' ~ + ~ + ~ + ~ - - - -

I t I ' 1 " ~ ' 1 . - ' ~ ' ' ~ --

Figure 6-2. Console Buffer Format

In DIGITAL RESEARCH •

6-33

C_.READSTR Concurrent CP/M Pmlrammm's Guide

3~,ble 64. Console Buffer Field Deflu/tlon

Field Definition

MAX

NCHAR

CHARACTERS

Maximum rmmber of characters ltutt can be read into the buffer.
This value must be initialized before calling the C..READSTR
system call.

Actual number of charactc~ read into the buffer as filled in by
the ~ S T R system call.

Actual characters read from the console as filled in by the
C,_READSTR system call.

C,_READSTR recognizes a nttmber of special characters used in editing the input line, u
well as a set of special characters that actually control the calling process.

Table 6-9. C._READSTR Line-editing Characters

Character Function

RUB/DEL

Removes the last character from the line and cchoes it.

(CTRL-~

Echoes new line, a carriage return (CTRL-M), and a line feed
(CTR~J), to the screen but does not affect the line buffer.

BACKSPACE (CTRL-H)

Removes the last character from the line and backspaces over that
character.

TAB (CTRL-I)

Echoes enough spaces to place the next character position at a tab
8top. Tab stops are fixed at every eighth character of the physical
line.

6-34

Concurrent CP/M Programmer's Guide

Table 6-9. (continued)

C_READSTR

Character Function

LINE FEED (CTRL-J)

Terminates the input line. The C_READSTR system call does not
echo a terminating character, nor does it place the character in the
line buffer.

RETURN (CTRL-M)

Terminates the input line.

REDRAW (CTRL-R)

Retypes the current line after echoing a new line.

(CTRL-U)

Removes all of the current line from the line buffer, echoes a new
line, and starts all over again.

(CTRL-X)

Removes all of the current line from the line buffer and echoes
enough backspaces to return to the beginning of the line.

I i DIGWAL RESEARCH •

6-35

C_SET

Set The Calling Process's
Default Consol©

Entry Parar~ten:
Register CL:

DL:

R=turned Values:
Register AX:

094H (148)
Console Number

0 ff successful
OFFFFH on failure

BX: Same as AX
CX: Error Code

TI~ C_SET system call cl~nge,8 the calling process's dcfmlt console to the value specified.
If the console number Sl~cificd is not one supported by this particular implementation of
Concunent CP/M, the system call returns an error code, and does not change the default
console.

Refer to Table 6-5 for a list of error codes retume.d in CX.

m DIOTAL ~ .~A ILCH •

6-36

CeEtwrmt CP/M l ' ros rus~r~ , Guide C...STAT

C...STAT

Obtain The Status Of The
Default Console

Entry Parameters:
Register CL: 0BH (11)

Returned Values:
Register AL: O1H character ready

00H not ready
BL: Same as AL

The C._STAT system call checks to see if a character has been typed at the default console.
If the calling process is not attached to its default console, the C_STAT system call causes
a dispatch to occur and return 00H (the Not Ready condition).

This system call sets the console to the Nonraw mode, allowing recognition of special
control characters such as the terminate character, CTRL-C. Use C_RAWIO to obtain console
status in Raw mode.

Note: If bit O is set in the Console Mode word, using the C_MODE function call,
C_STAT only returns AL = 01H when a CTRL-C is typed on the default console.

III DIGITAL RESEARCH s

6-37

C_WR/1Y ~ t CP/M t ~ r m m m " l G~le

C_WRITE

Write A Character To The
Default Console

Entry Parameters:
Register CL: 02H (2)

DL: ASCII character

The C_WRITE system call writes the specified character to the calling process's default
console. As in the C._READ system call, Concurrent CP/M verifies that the calling process
owns its default console before performing the operation. On output, C_WR1TE expands
tabs in columns of eight characters.

m DIGrrAL ~ H e
6-38

CP/M ~ ' . Guide C_~RrrEBLK

C_WRITEBLK

Send Specified Suing To Default Console:

Entry Parameters:
Register CL: 06FH (111)

DX: CHCB Address

C_WRITEBLK sends the character string located by the Character Control Block,
CHCB, addressed in register pair DX to the console. If the Console Mode is in the Default
state C_WRITEBLK expands tab characters, CTRL-I, in columns of eight characters.

The CHCB format is

bytes 0 - 1 : Offset of character string
bytes 2 - 3 : Segment of character string
bytes 4 - 5 : Length of character suing to print

[] DIGITAL ~ R C H •

6-39

C _ ~ Cmem'rem CP/M Prtvmamm~ C m ~

C _ ~

Print An ASCII String
To The Default Console

Entry Parmeten:
Reg/mr CL: 09H (9)

DX: STRING Address - Offset
DS: STRING Address - Segment

The C _ ~ system call prints an ASCII string starting at the indicated suing
addrms and continuing until it reaches a dollar sign ($) c, h a m c ~ (024H). $ is the defmlt
string delimiter, and can be changed by the C_.DEIJ.MIT system call, C _ . ~ writes
this string to the calling proc, ms's default console,

Concurrent CP/M verifies that the calling process owns the console befor~ writing the
suing. C . . ~ ~t~ 8m console to a Nom'aw stst~ aud ~pmnds tabs in columns of
eight characters, as does the C._.WRrI~ system call.

Um the C . . . ~ systom call whenever pmsible, ~ thau the 8ingl~-chantc~
lystem calls. The CPU ovetne, ad involv~l in bsmtling the first r.b.m-~ter is the same as that
for a single-character system call, but subsequent characters n~quire as little as one-fifth the
CPU overhead,

• DIGffAL RL~.ARO4o
6-4O

~ t CT/M Prei rmam- '~ C, mide

6.2.2 Device System Calls

D]gV....POLL

DEV_POLL

Poll A Device

Entry Parameters:
Register CL:

DL:

Returned Values:
Register AX:

083H (131)
Device Number

0 on success

0FFF'FH on failure
BX: Same as AX
CX: Error Code

The DEV_POLL system call is used by the XIOS to poll non interrupt-driven devices. It
should be used whenever the XIOS is waiting for a non interrupt event. The calling process
relinquishes the CPU and allows Concurrent CP/M to poll the device at every dis~tch. The
XIOS contains routines for each polling device r~umber. These routines are called through
the DEV_POLL system call, and they return whether the device is ready or not. When the
device is ready, DEV_POLL restores the calling process to the RUN state and returns. Upon
return, the calling process knows the device is ready.

Refer to Table 6-5 for a list of error codes returned in CX.

l i DIGIT,M. RIL~F.~RCH •

6-41

DKV._8~'FI..AG Cem:m'rmt CP/M Prevmem"s Galde

DEV_S~I'FLAG

Set A System Flag

Entry Parameten:
Register CL:

DL:

Returned Values:
Register AX:

085H (133)
Flag Number

0 011 8UCCas8

O F l ~ on failure
BX: Same as AX
CX: Error Code

The DEV_SETFLAG system cell is used by interrupt routines to notify the system that a
logical interrupt has occurred.. A process waiting for Otis flag is placed back into the RUN
state. If there are no processes waiting, then the next Ixoceu to wait for this flag returns
successfully without relinquishing the CPU. The system call detects an error if the flag has
already been set, and no process has done a DEV_WAFFFLAG call to reset it.

Note. If a process waiting for a specific flag to be set is aborted, the ne~t DEV_SETFLAG
call is ignored and an error code is returned in CX. In this case, the interrupt handler should
continue to set call DEV_SEFFL,AG until it succeuful]y sets the flag IP, and AX = 0 on
return.

Refer to Table 6-5 for a list of error codes returned in CX.

6-42

Concurrent CP/M Programmer's Guide DEV_WAITFLAG

DEV_WArITLAG

Walt For A System Flag

Entry Parameters:
Register CL:

DL:

Returned Values:
Register AX:

084H (132)
Flag Number

0 on SUCCESS

0FFFFH on failure
BX: Same as AX
CX: Error Code

The DEV_WAITFLAG system call is used by a process to wait for an interrupt. The
process relinquishes the CPU until an interrupt routine calls the D E V _ S ~ A G system
call, which places the waiting process in the RUN state. When DEV_WA1TFLAG returns
to the calling process, the interrupt has occurred, or an error has occurred. An error occurs
when a process is already waiting for the flag. If the flag was set before DEV_WAITFLAG
was called, the routine returns successfully without relinquishing the CPU. This routine is
usually used by the XIOS. The mapping between types of interrupts and flag numbers is
maintained in the XIOS, although Concurrent CP/M reserves flags 0, 1, 2, and 3 for system
USC.

Refer to Table 6-5 for a list of error codes returned in CX.

El DIC4TAL ~ H •

6-43

DEV_WAITFLAG Concurrent CP/M Programmer's Guide

6.2.3 ~ Drive ~ CMim

The Dr/ve Vector, Read-Only Vector, and Loi~in Vectors are referenced or return~ by
several Concurrent CP/M Disk Drive system calls. The Drive, RO, or Login Vectors are
16-bit values specifying one or more drives, where the least significant bit corresponds to
drive A, and the high-order bit corresponds to the sixteenth drive, Labeled P. The format
of the Drive, RO, and Loon Yectors is illustrated below:

DRV I P O N M L K U ~ H G F E D C . A I
= I I ~ ÷ ~ ÷ ~ . I - . - . - - ~ + ~ + ~ + ~ + ~ + ~ + ~ + ~ + ~ + . - - - - "

BIT 15 14 13 12 11 10 9 8 7 8 § 4 3 2 1 0

Flp re 6-3. Drive, RO, or Lollin Vector Structure

1 DIGiTN. ~ C H e

Ceavlrreat CP/M PreFamme¢'l Guide D R V . . A C ~

DRV_ACCESS

Access Specified Disk Drives

Entry Parameters:
Register CL: 026H (38)

DX: Drive Vector

Returned Values:
Register AL: Return Code

AH: Extended Error
BX: Same as AX

The DRV_ACCESS system call inserts a special open file item into the system Lock List
for each specified drive. While the item exists in the Lock List, the drive cannot be reset by
another process. The calling process passes the drive vector in register DX. The format of
the drive vector is discussed at the beginning of Section 6.2.3.

The DRV_ACCESS system call inserts no items if insufficient free space exists in the
Lock List to support all the new items or if the number of items to be inserted puts the calling
process over the Lock List open file maximum. If the BDOS Error mode is in the default
mode (refer to the F_ERRMODE system call), the file system displays a message at the
console identifying the error and terminates the calling process. Otherwise, DRV_ACCESS
returns to the calling process with register AL set to 0FFH and register AH set to one of the
following hexadecimal values.

OAH - Open File Limit Exceeded
0BH - No Room in system Lock List

On successful calls, DRV_ACCESS returns with register AL set to 00H.

B D~rrAL RESEARCH •

6-45

C a m r r ~ C~/M ~ . ~ ' m m m . ~ O a ~

DRV_ALLOCVI~

Get Allocation Vector Address
For The Calling Process's Dcfanlt Disk

Entry Pammeten:
Register CL: O1BH (27)

Returned Values:
Register AX:

BX:
ES:

ALLOC Address - Offset
Same as AX
ALLOC Address - Segment

Concurrent CP/M maintains an allocation vector in memory for each active disk drive.
Son~ programs use the information provided by file allocation vector to ~termine the amount
of free dam space on a drive. Note, however, that the allocation information can be inaccurate
if the drive has been nmrk~ Read-Only.

The DRV__ALLOCVEC sysmm call returns the address of the allocation vector for the
mmvntly u1~ ,~ l drive. If a physical re'for is encountered when the BDOS Error mode is in
one of the return modes (refer to the F_ERRMODE sysmm call), DRV_ALLOCVEC returns
the value 0FFFFH in AX.

You can use the DRV_SPACE system call to directly return the number of free 128-byte
records on a drive. The Concurrent CP/M utility, SHOW, finds a drive's free space by using
the DRV_SPACE system call.

• DIC~TAL RF..W.~R=.CHe
6-46

C~acarreat CP/M ProMraeana"a Gakle D R V ~

DRV_ALLRESET

Restore All Drives To Reset State

Entry Parameters:
Register CL: 0DH (13)

Returned Values:
Register AL: 0 if successful

0FFH on error
BL: Same as AL

The DRV_ALLRESET system call restores the file system to a reset state where all the
disk drives are set to Read-Write (refer to the DRV_SETRO and DRV_ROVEC system calls),
the default disk is set to drive A, and the default DMA address is reset to offset 080H relative
to the current DMA segment address. This system call can be used, for example, by
an application program that requires disk changes during operation. You can also use the
DRV_RESET system call for this purpose.

This system call is conditional under Concurrent CP/M. If another process has a file open
on any of the drives to be reset, and the drive is also Read-Only or removable, the
DRV_ALLRESET system call is denied, and none of the specified drives are reset (see
Section 2.17).

Upon return, if the reset operation is successful, DRV_ALLRESET sets register AL to
00H. Otherwise, it sets register AL to 0FFI-I. If the BDOS is not in one of the return error
modes (refer to the F_ERRMODE system call), the file system displays an error message
st the console identifying the process owning the first open file that caused the
DRV_ALLRESET to be denied.

N DIGITAL RL~.ARCH •
6-47

DRV..DPB Cohere'rent CP/M Pro|rmmmer's Guide

DRV_DPB

Return Address Of Disk Parameter Block
For Calling Process's Default Disk

Entry Parameten:
Register CL: 01FH (31)

Returned Values:
Register AX: DPB Address - Offset

0FFFFH on Physical Error
BX: Same m AX
ES: DPB Address - Segment

DRV_DPB returns the address of the XIOS-mfident Disk Parameter Block (DPB) for the
currently selected drive, The calling process can use this address to e ~ t c t the disk parm~ter
valtles.

If a physical error is encountered when the BDOS Error mode is one of the Return Error
modes (refer to the F_ERR.MODE symm call), DRV_DPB returns the value 0FFFFH.

The Disk Parameter Block (DPB) contains the parameters that define the actual disk.

00H

05H

09H

0DH

DSM DRM

CKS

°-, IZ
Fltpn-e 6.4. DPB. Disk/sm'ameter Block

• or.~r~. RF.Srt.AgCH•
6-48

Concurrent CP/M Programmer's Guide

Table 6-10. DPB Field l)dinltlerm

DRV--DPB

Field Definition

SPT Sectors Per 1Yack

The number of Sectors Per Track equals the total number of physical
sectors per track. Physical sector size is defined by PSH and PRM
described below.

BSH Allocation Block Shift Factor

BLM Allocation Block Mask

The data allocation block size determines "the values of the data
allocation Block Shift Factor and the allocation Block Mask. The
Block Shift factor equals the logarithm base two of the block logical
size in 128-byte records, or BSH = LOG2(BLS). The Block Mask
equals the number of 128-byte records in an allocation block minus
1, or BLM = (2**BSH)- 1. Refer to the Concurrent CP/M System
Guide for valid block sizes and BSH and BLM values.

EXM Extent Mask

The data block allocation size and the number of disk allocation
blocks determine the value of the Extent Mask. The Extent Mask
determines the maximum number of 16K extents that can be con-
mined in a directory entry. It is equal to the maximum number of
16K extents per directory entry minus one. Refer to the Concurrent
CP/M System Guide for EXM values.

DSM Disk Storage Maximum

The Disk Storage Maximum defines the total storage capacity of the
drive. This is equal to the total number of allocation blocks minus 1
for the drive. DSM must be less than or equal to 7FFFH. If the disk
uses 1024 byte blocks (BSH--3, BLM = 7), DSM must be less than
or equal to 00FFH.

[] DIGITAL RESEARCH •

6-49

DRV..DPB Concurrent CP/M Prolp~mmer's Guide

Txble 6-10. (continued)

Field Definition

DRM Directory Maximum

The Directory Maxinmm defines the total number of directory entries
for the drive. This is equal to the total nttmber of directory entries,
minus I, that can be kept on this drive. The directory requires 32
bytes of disk per entry. The maximum directory allocation is 16
blocks, where the block size is determined by BSH and BLM.

AL0 Directory Allocation Vector O
ALl Directory Allocation Vector 1

The Directory Allocation Vectors determine the reserved directory
allocation blocks.

CKS Checksum Vector Size

The Checksum Vector Size determines the required length of the
directory checksum vector end the number of directory entries that
the BDOS will checksum. The ~ Vector Size is equal m the
rmmber of directory ent~es divided by 4, or CKS = (DRM + 1)]4.
If the media is fixed, CKS might be zero, no storage needs to be
reserved, end the BDOS does not calculate directory checksums for
the drive.

The high-bit of CKS (chat is, > ffi 0800OH) is set if the referenced
drive is considered to be a nonremovable media drive. Note that this
modifies the rules for resetting the drive. For more information, refer
to Section 2.15.

II I~..,fI'AL ~ H e
6-50

Concurrent CP/M Profp-ammer's Guide DRV..DPB

Table 6-10. (continued)

Field Definition

OFF Tcack Offset

The Track Offset is the number of reserved tracks at the beginning
of the disk. OFF is equal to the track number on which the directory
starts.

PSH Physical Record Shift Factor

The Physical Record Shift Factor ranges from 0 to 5, corresponding
to physical record sizes of 128, 256, 512, IK, 2K, or 4K bytes. It
is equal to the logarithm base two of the physical record size divided
by 128, or LOG2(sector_size/128).

PRM Physical Record Mask

The Physical Record Mask ranges from 0 to 31, corresponding to
physical record sizes of 128, 256, 512, IK, 2K, or 4K bytes. It
is equal to the physical sector size divided by 128 minus 1, or
(sector_size/128) - 1.

For more information on DPB parameters, refer to the Concurrent
CPIM System Guide, Section 5.4.

[] DIGITAL RE,,,~AP~H*
6-51

D R V ~ S H

DRV_FLUSH

Flush Write-Deferred Buffers

Entry ~ :
Register CL: 030H (48)

DL: Purge Flag

Returned Values:
Register AL: Faror Flag

AH: Permanent Error
BX: Same as AX

The DRV_FLUSH system call forces the write of any write-pending x~.orde contained in
internal blocking/deblocking buffers. If register DL is set to 0FFIt, DRV...HAJSH also purges
all active data buffers after perfcrmin8 the writes. Progrmm that provide write with read
verify support needed to purge internal buffere to ensure that verifying reads sctually Jw, cess
the disk instead of returning data resident in internal data ~t'fers. The Concurrent CP/M PIP
utility is an example of such a program.

Upon return, the system call sets register AL to 00H if the flush operation is successful.
If a physical error is encountered, DRV_FLUSH performs different actions depending on
the BDOS Error mode (refer to the F_F.RRMODE system call). If the BDOS Error mode is
in the default mode, the system displays a meuase at the conmle identifying the error and
terminates the calling protein. Otherwise, it returns to the calling process with register AL
set to 0FFH and reghner AH set to one of the following physical error codes:

01H - Disk I/O Err~ : permanent error
02H - Read/Only Disk

m Dk-.~ ~r~u~utcm
6-52

~ t cP/M pretrama~'s Guide DRV_-FREg

DRV_FREE

Free Specified Disk Drives

Entry Parameters:
Register CL: 027H (39)

DX: Drive Vector

The DRV_FREE system call purges the system Lock List of all file and locked record
items that belong to the calling process on the specified drives. DRV_FREE passes the drive
vector in register DX.

DRV_FREE does not close files associated with purged open file Lock List items. In
addition, if a process references a purged file with a BDOS system call requiring an open
FCB, the system call returns a checksum error. A file that has been written to should be
closed before making a DRV_FREE call to the file's drive, or data can be lost. Refer to
Section 2.17 for more information on this system call.

J DIGITAL RI~r~RCH •
6-53

DRV_GET Ctmcarrmt (~//g[~ ~ Gakle

DRY_GET

Rvturn Tbe Calling Process's Default Drive

Entry Pa.mmeters:
Register CL: 019H (25)

Rvturncd Values:
Register AL: Drive Number

BL: Same as AL

The DRV_GET system call returns the calling process's currently selected default disk
number. The disk numbers range from 0 through 15, corresponding to drives A through P.

II 1~7.dTAL ~.MARf.H •
6-54

Com~m'm~ CPa4 e ro~ .mm~' s DRV_GEI'LABEL

DRV_GETLABEL

Return Directory Label Data Byte
For The Specified Drive

Entry Parameters:
Register CL: 065H (I01)

DL: Drive

Returned Values:
Register AL: Directory Label Data Byte

AH: Physical Error
BX: Same as AX

The DRV_GETLABEL system call returns the directory label data byte for the specified
drive. The calling process passes the drive number in register DL with 0 for drive A, 1 for
drive B, continuing through 15 for drive P in a full 16-drive system. The format of the
directory label data byte is shown below:

bit 7 - Require passwords for password protected files
6 - Perform access time and date stamping
5 - Perform update time and date stamping
4 - Perform create time and date stamping
0 - Directory label e~ists on drive

(Bit 0 is the least significant bit)

DRV_GETLABEL returns the directory label data byte to the calling process in register
AL. Register AL equal to 00H indicates that no directory label exists on the specified drive.
If the system cell encounters a physical error when the BDOS Error mode is in one of the
remm error modes (refer to the F_ERR_MODE system call), it returns with register AL set
to 0FFH and register AH set to one of the following:

O1H - Disk I/O Error : permanent error
04H - Invalid Drive : drive select error

I I DIGITAl. RESEARCH •

6-55

DltV_IL~INVEC C.amm'rtm CP/M ProMmmnm"s Gdde

DRV_LOGINVEC

Return Bit Map Of Logged-in Disk Drives

Entry Paramet~'s:
Register CL: 018H (24)

Returned Va1~:
Register AX: Login Vector

BX: Same as AX

The DRV_LOOINVEC system call returns the Login Vector in register AX. The Lo$in
Vector is a 16-bit valm with the least significant bit corresponding to drive A, and the high-
order bit cotwcsponding to the 16th drive, drive P. A 0 bit indicates that the drive is not
logged-in, while a 1 bit indicates tim drive is logged in. Refer to the bcgirming of Section
6.2.3 for a complete description of the Login Vector.

• 13gCd'I'AL ~ o
6-56

Omm-rmt CP/~r ~osramaer~, DRV..RESET

DRV_RF~ET

Reset Specified Disk Drives

Entry Parameters:
Register CL: 02.5H (37)

DX: Drive Vector

Returned Values:
Register AL: Return Code

BL: Same as AL

The DRV_RESET system call is used to programmatic.ally restore specified removable
media drives to the reset state (a reset drive is not logged in and is in Read-Write stares).
The passed ~ t e r in register DX is a 16-bit vector of drives to be reset, where the least
significant bit corresponds to drive A, and the high-order bit corresponds to the sixteenth
drive, labeled P. Bit values of I indicate that the specified drive is to be reset. Refer to Section
2.17 for more information regarding the use of this system call.

This system call is conditional under Concurrent CP/M. If another process has a file open
on any of the drives to be reset, the DRV-RESET system call is denied, and none of the
drives arc reset.

Upon return, if the reset operation is successful, DRV_RESET sets register AL to 00H.
Otherwise, it sets register AH to 0FFH. If the BDOS Error mode is not in Return Error mode
(refer to the F_ERRMODE system call), the system displays an error message at the console,
identifying the process owning the first open file that caused the DRV_RESET request to be
denied.

m DIC.tI'AL ItSSru~.CH*
6-57

DitV_itOVi~ C c m m ' r ~ C3P/M Pt.~.ammr~ Cmlde

DRY_ROVEC

Return Bit Map Of Read-Only Disks

Entry ~ :
Register CL: 01DH (29)

Returned Values:
Register AX: RO Vector

BX: Same as AX

The DRV._ROVEC system call returns a bit vector indicating which drives have the tern-
porery Read-Only bit set. The Resd-Only bit can only be met by a DRV_SETRO call

Note: When the file mystem detects a change in the media on a drive, it automatically loss
in liz drive and sets it to Read-Write.

The format of the RO Vector is analogous to that of the Login Vector. The least significant
bit corresponds to drive A; the most significant bit corresponds to drive P. For a complete
d e g r i p t ~ of the RE) Vector, refe~ to the beginning of ~ auctm.

6-58

Cemcurt~ CP/M Prqrmmnm"s Guide DRY_SET

DRV_SET

Set Calling Process's Def~,,lt Disk

Entry Parameters:
Register CL: 0EH (14)

DL: Selected disk

Returned Values:
Register AL: Error Flag

AH: Physical Error
BX: Same as AX

The DRV_SET system call designates the specified disk drive as the default disk for
subseqnem BDOS file operations. Set the DL register to 0 for drive A, I for drive B,
continuing through 15 for drive P. DRV_SET also logs in the designated drive if it is currently
in the reset state. Logging in a drive activates the chive's directory for file operations.

FCBs that specify drive code zero (DR = 00H) automatically reference the currently
selected default drive. P-'CBs with drive code values between 1 and 16, however, ignore the
selected default drive and directly reference drives A through P.

Upon return, register AL equal m 00H indicates the select operation was successful. If a
physical error is encountered, DRV_SET performs different actions depending on the BDOS
Error mode (refer to the F_ERRMODE system call).

If the BDOS Error mode is in the default mode, the system displays a message at the
console, identifying the error and terminates the calling process. Otherwise, DRV_SET
returns to the calling process with register AL set to 0FFH and register AH set to one of the
following physical error codes:

01H - Disk I/O Error : permanent error
04H - Invalid Drive : drive select error

B DIGrrAL i~.,Sr:.~q~-Io
6-59

DRV....qETLABEL ConcutTeut CP/M Projrtmmer'J Guide

DRV...SETLABEL

C r c ~ Or Ulx l~ A Directory

Fattry ~ :
P,.~ter CL: 06¢H (1oo)

DX: ~ Addrms - Offset
DS: ~ Addr=M - ~gment

Remrmd V~uea:
l~gist=r AL: D i ~ t ~ y

AH: Physical or ~ t m d ~ l Error
BX: Same am AX

The DRV_SETLABEL systL~ call creates a din~m7 label or updates d~ existing direc-
tory lab~ for tl~ specified drive, The calling procG=8 pam~ the address of an FCB containing
the name, type, and ~ n t fields to be usipDd to the dL,'~ctory label. The name and type
fields of the re, f ~ FCB am not used to l o c ~ the ~ label in the din~ory; they

simply copied into the updat~ or cmat~ ~ label. Byte 12 of the ~ contains
tim user'e specittcatim of tim dimctmy biml dam bye,

mDiar~ KEr~A~:H-
6)-6O

Concurrent CP/M Programmer's Guide DRV_SETLABEL

The definition of the directory label data byte is

bit 7 - Require passwords for password protected f i lu
6 - IL-rform access time and date stamping
5 - Patform update time and date stamping
4 - Per fo rm create time sad date stamping
0 - Assign a new password to the directory label

(Bit 0 is the least significant bit)

If the current directory label is password protected, the correct password must be placed
in the first 8 bytes of the current DMA or have been previously established as the default
password (refer to the F_PASSWD system call). If bit 0 of the directory label data byte is
set to 1, it indicates that a new password for the directory label has been p l s z ~ in the second
eight bytes of the current DMA.

The DRV_SETLABEL system call also requires that tl~ rde t~nc~ directory contains
SFCBs in order to activate date and time stamping on the drive. If an attempt is made to
activate date and time stamping when no SFCBs exist, the DRV_SETLABEL system call
returns an error code and performs no ~tion. The Concurrent CP/M INITDIR utility ini-
tielizes a directory for date and time stamping by placing an Sb'~B in every fourth entry of
the directory.

Upon return, the DRV_SETLABEL system call returns a directory code in register AL
with the value 00H ff the directory label create or update was successful, or 0FFH if no space
existed in the referenced directory to create a directory label. It also returns 0FFH if date
and time stamping was requested and the referenced directory did not contain SFCBs. Register
AH is set to 00H in all of these cases.

Ifa physical or extended error is encountered, the DRV_SETLABEL system cell performs
different actions depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the default mode, the file system displays a message at
the console identifying the error and terminates the calling process. Otherwise, the
DRV_SETLABEL system call returns to the calling process with register AL set to 0FFH
and register AH set to one of the following physical or extended error codes:

01H - Disk FO Error : permanent error
02H - Read-Only Disk
04H - Invalid Drive : drive select error
07H- Password Error

n lYaT~TAI. ~L~JP, CH •
6-61

DRV_S]gTRO Cmea.rmt C P ~ ~ G ~ e

DRV..SETRO

Set Default Disk To Read-Only

En~-y]~u~meten:
Register CL: O1CH (28)

Returned Values:
Register AL: Return Code

BL: Same as AL

The DRV_SETRO system call provides ~ write ~ for the ctwn~tly se, lect~
disk by maddng the drive as Resd-Only, No process can writ~ to a disk that is in the l lv~-
Only state. You must perform a successful DRV_RESET operation to restore a Read-Only
dr/ve to the Read-Write state (z~-fer to the DRV_ALLRESET end DRV_R~ET system calls).

The DRV_SETRO system call is conditional under Concurrent CP/M. If anoth~ process
has an open file on the drive, the open,on is d~nied, and the system call n=V.r.s the value
0FFH to the ca]ling process. Otherwise, it returns a 00H. If the BDOS Error mode is not in
Return Error mode (~'.fer to the F_ERRMODE system call), the file system ctispl~a an error
message at the console, identifying the IXOCeSs owning the first open file that caused the DRV
SETRO request to be denied.

Note that a drive in the Read-Ordy state cannot be reset by a process if another process
has an open file on the drive.

i | A I , ILLW.AIL{He
5--52

Concurrent CP/M Programmer'= Guide DRV..SPACE

DRV_SPACE

Return Free Disk Space On Specified Drive

Entry Parameters:
Register CL: O2EH (46)

DL: Drive

Returned Values:
Register AL: Error Rag

AH: Physical Error
BX: Same as AX

First 3 bytes of DMA Buffer filled in

The DRV_SPACE system call determines the number of free sectors (128-byte records)
on the specified drive. The calling process passes the drive number in register DL, with 0
for drive A, 1 for B, continuing through 15 for drive P. DRV_SPACE returns a binary m~mber
in the first 3 bytes of the current DMA buffer. This number is returned in the format shown
in Figure 6-5.

FS0 = LOW BYTE
FS1 = MIDDLE BYTE
FS2 = HIGH BYTE

Figure 6-5. Disk Free Space Field Format

Note that the returned free space value might be inaccurate if the drive has been marked
Read-Only.

g DIGITAL RESEARCH •
6-63

DRV..SPACE Concurrent CP/M ProlP'ammtr's Guide

Upon reawn, DRV_SPACE sets rcsiJter AL to 00H, indicating the ~ n wm suc-
cemfi~. However, if the BDOS Error mode is one of the return modes (refer to the
F_ERRMODE system call), and a physical error occurs, it sets register AL to 0FFH. and
register AH to one of the following value, s:

OIH - Disk I/O Error : permanent error
04H - Invalid Drive : drive select error

6.2.4 FUe-Ace~ System Calh

Most filc-acc~s system calls reference a File Control Block (FCB). This data s~ucture is
iUustmml in Table 2. I. Refer to Section 2.4 for a comprehensive explmlation of the FCB
data structure, its initialization, and usage.

• DI~d'rAL ~ o

Concurrent CP/M Programmer's Guide F_ATTRIB

F_ATTRIB

Set The Attributes Of A Disk File

Entry Parameters:
Register CL: OlEH (30)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Vaiu~s:
Reg i s~ AL: Dire, c t ~ Co&

BL: Same as AL

By calling/he F_ATTRIB system call, a process can modify a file's attributes and set its
last record byte count. Other BDOS system calls can interrogate these file paramet~s, but
only F__ATTRIB can change them. The file attributes timt can be set or reset by F_ATTRIB
are F l ' through F4', Read-Only (Tl ') , System (1"2'), and Arel~ve (2"3'). The specified FCB
contains a filename with the appropriate attributes set or reset. The calling process must
ensure that it does not specify an ambiguous filename. Also, ff the specified file is password
protected, the correct password must be placed in the first eight bytes of the current DMA
buffer or have been previously established as the default password (refer to the F_PASSWD
system call).

Interface attribute FS' specifies whether an extended file lock is to be maintained after the
F_ATIRIB call. Interface attribute F6' specifics if the specified file's byte count is to be set.
The interface attribute definitions are listed below:

F5' = 0 - Do not maintain an eatended file lock (defaul0
F5' = 1 - Maintain an extended file lock
F6' = 0 - Do not set byte count (default)
F6' = 1 - Set byte count

I fFS ' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other processes
on the system. Section 2.11 describes extended file locking in detail.

M ~I ' rAL ~E.A, RCH •
~65

F_ATTRII Co~-m'nmt CP/M Programmer's Guide

If interfece attribum P6' is tot, the caUing process must set the CR field of the r t f e m g ~
FCB to the new byte count valun. A proceu can ~ a file's byte count valuz with the
BDO$ F_OPEN, F_SFIRST, and F_SNEXT system calls. File byte counts arc described in
section 2.15.

F_ATTRIB mtrcbes the FCB specified directory for an entry belonging to the current
user number that matches the FCB specified name and type fields. The system call then
updatm the directory to contain the selected indlcatcn, and ff intm'face alXribute F6' is set,
the specLli~ byte count value. Note that the last record byte ~ m t is maintained in the byte
13 of a file's directory FCBs.

File attributes TI', T2', and T3' are defined by Concurrent CP/M as described in Section
2.4.2. Attributes FI ' through F4' of command files are defined as Competibility Attributea,
as described in Section 2.12. Howev~, for all ~ flies, aUributes F r through F4' are
available for definition by the us~. Attributes I~ ' through FS' are reMrved es Interface
Am-ibutm and cannot be used as file attributes. Interface attributes are deg:ribed in Section
2.4.3.

An F_ATTRIB system call is not performed if the mfermcad FCB specifies a file cune~tly
open for another process. It is performS, hovers , if the referenced file is open by the
csJ]Jng process in Locked mode. However, the file's lock enlry is purged when this is done
and the file system prevents mntimed read and write opemtims on the ilk. F...ATIXIB does
not tot the ~ of a file ~-rently open in Read-Only or Unlocked mode for any process.

Making an F_ATTRIB system call for an open file can adversely affect the performance
of the calling process. For this reason, you should close an open file before you call the
F_AT'['RIB system call.

Upon return, F_.ATTR/B returns a directory code in register AL with the value (}OH if the
system call is successful, or 0FPH if the file specified by tim r ~ I~B is not found.
Register AH is tot to 00H in both cese~.

II 1~21"AI. lU~.Ait~B
6-66

Concurrent C P / M Programmer% Guide F_ATTRIB

If a physical or extended error is encountered, the F_ATI'RIB aystem call performs dif-
ferent actions depending on the BDOS Error mode (refer to the F_ERR.MODE system call).
If the BDOS Error mode is in the default mode, the file system displays a message at the
console identifying the error and terminates the process. Otherwise, it returns to the calling
process with register AL set to 0FFH and register AH set to one of the following physical
or extended error codes:

OIH - Disk I/O Error : permanent error
0 2 H - Read-Only Disk
04H - Invalid Drive : drive select error
0 5 H - File open by another process
07H - Password Error
OgH - lllngal ? in FCB

an DIGITAL RESEARCH •

6-67

F-CLOSE Cohere'rent CP/M ProErammm"s Guide

F_CLO6E

Close A Disk File

Entry Parameters:
Register CL: 010H (16)

DX: I~B Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F_CLOSE system call perforrm the inverse operation of the F_OPEN system call.
The referenced PCB nmst have been previously activated by a succeuful F_OPEN or
F__M.AKE system call. Interface auributes FS' and F6' specify how the file is to be closed,
as shown below:

FS' '-- 0, P6' = 0 - De fm l t Clme
FS' = 0, F6' ffi 1 -Ex tendFde Lock
FS' = 1 ,F6 ' = 0 - ph.-'dal Clme
F5' = 1, F6' = 1 - Partial Close

The F_CLOSE system call performs the following steps regardless of the interface attribute
q~:ctttoation. Hrst, it veri~s that the referenced ~ h~ a valid checksum. If the clzcY, sum
is invalid, F_CL£)SE performs no action and returns an error code.

If the checksum is valid and the refex~'nc~d I~B c.ontai~ new information becmme of write
operations to the FCB, F_CJ.J3SE permanently records the new information in the directory.
If the FCB does not contein new information, the dire~m'y update step is b ~ . However,
F_CLOSE always attempts to locate the I~-'B's corresponding entry in the direotm'y and
returns an error code ff the directory entry cannot be found.

If the F_CLOSE system call successfully performs the above steps, it performs different
actions, depending on how the interface attributes are set. In defanlt close operations,
F_CLOSE decrements the file's open count, which is maintained in the file's system Lock
List entry. If the open count decrements to zero, it indicates that the number of default close
operations for the file matches the number of open operations.

• lY, C4rAL ~.f,F.AltC.He
6-68

Concurrent CP/M Progrsmmer's Guide F_CLOSE

If the open count decrements to zero, F_CLOSE permanently closes the file by performing
the following steps. First of all, it removes the file's item from the system Lock List. If the
FCB is opened in Unlocked mode, it also purges all record locks belonging to the file from
the system Lock List. In addition, F_CLOSE invalidates the FCB's checksum to ensure the
referenced FCB is not subsequently used with BDOS system calls that require an open FCB
(for example, F_WRITE).

If the open count does not decrement to zero, F_CLOSE simply returns to the calling
process and the file remains open.

For partial close operations, F_CLOSE does not decrement the file's open count and returns
to the calling process. The file always remains open following a partial close request.

Closing a file with an extended file lock modifies the way F_CLOSE performs a permanent
close. F_CLOSE only honors an extended lock request on a permanent close of a file opened
in Locked mode. If these conditions are satisfied, F_CLOSE invalidates the FCE's checksum
but maintains the lock item. Thus, although the file is permanently closed, other processes
cannot access the file. Section 2.11 describes extended file locking in detail.

Upon return, the F_CLOSE system call returns a directory code in register AL with the
value 00H if the close operation is successful, or 0FFH if the file is not found. Register AH
is set to 0 in both of these cases.

I fa physical or extended error is encountered, the F_CLOSE system call performs different
actions depending on the BDOS Error mode (refer to the F_ERRMODE system call). If the
BDOS Error mode is in the default mode, the file system displays a message identifying the
error at the console and terminates the calling process. Otherwise the F_CLOSE system call
returns to the calling process with register AL set to 0FFH and register AH set to one of the
following physical or extended error codes:

01H - Disk I/O Error : permanent error
02H - Read-Only Disk
04H - Invalid Drive : drive select error
06H - Close Checksum Error

i l l DIGITAL R~FJ~&CH •

6-69

F.DELETE Concurrent CP/M Programmer's Guide

F_DELETE

Delete A Disk File

Entry Parameters:
Register CL: 013H (19)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or E.xteaded Error
BX: Same as AX

The F_DELETE system call removes files and/or XFCBs that match the FCB addressed
in register DX. The filename and filetype fields can contain wildcard file specifications
(question marks in bytes I through 11), but byte 0 cannot be a wildcard as it can be in the
F_SFIRST and F_SNEXT system calls. Interface attribute F5' specifies the type of delete
operation to be performed, as shown below:

FS' --- 0 - Standard Deletc (Default mode)
FS' ffi 1 - Delete only XFCB's and maintain an extended file lock.

If any of the files specified by the referenced FCB are password p ¢ o ~ , the corr~t
password must be plac, vd in the first eight bytes of the current DMA buffer or it must have
been previously established as the default paaswo~[(rdcr to the F_PASSWD system call).

For standard delete operations, the F_DELETE system call removes all directory entries
belonging to files that match the referenced FCB. All disk directory and data space owned
by the deleted files is returned to free space and becomes available for allocation to other
flies. Directory XFCBs that were owned by the deleted files are also removed from the
directory. If interface attribute FS' of the FCB is set to 1, F_DELETE deletes only the
directory XFCBs matching the referenced FCB.

I D~T~ RESEARCH"
5-70

Concurrent CP/M Programmer's Guide F_DELETE

Note: If any of the files matching the input F'CB specification fail the password check, are
Read-Only, or are currently open by another process, then F_DELETE deletes no files or
XFCBs. This applies to both types of delete operations.

Interface attribute F5' also specifies whether an extended file lock is to be maintained after
the F_DELETE call. If F5' is set and the referenced F'CB specifies a file with an extended
lock, the calling process maintains the lock on the file. Section 2.11 describes extended file
locking in detail.

A process can delete a file that it currently has open if the file is opened in locked mode.
However, the BDOS returns a checksum error if the process makes a subsequent reference
to the file with a BDOS system call requiring an open FCB. A process cannot delete files
open in Reed-Only or Unlocked mode.

Deleting an open file can adversely affect the performance of the calling process. For this
reason, you should close an open file before you delete it.

Upon return, the F_DELETE system call returns a directory code in register AL with the
value 00H if the delete is successful, or 0FFH if no file matching the referenced FL'B is
found. Register AH is set to 0 in both of these cases. If a physical or extended error is
encountered, F_DELETE performs different actions, depending on the 8DOS Error mode
(refer to the F_ERRMODE system call).

If the BDOS Error mode is the default mode, the system displays a message identifying
the error at the console and terminates the calling process. Otherwise, it returns to the calling
process with register AL set to 0FFH and register AH set to one of the following physical
or extended error codes:

01H - Disk I/O Error : permanent error
02H - Read-Only Disk
03H - Read-Only File
04H - Invalid Drive : drive select error
05H - File opened by another process or open in Read-Only or Unlocked mode
07H - Password Error

~J DIGITAL RESEARCH •
6-71

¥....UMAGET Cmewrut CP/M lh'elmmm~, G~le

F_DMAGET

Return Address Of Direct
Memory Access Buffer

Entry Pararaeters:
Register CL: 034H (52)

Returned Values:
Register AX: DMA Offset

BX: Same as AX
ES: DMA Sesnmnt

F_DMAGET returns the current DMA Base Segment address in F.S, with the current
DMA Offset in AX.

• DIC4rAL RLW.ARCHe
6-72

Concurrent CP/M Programmer% Guide F._DMAOFF

F_DMAOFF

Set The Direct Memory Address Offset

Entry Parameters:
Register CL: 01AH (26)

DX: DMA Address - Offset

DMA is an acronym for Direct Memory Address, which is often used with disk controllers
that directly access the memory of the computer to transfer data to and from the disk sub-
system. Under Concurrent CP/M, the current DMA is ustudly defined as the buffer in memory
where a record resides before a disk write and after a disk read operation. If the BDOS
Multiaector Count is equal to one (refer to the F_MULTISEC system call), the size of the
buffer is 128 bytes. However, if the BDOS Multisector Count is greater than one, the size
of the buffer must equal N * 128, where N equals the Multisector Count.

Some BDO$ system calls also use the current DMA to pass parameters and to return
values. For example, BDOS system calls that check and assign file passwords require that
the password be placed in the current DMA Buffer. As another example, DRV_SPACE
returns its results in the first 3 bytes of the current DMA. When the current DMA is used in
this context, the size of the buffer in memory is determined by the specific requirements of
the system call.

When the P_CLI system call initiates a transient program, it sets the DMA offset to 080H
and the DMA Segment or Base to its initial Data Segment. DRV_ALLRF_~ET also sets the
DMA offset to 08OH. The F_DMAOFF system call can change this default value to another
memory address. The DMA address remains at its current value until it is changed by an
F_DMASEG, F_DMAOFF, or DRV_ALLRESET call.

J DIGn'AL RF.SEARCH •

6-73

F...DMASEG Cm~rrmt CP/M ~ Gxkle

F_DMASEG

Set Di~ct Memory Access
Segn~nt Address

Entry Parameters:
Register CL: 033H (51)

DX: DMA Segment Address

F_DMASEG sets the segment value of the current DMA buffer ~ . The word param-
eter in DX is a parx~'aph ~ s and is used with ~h¢ DMA offset value to specify the 20-
bit sddn~ of ti~ DMA txtff~. R~:r ~o b',e F._DMAOFF sys~m call f(x sdditional i n f - - .

Note that upon initial program loading, the defsult DMA base is set to tl~ address of the
user's data segment (the initial value of DS) and the DMA offset is set to 080H, which
provides access to the defsalt buffer in the Base Page.

Coacsrr~m CP/M P r o S m m ~ G ~ F_ERRMODE

¥_ERRMODE

Set BDOS Error Mode For Error Returns

Entry Parameters:
Register CL: 02DH (45)

DL: BDOS Error mode

The BDOS Error mode is a system parameter maintained for each running process that
determines how the file system handles physical and extended errors. Physical and extended
errors are described in Section 2.18. The BDOS Error mode has three states: the default
mode, Return Error mode, and Return and Display mode.

If a physical or extended error occurs when the BDOS Error mode is in the default mode,
the BDOS displays a system message at the console identifying the error and terminates the
calling process.

I f a physical or extended error occurs when the BDOS Error mode is in Return Error
mode, the BDOS sets register AL to 0FFI-I, pisces an error code identifying the physical or
extended error in register AH, and returns to the calling process.

If a physical or extended error occurs when the BDOS Error mode is in Return and Display
mode, the BDOS displays the system message before returning to the calling process, and
sets registers AH and AL as in the Return Error mode.

The F_ERRMODE system call sets the BDOS Error mode for the calling process to the
mode specified in register DL. If register DL is set to 0FFH, the mode is set to Return Error
mode. If register DL is set to 0FEH, the mode is set to Return and Display mode. If register
DL is set to any other value, the mode is set to the default mode.

IN DIGITAL I~.SE~CHo
6-75

F-LOCK Con©ta-rent CP/M ProIFamnmr't Gu/de

E_LOCK

Lock Records In A Disk File

Entry ~ :
Register CL: 02AH (42)

DX: ~ Address - Offset
DS: ~ Address - Segment

Returned Vahms:
Register AL: Error Code

Aid: Phymiutl E n ~
BX: Same as AX

The F_ILXX system call allows a Im3ceu to establish temporary ownership to particular
recm~ within a file. This system call is only supported for files open in Unlocked mode. If
it is call~l for a file ope~ in Loc.k~ or Read.Only mode, no locking tmtion is performed and
a successful rmult is retm'nml. This la'ovid~ comlmtibility between Ccmmn-mnt CP/M and
CP/M-86.

The calling ~ pwzs the address of an FCB in which the random rzc.ord field is filled
with the Random Record Number of the first record to be locked. The number of records to
be locked is determined by tim BDOS Multisector Count (refer to tim F_MULTISEC sysmm
call). The current DMA mint also contain the 2-byt~ File ID mRimed by F_OPF.N or
F_MAKE when tim xv, fm'cnccd FCB wm opened. Note that the File ID is only returned by
the F_OPEN and F_.MAKE sTstem call when the Open mode is Unloclu~d.

Intcrf~ attrib~ 1~' qx~flm the type of lock to perform. Inmrfac¢ attribute r-6' nl~if ien
whzther records haw to exist in order to be locked. The E..LOCK interface araibute defi-
nitions am listed below:

FS' = 0 - Exclusive lock (defanlt)
FS'= I - Sb.med lock
F6' = 0 - Lock existing records only (dofml0
F6' = 1 - Lock logical records.

These options are dmcribed in detail in Section 2.14.

• DIGITAL ~ o
6-76

C o n c u r r e n t C P / M P r o g r a m m e r ' s G u i d e F_LOCK

F ~ verifies that a locking conflict with another process does not exist for each of
the records to be locked. In addition, ff F L O C K is called with at~bute F6' reset, it also
verifies that each record number to be locked exists within the specified file. Both tests are
made before any records are locked.

Most F_IX)CK requests require a new entry in the BDOS system Lock List. If there is
insufficient space in the system Lock I.~t to satisfy the lock rcxtuem, or if the process record
lock limit is exceeded, then F_LOCK does not lock any records and returns an error code
to the calling process.

Upon return, the F _ I T ~ K system call sets regLster AL to 00H if the lock operation is
successful. Otherwise, register AL contains one of the following error codes:

01H
03H
04H
06H
08H

OAH
0BH
0CH
0DH
0EH

0FFH

- Reading unwritten data
- Cannot close current extent
- Seek to unwritten extent
- Random Record Number out of range
- Record locked by another process
- FCB Checksum Error
- Unlocked file verification error
- Process record lock limit exceeded
- Invalid File ID
- No Room in system Lock List
- Physical error; refer to register AH

The system call returns error code 01H when it accesses a data block that has not been
previously written.

The system call returns error code 03H when it cannot close the current extent prior to
moving to a new extent.

The system call returns error code 04H when it accesses an extent that has not been created.

The system call returns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3.

The system call returns error code 08H if the specified record is locked by another process
with an incompatible lock type.

II DIGrI'AL aI~.AgCH •
6-77

F_LOCK Concurreut CP/M lh'ogmmmer'/Guide

The system call mtm'ns orror code 0AH if the referenced FCB fs / l~ the I~B checksum
test.

The system call returns error code 0BH if the BDOS cannot loca~ the referenced FCB's
dirvctory entry when at~mpting to verify that the FCB contains curr~t information.

The system c~ll mmnm error code 0e l l if Imrforming tim lock request would rtquire that
the process consume more than the maxirrmrn allowed munber of system Lock List entrim.

The system call mmms error code 0DH when an invalid File ID is placed at the beginning
of the current DMA.

The system call returns error cock O~-I when the system Lock List is full and performing
the lock request would require at least one new entry.

The system call returns error cod~ 0FFH if a physical error is encounm'ed, and tbe BDOS
Error mode is cith~ Return Error mode or I~turn and Display Error mode (ref¢~ to the
F_ERRMODE system call). If tim Error mode is in the defmtlt mode, the system displays a
message at the console identifying the physics/re'mr and terminates the calling process.
When the system call returns s physical error to the cs/ling process, it is identified by register
AH as shown below:

01H - Disk I/O Error : lmrmanant error
04H - Invalid Drive : drive sclt~:t error

B DIC~I"AL gL.g~t~Ho
6-7g

Concurrent CP/M Programmer's Guide F_MAKE

F_MAKE

Cream A Disk File

Entry Parameters:
Register CL: 016H (22)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F_MAKE system call creates a new directory entry for a file under the current user
number. It also creates an XFCB for the file if the referenced drive has a directory label that
enables password protection on the drive, and the calling process assigns a password to the
file.

The calling process passes the address of the FCB with byte 0 of the FCB specifying the
drive, bytes 1 through 11 specifying the filename apd filetype, and byte 12 set to the extent
number. Byte 12, the EX field, is usually setto 00H. Byte 32 of the FCB, the CR field, must
be initialized to {)OH, before or after the F_MAKE call, if the intent is to write sequentially
from the beginning of the file.

Interface attribute F5' specifies the mode in which the file is to be opened. Interface
attribute F6' specifies whether a password is to be assigned to the created file. The interface
attributes are summarized below:

FS' = 0 - Open in Locked mode (default)
FS' = 1 - Open in Unlocked mode
F6' = 0 - Do not assign password (default)
F6' = 1 - Assign password to created file

DIGITAL RI~IEARCH •

6-79

F_MAKE Concurrent CP/M ProFmmmm~'s Guide

When atlriimm r-,6' is set to 1, the caUing pt'ocem nmst pkce the ptuword in the first g bym
of the current DMA buffer and set byte 9 of the DMA lm_ffez to the password mode. Note
that F...MAKE only interrogates attzibute F6' if the referenced drive's directory label has
enabled password support. The XFCB Password mode is summarized below:

XI~B Password Mode

Bit 7 - Read mode
Bit 6 - Write mode
Bit 5 - Delete mode

The F_MAKE system call return8 with an re'for code ff the referenced FCB names a file
that currently exists in the directory under the current user number. If there is any possibility
of duplication, an F_DELEI'B call should precede the F_MAKE call.

If the make file openttion is successful, it activates the referenced FCB for record opemiom
(opens the FCB) and initializes both the directory entry and the refinanced ~ to an empty
file. It also computes a cl~r.ksum and assigns it to the FCB. BDOS sysmm calls that mqui~
an open FCB (for example, F_WRrrE) ve.rify that the FCB checksum is valid b~om per-
forming their operation. If the file is opened in Unlocked mode, F_MAKE also sets bytes
R0 and R1 in the FCB to a two-byte value called the File ID. The Ftle ID k a required
parm-~mr for the BDOS Lock ~ taxi Unlock Roco~t ~yltem calla. Note t l~ the
F_MAKE system c.ll i~fialize~ aI1 Ne at~rJknm to O.

The BDOS file system also creates an open file item in the system Lock List to record s
successful F_MAKE operation. While this item exists, no other process can delete, rensme,
truncate, or set the file at~ibutcs of this file.

A creation and/or updat~ stamp is made for the created file if the r~m~nced drive contains
a dir~'$m7 label that enablm creation and/or update time and date stamping and the FCB
~t~nt number is oqual to 0.

F_MAKE also creates an XFCB for the created file if the referenced drive contains a
directory label that enables password protection, inte.rface at/zibum F6' of the FCB is 1, and
the FCB is an e~t~nt zero FCB. In addition, F_MAKE also assigns the password and pauword
mode placed in the first nine bytes of the DMA to the XFCB.

Upon return, the F_MAKE system call returns a directory code in register AL with the
value 00H if the make operation is successful, or 0FFH if no directory spare is a~ailablc.
Register AH is set to 00H in both cases.

• DIGIT,'U. gF.SL~CHe
6-80

Concurrent CP/M Prolp~mmer's Guide F_MAKE

If a physical or extended error is encountered, the F_.MAKE system call performs different
actions depending on the BDOS Error mode (refer to the F_ERRMODE system call). I f the
BDOS Error mode is in the default mode, the system displays a messaSe at the console
identifying the error and terminates the calling process. Otherwise, it returna to the ca/ring
process with register AL set to 0Fl~rI and register AH set to one of the following physics[
or extended error codes:

01H - Disk I/O Error : permanent error
02H - Read-Only Disk
04H - Invalid Drive : drive select error
08H - File Already Exists
09H - Illegal ? in FCB
0AH - Open File Limit Exceeded
0BH - No Room in system Lock List

[] DtGITAL RESEARCH •

6-81

F..MI~T/,$]~

F_.MULTISEC

Set BDOS Multisector Count

Entry P m ~ t e r s :
Register CL: 02CH (44)

DL: Number of Sectors

Returned Values:
Register At.: Return Co&

BL: Same as AL

The F_MULTISEC system call provides logical record blocking under Concurrvnt CP/M.
It enables a procass to read and write from 1 to 128 logical rocords of 128 bytes at a time
during subsequent BDOS read and write system call~. It also specifies the number of 12g-
byte records to be locked or unlocked by the F_J.,OCK and F_UNLOCK system calls.

F_MULTISEC sets the Multisector Count value for tbe calling process to the value passed
in register DL. Once set, the specified Multisector Count re, mains in effect until the call-
ing ~ makes anotber F_MULTISEC system call md ~ a u g u ~ value. Note that the
P_CLI system call sets the Multisector Count to one when it initiates a transient process.

The Multisoctor Count affsets BDOS error reporting for the BDOS read and write system
calls. With the exception of physical errors, if an error occurs during the, se system calls and
the Mulfisector Count is greater than one, the system returns the number of records succass-
fully processeti in register AH.

Upon return, the system call sets regis~-r AL to 00H if the specified value is in the range
of I to 128. Otherwise, it sets register AL to 0FFH.

B OtGff/d. ~ i

6-82

Concurrent CP/M Prot~mmmer~s Guide F_OPEN

F_OPEN

Open A Disk File

Entry Parameters:
Register CL: 0H-I (15)

DX: I~B Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F_OPEN system call activates the FCB for a file that exists in the disk directory under
the currently active user number or user zero. The calling process passes the address of the
FCE, with byte 0 of the FCB specifying the drive, bytes I through 11 specifying the filename
and filetype, and byte 12 specifying the extent. Byte 12 is usually set to zero.

Interface attributes F5' and F6' of the FCB specify the mode in which the file is to be
opened, as shown below:

F5' = 0, F6' -- 0 - Open in Locked mode (Default mode)
F5' -- 1, F6' = 0 - Open in Unlocked mode
F5' = 0 or 1, F6' -- 1 - Open in Read-Only mode

If the file is password protected in Read mode, the correct password must be placed in the
first eight bytes of the current DMA or have been previously established as the default
password (refer to the F_PASSWD system call). If the current record field of the FCB, CR,
is set to 0FFI-I, the F_OPEN system call returns the byte count of the last record of the file
in the CR field. The last record byte count for a file can be set using the F_ATTRIB system
call.

Note: The calling process must set the CR field of the FCB to 00H if the file is to be
accessed sequentially from the first record.

In DIGITAL RESEARCH •

6-83

F_OPEN Cou©urreat CP/M ProfFammer's Guide

The P_OPEN system call performs tl~ following r,c, ps for flies opened in locked or Read-
Only mode. If the current user is nonzero and the file to be opened does not exist under the
current us~ number, the F_OPEN system call semchex us~ 0 for the file. If the file exists
under user 0 and has the system aU~ibute CF2') set, the file is opened under user 0. The Open
mode is automatically set to Read-Only when this is done.

The F_OPEN system call also performs the following action for files opened in locked
mode. if the file has the Read-Only attribute (T 1') set, the Open mode is automatically set
to R~d-Only. Note that Read-Only mode implies the file can be concurrently accessed by
other processes if they also open the file in Read-Only mode.

If the open operation is successful, F_0PEN aodvam the user's FCB for record operations
as follows: F_0PEN copies the relevant directory informatkm from the matching dimctacy
PCB into bytes DO through D15 of the FCB. It aim computes a checksum and assigns it to
the IK~B. All BDOS system calis that require an open ~ (for example, F_READ) verify
that the FCB checksum is valid before performing their operation.

If the file is opened in Unlocked mode, the F_OPEN system cell sets bytes R0 and R1 of
the ~ to a two-byte value called the P'fle ID. The File ID is a required paremeter for the
F_LOCK sad F_UNLDCK system calls, If the Open mode is forced to Re.i-Only, F_OPEN
ms into'face atlribut~ 1:18' to 1 in the u ~ ' s FCB. In addition, the system call m s attribute
FT' to 1 iftbe refermu:d file is pmword ixotwtad in Write mode and the corre~ pmword
was not pined in the DMA or did not match the default password. The BDOS does not
support write operations for an activated PCB ff interface attribute F7' or F8' is set to 1.

The BDOS file system also creates an open file item in the system Lock List to record a
successful open file operation. While this item exists, no other p roc~ can delete, rename,
or modify the file's attributes. In addition, this item prevents other processes from opening
the file if the file is opened in Locked mode. It also requires that other processes match the
f~le's Open mode if the file is opened in Unlocked or Read-Only mode. Thh item remalna in
the system Lock List undi the file is permanently closed or until the process that opened the
file terminates.

When the open operation is successful, the F_OPEN system call also malres an access
time end date stamp for the opened file when the following conditions arc satisfied: the
referenced drive has a directory label that requests access date and time stamping, the FCB
extent field is equal to zero, and the referenced drive is Read-Write.

I I DtGII',M. ~ C H e

6-84

Concurrent C P / M Programmer" Guide F~OPEN

Upon return, F_OPEN returns a directory code in register AL with the value (}OH if the
open is successful, or 0FFH if the file is not found. Register AH is set to 0 in both of these
cases. If a physical or extended error is encountered, ttm F_OPEN system call performs
different actions depending on the BDOS Error mode (refer to the F_ERRMODE system
call). I f the BDOS Error mode is in the dcfanlt mode, the system displays a nmssage idon-
tifying the error at the console and terminates the p roc¢ . . Otherwise, F_OPEN returns to
the calling process with register AL set to 0FFH and register AH set to one of the following
physical or extended error codes:

01H - Disk I/O Error : permanent ormr
04H - Invalid Drive : drive select error
05H - File is open by another process or by tim currant p r o c ¢ , in an incompatible

mode
07H - Ps~sword Error
09H - Illegal ? in FCB
0AH - Open File Limit Excce.ded
0BH - No Room in system Lock List

! DIGITAL RESEARCH •
6-85

F_PARSE Concurrent CP/M ProlFammer's Guide

F_PARSE

Parse An ASCII String
And Initialize An FCB

Entry Pamn~ml:
Register CL:

DX:
DS:

098H (152)
PF'CB Address - Offset
PFCB Address - Segment

Returned Values:
Register AX:

BX:
CX:

OFFFFH if error
0 if end of filename siting
0 if end of lineaddmss of next item
to parse
Same as AX
Error Code

FILENAME FCBADR J

Figure 6-6. PFCB..Pm~ Fi imar~ Control

• IMOTAL IUL.NT~C~e
6-86

Concurrent CP/M Progntmmer~ Guide

Table 6-11. PFCB Field Definitions

F_PARSE

Field Description

FILENAME

FCBADR

Offset of an ASCII file specification to parse. The offset is relative
to the same Data Segment as the PFCB.

Offset of a File Control Block to initialize. The offset is relative m
the same Data Segment as the PPCB.

The F_PARSE system call parses an ASCII file specification (FILENAME) and prepares
a File Control Block (FCB). The calling process passes the address of a data structure called
the Parse Filename Control Block, (PFCB) in registers DX and DS. The PFCB contains the
offset of the ASCII filename string followed by the offset of the target FCB.

F_PARSE assumes the file specification to be in the following form

{D:} FILENAME {.TYP} {;PASSWOP, D}

where those items enclosed in curly brackets are optional.

The F_PARSE system call parses the first file specification it finds in the input string. First
of all, it eliminates leading blanks and tabs. F_PARSE then assumes the file specification
ends on the first delimiter it encounters that is out of context with the specific field it is
parsing. For instance, if it finds a colon C), and it is not the second character of the file
specification, the colon delimits the whole file specification.

M DIGff.~0d. ~ o
6-87

F _ P A R S E Concurrent CP/M Pro~'smmer's Guide

The F_PARSE system call nmognize, s the following chsrsctms as delimiters:

spice
tab
r ~ t u r n

null
; (semicolon) - except before password field
= (equal)
< (loss than)
> (grtater than)

(period) - e~cept after rile, name and before fil¢type
: (colon) - except be, fore filonamo and after drive

(comma)
(vertical bar)

[(left square bracket)
] (right squaro br~,lmt)

If the F_PARSE system call encounters a nongraphic character in the range I through 31 not
listed abovo, it treats the character u an error.

The F_PARSE system cal] initisUzcs the specified FCB as shown in Table 6-12.

• i~drAL t.l!~Altr..H •
6-gg

Concurrent CP/M Programmer's Guide

Table &12. FCB IMtlallzation

F_PARSE

Byte number Explanation

byte 0

byte 1-8

byte 9-11

byte 12-15

byte 16-23

byte 24-31

The drive field is set to the specified drive. If the drive is not specified,
the default value is used. 0ffi default, 1 --A, 2 ffi B, etc.

The name is set to the specified filename. All letters are converted to
uppercase. If the name is not eight chm'acters long, the remaining bytes
in the filename field are padded with blanks. If the filename has an
asterisk (*), all remaining bytes in th.¢ filenarne field are filled in with
question marks (7). The system call returns an error if the filensme is
more than eight bytes long.

The type is set to the specified flletype. If no type is specified, the type
field is initialized to blanks. All letters are converted to uppervase. If
the type is not three characters long, the remaining bytes in the flletype
field are padded with blanks. If an asterisk is encountered, all remain-
ing bytes are filled in with question marks. The system call returns an
error if the type field is more than 3 bytes long.

Filled in with zeros.

The password field is set to the specified password. If no password is
specified, this field is initialized to blanks. If the password is not eight
characters long, remaining bytes are padded with blanks. All letters
are converted to uppercase. The system call returns an error if the
password field is more than eight bytes long.

Reserv~ for system use.

If an exror occurs, F_PARSE returns 0F~'FH in register AX indicating the error.

m DICdTAL RF.SF.ARCH •
6-89

F-PARSE Conewr~ CP/M I~o~mmmer~ GvJde

On a succezsfttl pm~, the F_.PARSE system call ~ the n~t item in the FILENAME
siring. It m for the first character that follows trailing blanks and tabs. If the charac1~ is
a line feed (0AH), a carriage return (ODH), or a null character (00H), it returns a 0 indicating
the end of the FII2NAME siring, If the n ~ t cbaracm" is a delimitar, it returns the address
of the delimits. If the next ~ is not a delimiter, it r e . m s the. address of the first
lruiling blank or tab,

I/uhe I~_PARSB systam call is to be used m psrus a mbsequent file,~r~- m ~e H ~
string, the re, turned address should be advJmced over the delimiter befogs placing it in lh¢
PFCB.

Refer to Table 6-5 for a list of c~ror codes ns turn~ in CX.

• IT~,:dTAL Rr~.AI~4*
6-90

CPtM t ~ q m m m r ' s C,~de Ie__PASSWD

F.__PASSWD

Establish A Default Password
For File Access

Entry Parameters:
Register CL:

DX:
D$:

06AH (106)
Password Address - Offset
Password Address - Segment

The F_PASSWD system call allows a process to specify a password value before a file
protected by the password is accessed. When the file system accesses a password-protected
file, it checks the current DMA, and the default password for the correct value. If either
valtm matches the file's password, full access to the file is allowed.

Concurrent CP/M maintains a default password for each process running on the system.
A new process inherits its initial default password from its parent, the process creating the
new process.

Note: Changing the default password does not affect other processes currently running on
the system.

To make an F_PASSWD call, the calling process passes the address of an eight-byte field
containing the password.

B INGITAL ~ e
6-91

F ~ _ i ~ ~ m m ' r m t CP/M ~ ' s

F_.RANDRF~

Reua'n The Random Record Number Of The
Next Record To ~ In A Disk File

Entry Pmm~ten:
Regir..er CL: 024H (36)

DX: ~ Address - Offset
DS: I~B Address - Segraent

Remrn~ Values: Random Record Field of FCB Set

The F..RANDREC system call r e~r~ the Random Record Number of the next rec¢~l to
be ~ f~nn a file that has been read or written ~lUentiaily to a particular point. The
sy~em call returns this value in the Random Record field, bytes R0, RI, and R2, of
addressed I=CB. The F_RANDREC system call can be uNful in two ways.

Firs4 it is often necessary to initially read and wan a u~quential file to extract the positions
of various key fieldl. As each key is encountered, F_RANDRF~ is called to compute the
nmdom record ~ i f loe Ibr t ~ dm ~ to t~Jmy. ~ tbe dm unit tize i, 128
bytes, the re~alting record nmnber minus one ia placed into a table with the Bey for later
re~ievai.

After ~-aaning the entire file and tabularizing the keys and their record numbers, you can
move directly to a parficalar record by performing a random read uLing the corresponding
Random Record Number that wag ur,,nd em'l~er. The w.heme ia early g ~ when
variable recz~ lengths are involved, bec~u~ the program need only store the barfer-relative
byte pmition akmg with the key and record number in order to find the e~at stm'ting pmition
of tbe k ~ l ~ at a l~m- tin~.

F...RANDRF~ can aim be used when switchin 8 from a ~luential read or write to a random
read or write. A file is sequenthdly ~ to a particular point in the file, F_RANDREC
is called to set the record rmmbm', and subsequent random read and write operations continue
from the next record in the file.

II DIQrAI. Rl~.,qt~e
6-92

Concurrent CP/M Programmer's Guide F_READ

F_READ

Read Records Sequentially
From A Disk File

Entry Parameters:
Register CL: 014H (20)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX:- Same as AX

The F_READ system call reads the next I to 128 128-byte records from a file into mem-
ory, beginning at the current DMA address. The BDOS Multisector Count (refer to the
F_MULTISEC system call) determines the number of records to be read. The default is
one record. The addressed FCB must have been previously activated by an F_OPEN or
F_MAKE system call.

F_READ reads each record from the current record (CR) field in the FCB, relative to the
current extent, then automatically increments the CR field to the next record position. If the
CR field overflows, then F_READ automatically opens the next logical extent and resets the
CR field to zero for the next read operation. The calling process must set the CR field to 00H
following the open call if the intent is to read sequentially from the beginning of the file.

Upon return, the F_READ system call sets register AL to zero if the read operation is
successful. Otherwise, register AL contains an error code identifying the error as shown
below:

01H - Reading unwritten data (end-of-file)
08H - Record locked by another process
09H - Invalid FCB
0AH - FCB Checksum Error
0BH - Unlocked file verification error

0FFH - Physical error; refer to register All

I I DIGITAL RESEARCH •
6-93

F - R E A D Coacummt CP/M Prtqp'ammm"l GMde

The sygcm call returns error code OIH if no data exkts at the next record potation of the
file. The no data situation k usually encountered at the end of a file. However, it can also
occur if you ~ to read a dats block that has not been previously written or an extent that
has not been created. These simafiorm are usually reslr/ctnd to files crested or appended with
the BDOS random write system calh (F_WR.ITERAND and F _ ~ .

The system call returns error code 08H if the calling process attempts to read s record
locked by anodm" process with an exclusive lock. This error code is only returned for files
opened m Unlocked mode.

The system call returns error code 09H if the FCB is invalidated by a previous F_CLOSE
system call that returned an error.

The system call remrm error code 0AH if the refme.noed FCB failed the FCB checksum
test.

The system call returns error code 0BH if the BDOS cannot locate the FCB's din~tory
entry when attempting to verify that the referenced FCB contains current information. The
system call only remrm this error for files opened in Unlocked mode.

The system ¢all returm error code 0FH-I if a physical error i, encountenxi and the BDOS
Fa'ror mode is in ¢me of the return mndea (refer to the F_..ERRMODE syge, m call). I f the
Error mode is in the defmlt mode, the file system di~lays a mes~ge at rite console identifying
the physical error and terminates the calling process. When the sys'u:m call returns a physical
error to the calling process, it is identified by register AH as shown below:

01H - Disk I/O Error : permanent error
04H - Invalid Drive : drive select error

On all error re, turrm, except for physical error returns (AL -- 255), F..READ sets register
AH to the humor of records successfully read M o r e the error was encountered. This value
can range from 0 to 127 depending on the current BDOS Multisector Count. It is always set
to zero when the Mnltisector Count is equsl to one.

• IMCaiTAI. Itr~.AItCH"
6-94

Coneurrat CP/M Prognu'nmer's Gukle F._READRAND

F_READRAND

Read Random Records
From A Disk File

Entry Parameters:
Register CL: 021H (33)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
~X: Same as AX

The F_READRAND system call is similar to the F_READ system call except that the
read operation takes place at a particular Random Record Number, selected by the 24-bit
value constructed from the three-byte, R0, RI, R2, field beginning at position 33 of the
FCB. Note that the sequence of 24 bits is stored with the least significant byte first, R0, the
middle byte next, RI , and the high byte last, R2. The Random Record Number can range
from 0 to 262,143. This corresponds to a maximum value of 3 in byte R2.

To read a file with the F_READRAND system call, the calling process must first open the
base extent, extent 0. This ensures that the FCB is properly initialized for subsequent random
access operations. The base extent might or might not contain any allocated data.

The F_READRAND system call reads the record specified by the random record field into
the current DMA address. F_READRAND automatically sets the FCB extent and current
record number values, EX and CR, but unlike the F_READ system call, it does not advance
the current record number. Thus, a subsequent F_READRAND call rereads the same record.
After a random read operation, a file can be accessed sequentially, starting from the current
randomly accessed position. However, the last randomly accessed record is reread or rewritten
when switching from random to sequential mode.

If the BDOS Multisector count is greater than one (refer to the F_MULTISEC system
call), F_READRAND reads multiple consecutive records into memory beginning at the
current DMA. F_READRAND automatically increments the R0, Rl, R2 field of the FCB
to read each record. However, it restores the FCB's Random Record Number to the first
record's value upon return to the calling process.

I DIGITAL R£SEARCH •
6-95

F . . . R E A D R A N D Concsrtent CP/M Prollmmm~ Guide

Upon return, F_READRAND sets register AL to 00H ff the read operation is successful.
O.im'wiN, reghter AL contains one of the following errc¢ ¢ode~:

01H - Reading unwritten data
03H - Cannot close current extent
04H - Seek to unwritten extent
06H - Random RecoM Number out of r aap
0SH - Record locked by another process
OAH - FCB ~ u m Furor
0BH - Unlocked file verification ta'ror

0FFH - Physical error; refer to resister AH

The system call returm error code 01H when it accesses a data block not previously written.
This may indicate an cad-of-file (EOF) condition.

The system call re, turns error code 03H when it cannot close the. current extent prior to
moving to a new extent.

The system call retur~ ¢rror code 04H when a read random operation accesses an extant
that has not been c reed .

The system ~ ~ ~ code 06H wl~m byte 35 (R2) of~he mfermu~l I~7.B ia g=ate~
than 3.

The systam call returns error code 0$H ff the calling process at~npts to mad a record
locked by anothar process with an exclusive lock. This arrc¢ code iJ only rammed for film
opened in Unlocked mode.

The system call r e i n s error code 0AH ff the referenced FCB failed the FCB checksum
test.

The system call returns error code 0BH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current information. The
system call only returns this error for files open in Unlocked mode.

• DIGffAL ~ e
6-96

Coneurrent CP/M Programmer's Guide F_READRAND

The system call returns error code 0FFH ff a physical error is encountered and tl~ BDOS
Error mode is in oue of the return modes (refer to ~ F...ERRMODE system call). If the
Error mode is in the default mode, the file system displays a message at the console identifying
the physical error and te~minaws the calling ~ . When a physical c r r~ is retttrued to
the calling process, it is identified by the four low-order bits of mgist~" AH as shown below:

01H - Disk I/O Error : Ix~'n'mnent error
04H - Invalid Drive : drive select error

On all error returns cxcfpt for physical error returns, AL = 2.55, F...READRAND sets
register AH to the number of records successfully mad before the error was encountered.
This value can range from 0 to 127 depending on the currant BDOS Multisector Count. It
is always set to zexo when the Multis~or Count is equal to one.

mm DIGITAL RESEARCH •

6-97

F_RENAME ComcmTmlt CPIM l~ss~ G~le

F_RENAME

Renan~ A Disk Fde

Entry Parameters:
R e o ~ " CL: 017H (23)

DX: PCB Address - Offset
DS: FCB Address - Segment

Returned Values:
~.~ AL: Directory Code

AH: Physical or Extended
BX: Same as AX

The F_RENAME system call uses the referenced PCB to change all directory entries of
the file specified by the drive and filename in bytes 0 to 11 of the PCB to the ~exm.~
~ecitied in bytes 17 through 27.

If the file ~ied by the first filcvanz is p m w o r d - ~ , t lz c~rn~t pmword must
be placed in fl~e first eight bytm of the ~n'rent I ~ ~/Y=, or hw~ been pmvic~ly estah-
fished as the defmlt peuwo~i (mf= to the F_PASSWD nynt, cm~ call).

The calling process must also erasure that the file, names specified in the FCB are valid and
unambiguous, and that tim new filcnam~ does not already exist on fl~e driv=. F_RENAME
uses the drive cede at byte 0 of the PCB to select the drive. The drive code at byte 16 of the
PCB is ignot'ed.

Interface attribute FS' specifies whether an egtended file lock is to be ma/ntained after the
F_AT1RIB call as shown below:

FS' = 0 - Do not maintain an ¢gt~ded file lock (dvfml0
FS' = 1 - Maintain an ¢gtended file lock

If FS' is set and the refe, mncod FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other processes
on the sys~m. Section 2.11 describes extended file locking in detail.

• DIGrAI. ILI~Y~,I~C.,14o

Concurrent CP/M Programmer's Guide F...RENAME

A process can rename a file that it has ope~ if the file is open in locked mode. However,
the BDOS returns a checksum error if the process subsequently references the file with s
system call requiring an open FCB. A file open in Read-Only or Unlocked mode cannot be
renamed by any process.

Renaming an open file can adversely affect the performance of the calling process. For
this reason, you should close an open file before you rename it.

Upon reI~rn, the F_RENAME system carl returns a directory code in register AL with
the value 00H if the rename is successful, or 0FH-I if the file named by the first filename in
the FCB is not found. Register AH is set to 00H in both of these cases. If a physical or
extended error is encoun~'od, the F=.RF~AME ~ystem c~ ~ di~e:ent L~.ions depending
on the BDOS Error mode (refer to the F_ERRMODE system call). If the BDOS Error mode
is in the default mode, the system displays a message at the console identifying the error,
and terminates the process. Otherwise, it returns to the calling pn3cess with register AL set
to 0FFI-I and with register AH set to one of the following physical or extended error codes:

01H - Disk I/O Error : permanent error
02H - Read-Only Disk
03H - Read-Only File
04H - Invalid Drive : drive select error
05H - File open by another process
07H - Password Error
08H - File Already Exists
09H - Illegal ? in FCB

II DIGITAL J~.qf.AgCH •
6-99

F..BFIRST Commrrent CP/M Prozrsmmer's Guide

F_SFIRST

Find The F ~ t File That Matches
The Specified FCB

Enu'y Parameters:
Register CL: 011H (17)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: ~ Code

AH: Physical or Extended Error
BX: Same as AX

The F_SHRST system call scans the directory for a match with the referenced FCB. Two
types of sem~bes can be performed. For standard sem~hes, the calling process initializes
bytes O through 12 of the referenced FCB, with byte 0 specifying the drive directory to be
searched, bytes 1 through 11 specifying the file or files to be searched for, and byte 12
s ~ the ezteut. Byte 12 is umaIly set to 00H. An ASCII quemou mm'k (63, or 031~rI
hextdec~al) in any of the bytes I through 12 ~ all entries on the directory in the
corresponding position. This facility, called ambiguous file reference, can be used to search
for multiple files on the d i ~ o r y . When called in the standard mode, F_SFIRST scans for
the first file entry in the specified directory that matches the FCB and belongs to the current
mle~ humid.

The F-SFIRST system call also initializes the F_SNEXT system call. After the
F..SFI RST system call has located the first directory entry matching the referenced FCB,
F..SN EXT can be called repeafedly to locate all remaining matching entries. In terms of
execution sequence, however, the F_SNEXT call must follow either a F_SFIRST or
F..SNEXT call with no other intervening BDOS file-access system calls.

If byte 0 of the referenced FCB is set to a question mml, F_SHRST ignores the remainder
of the referenced FCB and locates the first directory entry residing on the current default
drive. All remaining directory entries can be located by making multiple F_SNEXT calls.
This type of search operation is not usually made by application programs, but it does provide
complete flexibility to scan all directory entries. Note that this type of search operation must
be performed to access a drive's directory label.

ms DICdTAL ~ s
6-1(10

Concurrent CP/M Programmer~ Guide F..SFIRST

Upon return, the F_SFIRST system call returns a directory code in register AL with the
value 0 to 3 if the search is successful, or 0HrrI if a matching directory entry is not found.
Register AH is set to zero in both of these cases. For successful searches, the current DMA
is also filled with the directory record containing the matching entry, and the relative starting
position is AL * 32. The directory information can he extracted from the buffer at this
position.

If the directory has been initialized for date and time stamping, then an FCB resides in
every fourth directory entry, and successful directory codes are restricted to the values 0 to
2. For successful searches, if the matching directory record is an extent zero entry, and if
an SFCB resides at offset % within the current DMA buffer, then the contents of
(DMA Address + 96) = 021H, and the SFCB contains the time and date stamp informa-
tion and password mode for the file. This information is located at the relative starting
position of 97 + (AL * 10) within the current DMA in the following format:

0 - 3 : Create or Access Date and Tlme Stamp Field
4 - 7 : Update Date and Time Stamp Field
8 : Password Mode Field

Refer to Section 2.8 for more information about SFCBs.

If a physical error is encountered, the F_SFIRST system call performs different actions
depending on the BDOS error mode (refer to the F_ERRMODE system call). If the BDOS
Error mode is in the default mode, the system displays a message identifying the error st the
console and terminates the calling process. Otherwise, it returns to the calling process with
register AL set to 0FFH and register AH set to one of the following physical error codes:

01H - Disk I/O Error : permanent error
0a, H - Invalid Drive : drive select error

I! DIGITAl. P, ESfAP, CHe
6--101

¥ . . $1~ C e m a ' r ~ CP/M i ' roirmmBr~

F_SIZE

Compute The Size Of A Disk File

Entry l~une ten :
Register CL: 023H (35)

DX: FCB Add~ss - Offset
DS: FCB Address - Segment

Returned Values:
Register AL:

AH:
BX:

Directory Code
Physical or Extended Error
Same as AX
Random Record Field of FCB Set

The F_SIZ~ system call determines the virtual file size. This is the address of the record
immediately following the end of the file. The virtual size of a file corresponds to the physical
size if the file is wrimm sequentially. If the file is writt=n in random mode, gaps might exist
in the allocation, and the file might contain fewer records than the indicated size. For example,
if s single record wlli~ record number 262,143, the Concummt M max/nmm, is writ~n
to a file using the F_WR.H'FAIAND system call, then the virtual size of the file is 262,144
records even though only one data block is actueIIy allocated.

To compute file size, the calling process passes the addr--~-~g of an FCB with bytes R0, R1,
and R2 present. The F_SIZE system ~dl sats the random record field of the FCB to the
Random Record Number + I of the last record in the file. If the R2 byte is set to 04H, and
R0 and R1 are both zero, then the file contains the maxirmm record count, 262,144.

A process can append data to the end of an existing file by calling F_SIZE to set the
random record position to the end of file, and t h ~ performing a seqt~nce of random writes.

Note: The file need not be open in order to use F_SIZE. However, if the file is open in
Locked mode and it has been extended by the calling process, the file must be closed before
F_SIZE is called. Otherwise, F_SIZE returns an incorrect file size. F_SIZE returns the
correct size for files open in Unlocked mode and Read-Only mode.

II I~,~TAL IIP,..,+q~4~CH •
6-102

Concurrent CP/M Programmer's Guide F_SIZE

Upon return, F_SIZE returns a 00H in register AL if the file specified by the referenced
FCB is found, or a 0FFI-I in register AL if the file is not found. Register AH is set to 00H
in both cases.

If a physical or extended error is encountered, F_SIZE performs different actions depend-
ing on the BDOS Error mode (refer to the F_ERRMODE system call). If the BDOS Error
mode is in the default mode, the system displays a message at the console identifying the
error and terminates the process. Otherwise, F_SIZE returns to the calling process with
register AL set to 0FFH and register AH set to one of the following physical or extended
error codes:

01H - Disk I/O Error : permanent error
04H - Invalid Drive : drive select error
09H - Illegal ? in FCB

m I)~iTAL Rff~t, XCH e
6-I03

F . _ S ~ C m e i ' r m t CWM Pre l r lmaa" l

F_SNEXT

Find A Subsequent File That Matches
The Specified FCB Of A Previous

F_SF1RST Or F_SNEXT

Entry Pammetm:
Register CL: 012H (18)

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same u AX

The F_SNEXT system call is identical to F_SFIRST ~c~pt that the directory scan con-
tirmes from the laat entry tllat was match~l. F_SNEXT re4m'ns a directory code in register
AL, analogous to F_SFIRST.

Note: In execution sequence, a F_SNEXT call must follow either an F_SFIRST or another
F_SNEXT with no other imm-vening BDOS f i l ~ s ~ m system calls.

i IMQI-AL ~ s
5-104

Ceamrrmt CP/M Pre~malmr'~ Guide F_TIMgI~TE

F_TIMEDATE

Return File Date Stamps
And Password Mode

Entry Parameters:
Register CL: 066H (102)

DX: FCB Address- Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical Error
BX: Same as AX

The F_TIMEDATE system call returns the time and date stamp information and password
mode for the specified file in byte 12 and bytes 24 through 31 of the specified FCB. The
calling process passes the address of an FCB in which the drive, filename, and type fields
have been defined.

If F_TIMEDATE is successful, it sets the following fields in the referenced FCB

byte 12 password mode field

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode

Byte 12 equal to 0 indicates the file has not been assigned a password.

byte 24 - 27 XFCB Create or Access time stamp field
byte 28 - 31 XFCB Update time stamp field

! D~.dTAL ~.S£ARCHe
6-105

F_TIMED&TE Concurrent CP/M Prolmmmer's Guide

Upon ~u rn , F_TIMEDATE ~turns a directory code in register AL with the value 00H
if the operation is successful, or 0F'F'H if the specifi~ file is not found. Register AH is set
to 00H in bcch of these cases. If a physical or extended error is encountered, F_TIMEDATE
performs different actions depending on the B I ~ S Error mode (refer to the F_ERRMODE
system call). If the BDOS Error mode is in the ~fault mode, the system displays a rues.
sage at the console idemtifNin8 the error and texminatos the calling process. Otherwise,
F_TIMEDATE returns to file calling process with register AL set to 0FFH and register
All set to ono of the following physical error codes:

01H - Disk I/O Error : tm'mancnt error
04H - Invalid Drive : drive select error
09H - Illegal ? in I-'CB

• DIG~AL P,I~SL~G4s
6-106

Concurrent CP/M Programmer's Guide F_TRUNCATE

F_TRUNCATE

Truncate File

Entry Parameters:
Register CL: 063H (99)

DX: FCB Address - Offset

Returned Values:
Register AL: Directory Cede

AH: Physical or Extended Error
BX: Same as AX

The F_TRUNCATE system call sets the last record of a file to the Random Record Number
contained in the referenced FCB. The calling program passes the address of the FCB in
register DX with byte 0 of the FCB specifying the drive, bytes 1 through I I specifying the
filename and filetype, and bytes 33 through 35 (R0, R1, and R2) specifying the last record
of the file. The last record number is a 24-bit value, stored with the least significant byte first
(RO), the middle byte next (R1), and the high byte last (R2). This value can range from 0 to
262,143 (03FFFFH).

If the file specified by the referenced FCB is password-protected, the correct password
nmst have been placed in the first eight bytes of the current DMA buffer, or have been
previously established as the default password (refer to the F_PASSWD system call).

Interface attribute F5' specifies whether an extended file lock is to be maintained after the
F_TRUNCATE call, as shown below:

F5' = 0 - Do not maintain an extended file lock (default)
F5' = 1 - Maintain an extended file lock

If F5' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other processes
on the system. Section 2.11 describes extended file locking in detail.

F_TRUNCATE requires that the Random Record Number field of the referenced FCB
specify a value less than the current file size. In addition, if the file is sparse, the random
record field must specify a region of the file where data exists.

[] DIGIT,M. aESUti~l.~
6-107

F_TRUNCATE C~frrent CP/M P r o l r t t m ~ GIdde

A ~ can ~unc~= a ftle l ~ it currently hm o ~ n if the file ia ~ n e d in locked mode,
and the file h u not been extended during the open aenion. However, the BDOS returns a
chec, k, mm error if the process makw a ~d~usquent referen~ to the file with a BDOS system
call requiring an open FCB. A process cannot u'uncate files open in RO or Unlocked mode.

Ihmca~g an open file is not recommended under Concurrent CP/M. F_TRUNCATE
truncates a file treed on the file's state in the directory. If a proceu attempts to truncate at a
region of the file that has been tllocated in mem¢~ but h 8 not been ~ in the d i r e c t ,
F_TRUNCATE returns an error. Even when racce, xful, an open file truncate can adversely
affect the perf(xmance of the calling woces. For these reuom, you ~ould clme an open
file before you ~mx~te it.

After completion, F_TRUNCATE term'n8 a directca'y code in regkte~ AL with the value
00H ff the operation k successful or 0FFH ff the file iJ not found or if the record -nmber is
invalid. In both c a m register AH is set to 00H.

If a physical ¢x extended err~ is ~ , F_TRUNCATE performs different actions
depending on the BDOS error mode (refer to F_£RRMODE). If the BDOS ~ mode is
in the defmdt mode, a meuag= identifying the err~ k displayed at the console and the
program is terminated. Otherwise, F_TRUNCATE returns to the calling program with reg-
iste~ AL x t to 0FFH and regi~er AH set to one of the following physical or extended error
codes:

01H - Disk I/O Error : permanent error
02I-I - Read/Only Disk
03H - Read/Only File
04H - Invalid Drive : drive l~,lect error
05H - File Currently Open
06H - Cloee Chechum Enw
07H - l~mword Error
08H - File Already Exim
09H - Illegal ? in FCB
0AH - Open FiIe Limit Exceeded
0BH - No Room in System Lock Lkt

II DI~TAk ~ e
6-108

Concurrent C P / M Programmer's Guide F_UNLOCK

F_UNLOCK

Unlock Records In A Disk Hie

Entry Parameters:
Register CL: 02BH (43)

DX: FCB Address - Offset
DS: FCB Address - Segmem

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as A X

The F_UNLOCK system call unlocks one or more consecutive records previously locked
by the F_LOCK system call. This system call is only supported for flies open in Ualocked
mode. If it is called for a file open in Locked or Read-Only mode, no unlocking action occurs
and a successful result is returned. Record locking and unlocking is described in detail in
Section 2.14.

The calling process passes the address of an FCB in which the Random Record Field
is filled with the Random Record Number of the first record to be unlocked. The number
of records to be unloclaxl is determined by the BDOS Multisector Count (refer to the
F_MULTISEC system call). The current DMA must contain the 2-byte File ID returned by
the F_OPEN or F_MAKE system call when the referenced FCB was opened. Note that the
File ID is only returned by F_OPEN or F_MAKE when the file open mode is Unlocked.

If interface attribute FS' is set to 1, F_UNLOCK unlocks all locked records belonging to
the calling process. The F_UNLOCK interface attribute definition is listed below:

FS' = 0 - Unlock records specified by Random Record Number and BDOS
Multisector Count (default)

FS' = 1 - Unlock all locked records.

U D~ffAL RF.SEARCH •

6-109

F_UNLOCK Cemem'nm~ C P / M Prolp'z, mmer'f Gukk

F_UNLOCK ignores the FCB Random Record field and the BDOS Multisector Count
when FS' iB set.

F_UNLOCK does not unlock a record that is currently locked by another process.
However, the system call does not return an error ffa process attempts to do that. Thus, if
the Multisector Count is greater than one, F_UNLOCK unlocks all records locked by the
calling process, skippin8 those records locked by other processes.

Some F_UNL(X~K requests require a new entry in the BDOS system Lock List. If there
is insufficient space in the system Lock List to satisfy the F_UNL£~K request, or if the
process ~ 'o rd Lock List]/mit is exceeded, then F_UNLOCK does not unlock any records
and returns an error code to the calling proceu.

Upon return, F_UNLOCK ~ts registzr AL to 00H if the unlock o l z ~ o n was ~Jccwful.
Otherwi~, register AL conmim one of the following error codes:

01H - Reading unwrit~n data
03H - Cannot close current e~tent
04H - Seek to unwritten extent
06H - Random Record Number out of range
OAH - FC'B Checksum Error
0CH - Proceu record L c ~ List limit eazzeded
0DH - Invalid Fde]I3
0EH - No room in system Lock List

0FFH - Physical error refer to register AH

The system call retur~ error code 01H when it accesses a data block which has not been
previously wriv.~.

The systean call returns e.rror code 03H when it cannot close the current extent prior to
moving to a new extant.

The system call returns error code 04H when it accesses an extent that has not been created.

The system call returns error code 05H when byte 35 (r2) for a list of the referenced FCB
is greater than 3.

The system call returns error code 0AH if the referenced FC'B failed the FCB checksum
test.

• DIGITAL ~ , t
5-110

Concurrent CP/M Programmer's Guide F_UNLOCK

The system call returns error code 0CH if performing the unlock request would require
that the process consume more than the maximum allowed nmnber of system Lock List
entries,

The system call returns error code 0DH when an invalid File ID is p l a ~ at the beginning
of the cunent DMA.

The system call returns error code 0EH when the system Lock List is full and performing
the unlock request would require at least on~ n~w entry.

The system call returns error code 0FFH if a physical error was encountered and the BDOS
Error mode is on~ of the return modes (refer to the F...ERRMODE system call). If the Error
mode is the Defmlt mode, the system displays a message at tbe console identifying the
physical error and terminates the calling process, When the system call returns a physical
error to the calling process, it is identified by register AH as shown below:

01H - Disk I/O Error : permmmnt error
04H = Invalid Drive : drive select error

N DICITAI. RI~.ARCH e

6-11]

F_UgI~.NI~ C m m r r ~ C~/M Prop 'mmm~ C~dde

F_USERNUM

Set Or Return The Calling Process's
Default User Number

Entry Pmmcmrs:
Register CL:

DL:

Returned Valuea:
Register AL:

BL:

020H (32)
OFFH m GET User Number
User Number to SET

Current User Number if GET
Smnc u AL

A process can change or interrogate its current defmlt user number by calling
F_USERNUM. If register DL = 0FFH, then the system call returns the value of this use~
number in register AL. The value can range f~m 0 to 0FH. If register DL is not 0F'H-I, then
the system call changes the defmlt user nmnber to the value in DL, modulo 010H (the high
nibble of DL is masked off).

Under Concurrent CP/M, a PAw ~ inhed~ its initial defatlt user mrnb~ from its
parent, the process creating the new procss, Changing the default user rmmber does not
change the user code of the pment. On the other hand, all child processes of the calling
process inherit the new user number.

This convention is demonstrated by the operation of the TMP. When a command is typed.
a new process is created with the same user number as that of the TMP. If this new process
changes its user number, ~e "IMP is urttff~eas:L Once the new process terminates, the TMP
displays the same user number in its prompt that it displayed before the command was entered
and the child process was created.

• IZ~I'rAL ~ *
6-112

Concurrent CP/M Prollramm~'s Guide F_WRITE

F_WRITE

Write Records Sequentially
To A Disk File

Entry Parameters:
Register CL: 015H (21)

DX: I~B Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The F_WRITE system call writes 1 to 128, 128-byte data records beginning at the current
DMA address into the file named by the specified FCB. The BDOS Multisector Count (refer
to the F_MULTISEC system call) determines the number of 128-byte records that are written.
The default is one record. An F_OPEN or F_MAKE system call must have previously
activated the referenced FCB.

F_WR1TE places the record into the file at the position indicated by the CR byte of the
FCB, and then automatically increments the CR byte to the next record position. If the CR
field overflows, the system call automatically opens or creates the next logical extent and
resets the CR field to ()OH in preparation for the next write operation. If F_WRITE is used
to write to an existing file, then the newly written records overlay those already existing in
the file. The calling process must set the CR field to 00H following an F_OPEN or F_MAKE
system call if the intent is to write sequentially from the beginning of the file.

F_WRITE makes an update date and time stamp for the file if the following conditions
are met: the referenced drive has a directory label that requests update date and time stamping,
and the file has not already been stamped for update by a previous F_MAKE or F_WRITE
system call.

II DIC~AI. RESEARCH •
6-113

F_WR~E Coucurr~ CP/M Programmer's Guide

Upon return, the F_WRITE system cell m~ts register AL to OOH if tim write oper~on is
successful. Otherwi~, m g i s m " / ~ , conmim gn error code identifying the error as shown
be.low:

01H - No available directmT space
02H - No available dam block
08H - Record locked by anoth~ process
09H - Invalid FCB
0AH - PCB Checksum Error
0BH - Unlockzd file verification error

0FFH - Physical error; refer to register AH

The system call returna ¢n~r code 01H when it attempts m create a new extent that requix~
a new directory e, nu'y, and no available din~tory enlxies exist on the selected disk drive.

The system call mtoms e~'rer cod~ 02H when it attempts to allocate a new data block to
the file, and no unal]ocnted data blocks exist on the seloctcd disk drive.

The system call returns error codv 08H if the calling proceu attempts to write to a re, cord
locked by another process, or a record locked by the calling process in shm=d mode. The
system call reau'ns this ¢rro~ only for files open in Unlock~ mode.

The system call r~.tms error code 09H if the FCB is invalidated by a previous F_CLOSE
system call that returned an error.

The system call returns error code OAH if the refe~'e, nced FCB failed the FCB checksum
teSt.

The system call returns error code 0BH if the BDOS cannot locate the FCB's directory
entry when a~mpting to verify that the referenced FCB contains currant information. The
system call returns this error only for files open in Unlocked mode.

• [~al'rAL It~SF, AgCI.I*
6-114

Concurrent CP/M Progrmnmer's Guide F_WRITE

The system call remrm error code 0FFH if a physical error wm encountered and the BDOS
is in Return Error mode or Return and Display Error mode (refer to the F_ERRMODE
system call). If the Error mode is the Default mode, the system displays a message at the
console identifying the physical error and terminates the calling proceu. When the system
call returns a physical error to the calling process, it is identified by register AH as shown
below:

01H - Disk I/O Error : permanent error
02H - Read/Only Disk
03H - Read/Only File or

File Opened in Read/Only Mode or
File password protected in Write mode

04H - Invalid Drive : drive select error

On all error returns except for physical error return~ (AL ffi 2.55), F_WRITE sets register
AH to the number of records successfully wfi t t~ before the error was encountered. This
value can range from 0 to 127, depending on the current BDOS Multi~ctor Count. It is
always set to zero when the Multisector Count is equal to one.

m DIGITAL I~r~.Al~.He
6-115

F_WRIT]gRAND Concurrent CP/M Progrnmmer's Guide

F_WRrl~RAND

Write Random Records
To A Disk File

Entry lkrameten:
Register CL: 022I-I (34)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Vedues:
Register AL: Error Code

AH: Physical Error
BX: Same u , ~

Tim F_WRFFERAND system call is analogous to the F_READRAND system call, except
that data is wfitmn to the disk from tim current DMA mldrcu. If the disk extent and/or data
block whe~ the data is to be written is not alretdy allocated, the BDOS automatically
pedorms the allocation before the write operation contimms.

In order to write to a file usin 8 the F_WRITERAND system call, the cadling lm3CeU rmat
fmtt open the base extent, extent 0. This ensures that the tK2B is properly initialized for
subs~lucnt random access operations. If the file is cmpty, the calling process must create the
tree extent with the F_.MAKE system call befta'e an F_WR.IT-I~a, AND sy~an call, The base
extm~t might or might not cmtain data, but it records the file in the directory so that it can
be displayed by the DIR utility. If a process ,kx= not open exlent 0 and allocates data to some
other extent, the file is invisible to fl~e DIR utility.

The F_WR1TERAND system call sots tim logical extent and current record positions to
correspond with the random record bcing wfitt=n, but does not change tim Random Record
Numbm'. Thus seqmmtial read or write operations can follow a nmdom write, with the current
record being reread or rewritten as the calling process switches from random to sequential
mode.

F_WRXFERAND makes an update date and time stamp for the file if the following con-
ditions are met: the referenced drive has a directory label that requests update date and time
stamping, and the file has not already been stamped for update by a previous F_MAKE or
F_WRITE system call.

I I D I ~ A L KESrr.~,le

6-116

Concurrent CP/M Programmer'n Guide F_WRITERAND

If the BDOS Multisector Count is greater than one (refer to the F_MULTISEC system
call), the F_WRITERAND system call writes multiple consecutive records from memory
beginning at the current DMA address. The system call automatically increments the R0,
Rl, and R2 field of the FCB to write each record. However, it restores the FCB's Random
Record Number to the first record's value upon return to the calling process.

Upon return, the F_WRITERAND system call sets register AL to 00H if the write oper-
ation is successful. Otherwise, register AL contains one of the following error codes:

02H - No available data block
03H - Cannot close current extent
05H - No available directory space
06H - Random record number out of range
OSH - Record locked by another process
OAH - FCB Checksum Error
OBH - Unlocked file verification error

0FFH - Physical error refer to register AH

The system call returns error code 02H when it attempts to allocate a new data block to
the file. No unallocated data blocks exist on the selected disk drive.

The system call returns error code O3H when it cannot close the current extent before
moving to a new extent.

The system call returns error code O5H when it attempts to create a new extent that requires
a new directory entry and no available directory entries exist on the selected disk drive.

The system call returns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3.

The system call returns error code O8H if the calling process attempts to write to a record
Ioclaxi by another process, or a record locked by the calling process in shared mode. The
system call returns this error only for files open in Unlocked mode.

The system call returns error code OAH if the referenced FCB failed the FCB checksum
test.

The system call returns error code 0BH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current information. The
system call returns this error only for files open in Unlocked mode.

H DlOrr,~. ItESE.A~CH •

6-II7

F_WRITKRAND Concurrent CP/M ProlFtmmer's Guide

The system call returns error code 0FFH if a physical erre¢ is encountered and the BDOS
Error mode is in one of the return modes (refer to the F_ERRMODE system call). If the
Error mode is in the defeult mode, the system displays a message at the console identifying
the physical error and terminates the calling process. When a physical error is returned to
the calling process, it is identified by register AH as shown below:

01H - Disk I/O Error : permanent error
02H - Read/Only Disk
03H - Read/Only File or

File Opened in Rend/Only Mode or
File password protected in Write mode

04H - Invalid Drive : drive ~ l~ : t error

On all error returns, except for physical error returns (AL ffi 255), F_WR_rI'ERAND sets
register AH to the number of records successfully written before the error was encountered.
This value can range from 0 to 127 depending on the current BDOS Mulfisector Count. It
is always set to zero when the Multisector Count is equal to one.

• I~,ffAI. ItL~..A~H •
6-118

Concurrent CP/M Programmer's Guide F_WRITEXFCB

F_WRITEXFCB

Write Extended File Control Block
Of A Disk File

Entry Parameters:
Register CL: 067H (103)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F_WRITEXFCB system call creates a new XFCB or updates the existing XFCB for
the specified file. The calling process passes the address of an FCB in which the drive, name,
type, and extent fields have been defined. The FCB extent field, if set, specifies the password
mode and whether a new password is to be assigned to the file. The format of the extent field
byte is shown below:

FCB byte 12 (EX) XFCB password mode

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
bit 0 - assign new password to the file

If the FCB is currently password-protected, the correct password must reside in the first
8 bytes of the current DMA or have been previously established as the default password
(refer to the F_PASSWD system call). If bit 0 is set to 1, the new password must reside in
the second 8 bytes of the current DMA.

Note: The F_WRITEXFCB system call does not create or update an XFCB if the XFCB
specifies a file open by another process. However, a process can update or create an XFCB
for a file that it has open in Locked mode.

I I DIGITAL RF.SFARCH •
6-119

F_WRITEFXCB Concurrent CP/M Prolrammer'l Guide

Upon return, F_WRITF_.XI~B returns a dimctccy code in registe~ AL with the value 00H
if the XFCB create or update was succemful. F _ ~ C B mm.,--m 0FFH in register At.
if no directory label existed on the specified drive, or the file specified in the FCB was not
found, or no space existed in the directory to create an XFCB, or if the drive is not password
enabled. F_WRITEXFCB also retm'm 0FH-I if puswccds are not enabled by the specified
drive's directory label, Register AH is set to 00H in all of these cases.

If a physical or extendnd error is encountered, F_WR_rrExI=CB performs different actions
depending on the BDOS Error mode Crefe~ to the F_.ERRMODE system ceil). If the BDOS
Error mode is in the default mode, the system displays a message at the console identifying
the error and terminates the ceiling process. Otherwise, F _ W R ~ B returns to the
calling process with register AL set to 0P'FH and register AH set to one of the following
physical or extended error codes:

01H - Disk I/O Error : permanent error
02H - Read/Only Disk
04H - Invalid Drive : drive select error
05H - File open by another process, or open in Read-Only or Unlocked mode
07H - Pmsword Error
09H -l]legal 7 in FCB

• I~ICN'I'AL ~ o
6-120

C ~ m ~ t CP/M P ~ ' o ~ m e r ~ Guide

F_WRITEZF

Write A Random Record To A Disk File
And Prefill New Data Blocks With Zeros

Entry Parameters:
Register CL: 0"28H (40)

DX: I ~ B Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The F_WRITEZF system call is similar to the F_wRrrERAND system call, with
the exception that it fills a previously unallocated data block with zeros (00H) before writing
the record. If this system call has been used to create a file, records accessed by an
F_READRAND system call that contain all zeros identify unwritten random records.
Unwritten random records in allocated data blocks of files created using the F_WRH'ERAND
system call contain uninitialized data.

[] DIC~"I'AL ~ C H O
6-121

L..AI~ACH

6 .2 .5 LI~ Device IYO Symmm Calk

~ a e m ' ~ CP/M ~ W a m m - ' ~ C.,a~

L_ATrACH

Attach The I~fault List Device
To The Calling Proocu

Entry ~ t m :
Register CL: 09EH (158)

The L_ATrAC~ system call attach~ the dcfmlt list d6vice of ~ calling proceM. If the
list dcvicc is ~ r ~ l y attached to ~ome ocher process, the calling process rolinquish~ the CPU
un~l the other process detaches from the list device. When the list device becom~ f~e, and
file calling process is the highest priority process waiting for the list device, the attach
operation occurs.

l~fcr to Table 6-5 for a list of error codes returned in CX.

• DIGRAt W e
6-122

Cm~m'rcm CP/M l~'q~nmmm'~ L_CAT'rACH

L_CATTACH

Conditionally Attach To The
Default List Device

Entry Parameters:
Register CL: 0AIH (161)

Returned Values:
Register AX: 0 if attach 'OK'

OFFFFH on failure
BX: Same as AX
CX: Error Code

Tho L..CATTACH system call attaches the default list device of the calling process only
if the list device is currently available.

If tho list device is currently attached to another process, the system call returns a value
of 0FFH, indicating that the list device could not be attached. The system call returns a value
of 00H to indicate that either the list device is already attached to the process, or that it was
unattached, and a successful attach operation was made.

Refe~ to Table 6-5 for a list of error codes returned in CX.

m DIGffAL W •
6-123

Cmcm's'om {:IP/M ~ Galdo

L..DErACH

Detach The Default Lht Device
From The Calling Process

F.,ntry Parameten:
Register CL: 09FH (159)

Returned Valt~e,s:
Regir~ AX: 0 if detach 'OK'

0FFFFH on failure
BX: Same u AX
CX: Error Code

The L_DETACH system call detaches the defmlt lkt device of the calling process. If the
list device is not currently attached, no action t a ~ place.

R ~ t o Table 6-5 for a list of ~ e . , ~ ~l~lmd in CX.

• E~TAL]tJESF,~La~o
5-124

L_GgT

L_GET

Return The Calling Process's
Default List Device

Entry Parameters:
Register CL: 0A4H (164)

Returned Values:
Register AL: List Device Number

BL: Same as AL

The L_GET system call returns the default list device number of the calling process.

I I DIC~AL RESEARCH"
6-125

CP/M l~lrtmmer'~

L._SgT

Set The C.~ling Pro~ss's
Defmlt List Device

Enta-y Parameten:
Register CL: 0AOH (160)

DL: List Device Number

Returned Values:
Register CX: Error Code

The L_SET system call sets the defenlt list device for the calling process.

Refer to Table 6-5 for a list of error codes returned in CX.

• DIC~AL gESf.AIt~"
6-126

Cmem'rmt ~ / M Prelrmamer~ V_mide L_WRITE

L_WRITE

Write A Character To The
Default List Device

Entry Patan~ters:
Register CL: 05H (5)

DL: Character

The L_WRITE system call writes the specified character to the default list device of the
calling process. Before writing the character, the system internally calls L_ATrACH to verify
that the calling process owns its default list device.

i DIGITAL RE..qA~H •
6-127

L._WRITEBLK Concurr~ CP/M Progrsmma'~ G-Me

L_WRITEBLK

Send Specified Cham:t~r
String to Dcfmlt List Device

I~u'y ~ :
Register CL: 070H (112)

DX: CHCB Adds.

L _ ~ L K ~.nds the ~ string sI:ecifi~ in the ~ ConW01 Block (CHCB)
and addrmsecl in register pair DX to the logical list device, Lffl~.. Th© CHCB format is

bytes 0 - 1 : Off~t of c h ~ string
bytes 2 - 3 : Segment of ch~r~t~r string
bym 4 - 5 : L~ngth of c ~ r S ing to print

6.2.6 Memory Symun Calls

Ther~ are t,wo c l a ~ s of Memory System Calls in Concurrent CP/M. The t int class
supports the MP/M-86 n~mory xUocation ~ h ~ and contain~ two syltem calls,
M_ALLOC and M_FREE. The second cl~s contains six system calls, MC_ABS,
MC..ALLFREE, MC_ALLOC, MC_ALLOCABS, MC_FREE, and MC_MAX. These
system calls support the CP/M-g6 memory allocation scheme.

Note: The CP/M-86 memory calls am also suppon~l undm" MP/M-86.

Many of the Memory system calls use the Memory Control Block (MCB) or the Memory
Parameter Block (MPB) to pass pm'amctm's to and from tlz opm'm~ng sysmn. The forrr~,
structure and example programming equates for these data structures are presented below,
along with ¢xample listings.

F sE
Figure 6-7.

,~ + ~ 4.----.-~

MCB - Memory Control Block

IDIC~AL gLr~.AgO.le
6-128

Concurrent C P / M Ptolffammer't Guide

Table 6.13. MCB Field Deflnlflom

L..WRITEBLK

BASE

LN.NGTH

EXT

"rim S~gm~t ~ of t~ I~girming of the spewed ~ ~-gn~t.

Len~h of the Memory Segment in paragraphs. The LENGTH field is
set to the ~mber of para~tphs wanted.

The EXT field is unused but must be available.

;* Memory C o n t r o l Blook D e f i n i t i o n

s

mob_base equ word p t r 0
mob_length equ word p t r mob_base + word
mcb_ext equ b y t e p t r mob_length + word

mob_len equ mob_ext + b y t e
w

Listing 6-I. Memory Control Block Definition

I

I START
I

I I ~ - I - ~ ~ +

Figure 6-8. MPB - Memory Parameter Block

m DIGITAL gL~AgO'le
6-129

F_WRITEBLK Concurrmt CP/M Programmer% Guide

Table 6.14. MPB Fkkl ~

Field Description

START

MIN

MAX

* O000H

if non-OOH, an absolute request at this paragraph

minimum memory . , z d ~ (~)

maxinmm mm~ory vamted ~)

the~ fields must be OOH; they am used internally.

;* Monory P a r a n e t e r Block D e f i n i t i o n
J

m p b _ s t a r t equ
mph_ain equ
nph_max equ
n p h - p d a d r equ
mpb_f lag8 equ

mpb_len equ

; mpb_f laKe d e f i n i t i o n

mr_ load equ
n f _ s h a r o equ
n f_code equ

word p t r 0
word p t r m p b _ s t a r t + word
word p t r mpb_min + word
word p t r mpb-uax + word
word p t r z p h - p d a d r + word

m p b _ f l a g s + word

O0001h
O0002h
O0004h

6-2. Memory Parameter Block Definition

m I~ff, JJ. J~SIAIL~o
6-130

CP/M P r e ~ m a - ' m G~le

M_ALLOC

Allocate A Memory Segment

Entry Parameters:
Register CL: 08OH or O81H (128,129)

DX: MPB Address-Offset
DS: MPB Address-Segment

MPB filled in

Retumed Values:
Register AX: 0 on success

OFFFFH on failure
BX: Same as AX
CX: Error

MPB_start filled in

The M_ALLOC system call allows a program to allocate extra memory, A successful
allocation allocates a contiguous memory segment whose length is at least the MIN and no
more than the MAX rmmber of paragraphs specified in the MPB, The START field of the
MPB is modified to be the starting paragraph of the memory segment. The MIN and MAX
fields are modified to be the length of the memory segment in paragraphs. Memory Segments
can be explicitly released through the M_FREE system call; Concurrent CP/M also releases
all memory owned by a process at termination.

Note: Mn~ and MAX fields must be explicitly filled in, The MAX value must be greater
than or equal to the MIN value.

Refer to Table 6-5 for a list of error codes returned in CX.

Ii DW2rAL trLsr:Alt~-Io
6-131

~ m t M ~ m ~ m m w ~ C ~

M _ _ M E

Free A Memory Segment

Entry t ~ t ~ :
Register CL:

DX:
DS:

l~turned Values:
Regist~" AX:

~21-I C130)
A d d r e ~ - Offset

MFPB Address - Segment

O on 8 U ~ $
0 I ~ H on failure

BX: Same u AX
CX: Error Code

l "+"+ I
m l l ~ ~.9. , M ~ . M_.-m'm~ . l 'm . l lm~ , B I ~

The M _ M E system ca/] rele~ues memory starting at the START paragraph to the
end of a single previously allocated se~nent that c o n ~ the START paragraph. If the
START ~ is the same u that returned in tim MPB of a memory allocation call,

M_FREE roleue~ the whole memory segment, The * 0000H field must be initialized
to zero.

Refer to Table 6-5 for a list of error codes re, turned in CX.

• x~rm~ ~ H •

5-132

Concurrent CP/M Programmer's Guide MC._ABSALLOC

MC_ABSALLOC

Allocate A Memory Segment
At A Specified Address

Entry Parameters:
Register CL: 038H (56)

DX: MCB Address - Offset
DS: MCB Address - Segment

Returned Values:
Register AL: 0 on success

OFFI-I on fai lure
BL: Same as AL
CX: Error Code

The MC_ABSALLOC system call allocates a memory area that starts at the address
specified by the BASE field. The memory area's length is specified by the LENGTH field of
the MCB. Upon return, register AL contains a 00H if the request was successful, and a 0FFH
if the memory could not be allocated. If the calling process already owns the requested
memory, no error is returned. This assures compatibility with CP/M-86.

Refer to Table 6-5 for a list of error codes returned in CX.

[] Dff2TAL ~.~.ARCH ®
6-133

MC_ABSMAX Concurrent CP/M Projrtmmer~, Guide

MC_ABSMAX

Allocate Maximum Memory Available
At A Specified Address

Entry Pm'ameters:
Register CL:

DX:
DS:

Returned Values:
Register AL:

BL:
CX:

036H (54)
MC.B Address - Offset
MCB Address - Segment
MCB_bue filled in, MCB_length
set m max number of pamgrapbs
wanted

0 on success
0FFH on failure
Same as AL
Error Code
MCB_length set to actual number
of paragraphs allocated

In CP/M-86, system call 036H does not allocate reentry, but under Concurrent CP/M,
this system call allocates memory, because other processes are competing for common mem-
ory. For compatibility with CP/M-86, MC_ABSALLOC (system call 56) does not return an
error if there is a memory segment allocated at the absolute ~dress.

MC_ABSMAX is used to allocate the largest possible region at the absolute paragraph
boundm'y given by the BASE field of the MCB, for a maximum of LENGTH pamgrephs. If
the allocation is successful, the system call sets the LENGTH to the actual length. Upon
return, register AL has the value OFFH if no memory is available at the absolute address,
and 0OH if the request was successful.

Refer to Table 6-5 for a list of error codes returned in CX.

m I~iGITAI. ~ o
6-134

C, mcurreU CP/M ~ ' a Guide MC..ALLFREE

MC_ALLFREE

Free All Memory Owned
By The Calling Process

Entry Parameters:
Register CL: 03AH (58)

In the Concurrent CP/M environment, the MC._ALI.~REE system call releases all of the
calling ixocess's memory except the User Data Area (UDA). This system call is uaeful for
system processes and for subprocesses that share the memory of another process.

Note: This system call should not be used by processes running programs loaded into the
Transient Program Areas (TPAs).

U DIGITAL ~ [ARCHe
6-135

MC._.AIJ..OC C~/M Prolx'ammm'*l Cddlde

MC._.ALLOC

Allocate A Memory Segment

Envy Pmnmten:
Register CL: 037H (55)

DX: MCB Address - Offset
DS: MCB Address - Segment

MCB_length filled in

Returned Values:
Register AL: 0 On 8 ~ U

OFFH on failure
BL: Same as AL
CX: Error Code

MCB_bue fined in

The MC..ALLOC system call allocates a memory area whose size is the LENGTH field
of the MCB, MC_AI2.OC returns the base paragraph address of the allocated region in the
tmer'n MCB, Upon re(an'n, register AL c(mlai~ a (}0H if the reqmmt was succeRfttl, and a
OFF/.-I if the memory could not be allocated.

Refer to Table 6-5 for a list of error codes returned in CX.

II DIGffAI. F,F--WAItCH*
6-136

Cmcm'rmt CP/M Prejramm~'m GaMe MC,--FR~

MC_FREE

Free A Specified Memory Segment

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AL:

039H (57)
MCB Address - Offset
MCB Address - Segment
MCB_base, MCB_ext filled in

0 if successful
0FFH on failure

BL: Same as AL
CX: Error Code

The MC_.FREE system call is used to release memory areas allocated to the prosram.
The value of the EXT field of the MCB controls the operation of this system call. If
EXT -- 0FFH, then the system call releases all memory areas allocated by the calling
program. If the EXT field is 00H, the system call releases the memory area beginning at
the specified BASE and ending at the end of the previously allocated memory segment.

Refer to Table 6-5 for a list of error codes returned in CX.

II DICTA/. ~..~A#tCHo
6-137

gC...lttt.X Cammrrmt C~/M P r ~ - a m m ~ P.~t~

MC_MAX

Allocate Maxinann Memory Available

Entry Pamnmmrs:
Register CL: 035H 03)

DX: MCB Addzeu - Offset
DS: MCB Addreu - Segment

Returned Values:
Register At,:

(MCB_length contains maximum
numl~ of Izragrap~ wanmd)

0 on sucoeu
OFfal on failure

BL: Same e~ AL
CX: Error Code

(MCB..base idled in, MCR_length
set to actual number of paragraphs
allocated)

In CP/M-86, system call 035H does not allocate memory, but under Concurrent CP/M,
thil system call ellocatms memory becaame other prounma are compe~g for common mem-
ory. For compatibility with CP/M-86, MC..ABSAHL3C (eymnn call 56) does not remm an
error if the~e k a m e m ~ t e g n ~ t a l l ~ at the ab~lute nddreu.

MC..MAX allocmtm the lergmt available n m m ~ regim dm is learn tlum or equal to the
I.F~GTH field of the MCB in paragraptm. If the allocation is ~ , the system call seti
the BASE m the bese pemgm~ addreu of the available me.a and LF2~GTH to ~ ~
length. Upon return, register AL has the value 0FFH if no memory is available, end (}OH if
the request was succzasf'-u). The s y ~ caLl sets the F.,X'I' to 1 if there is additional m e m ~
for allocation, and 0 if no additional memm3, is available.

Refer to Table 6-5 for a list of error codes returned in CX.

• t~GtT'~. ILI~f~,A~cHe
6-]38

Coneurrmt CP/M Programmer's Guide

6.2.7 Proeem/Prolg, am System Calls

P_ABORT

P_ABORT

Terminate A Process
By Name Or PD Address

Entry P a z m ~ m :
Register CL:

DX:
DS:

Returned Values:
Regism AX:

09DH (157)
APB Address - Offset
APB Address - Segment
APB filled in

0 Oil SUCC@$S
OFFH on failure

BX: Same as AX
CX: Error Code

0o

06
i l [___~' T ~ oNs ooH I D , ~ ~

/ NAME
i , I--' I I ~ + ~ + I

Ftgure 6-10. APB - Abort Parameter Block

• DW, dTAL W e
6-139

Tml~ f#.l& APB Ft~I Il~m

Ftetd D~fi~'I

PD

TERM

*(}OH

CNS

NAME

Process Descriptor offset of the process to be mrminamd. If ~ field is
zero, a match is attempted with the NAME and CNS fields to find the
IX~e~. If this field is ~ , the NAME and CNS fields are i~ed.

Terming'on Code. This field corresponds to the termination code of ~e
P_TERM system call. If t~ low.43rder byte of TERM is 0FFH,
P_ABORT can abort a specified system process; if the termination
code is not 0FFH, the system call can only terminate a user process. (A
system process is identified by the SYS flag in the Process Descriptor's
FLAG field.)

This field is reserved for system use and must be set to zero.

Defmtlt console of pnx:ess to be aborted. If the PD field is 0, the
P..ABORT system cell scans the Thread List for a PD with the same
NAME and CNS fields as specified in the APB. P_ABORT only abo~s
the first lXOCUS ~ it finds. Subsequent cedis must be made to abort all
IXeCesses with the same NAME and CNS.

Name of the lxocess to be aborted. Combined with the CNS field, the
NAME field is used to find the lXOCess to be aborted. This is only used
if the PD field is 0.

The P_ABORT system call permim a process to teminate another specified process. The
calling process passes the address of a data structure called an Abort Paranm~ Block,
inifla]/zed as described above.

If the Process Descriptor eddm~ is known, it can be filled in, and the process nan~ and
console can be omitted. Otherwise, the Process Descriptor ~ field should be a 00H and
the process name and console must be specified. In either case, the calling process must
supply the ~ ' o n code, which is the same parameter pessed to the P_TERM system
call.

Refer to Table 6-5 for a list of error codes returned in CX.

m D{GII"AL RL~.AI~He
6-140

CP~t ~ ' ~ C, aaae P_CHA/N

P_CHAIN

Load, Initialize And Jump
To Specified Program

Entry Parameters:
Register CL: 02FI-I (47)

DMA Buffer : Command Line

Returned Values:
R e g i s ~ AX: OFFFFH - Could not find

Command

The P_CHAIN system call provides a means of chaining from one program to the next
without operator intervention. Although there is no passed imran~ter for this call, the calling
Ixccvss must place a command llne terminated by a O byte in the default DMA buffer.

Under Concurrent CPfM, the P_CHAIN system call releases the memory of the calling
process before executing the command. The command is processed in the same manner as
the P_CLI system call. If the command warrants the loading of a CMD file and the memory
released is large enough for the new program, Concurrent CPIM loads the new program into
the same memory area as the old program. The new program is run by the same process that
ran the old program. The name of the process is changed to reflect the new program being
run.

Parameter passing between the old and new programs is accomplished through the use of
disk files, queues, or the command line. The command line is parsed and placed in the Base
Page of the new program in the manner documented in the P_CLI system call.

The P_CHAIN system call returns an error if no CMD file is found. If a CMD file is
found, and an error occurs after it is successfully opened, the calling process terminates, as
its memory has been released.

In DIGITAL RF.SF.ARCH •
6-14l

P_CLI Co~©lm.mt CP/M Prol~mmer 's Guide

P_CLI

~tcrpmt And Exccut~ Command Line

Entry Parameters:
Register CL: 096H (150)

DX: CLBUF Address - Offset
DS: CLBUF Address - Segmeat

Return~ Values:
Register AX:

CX:

0 On SUC¢~
0 FFH on error
Error Code

0 1 2 3 128 129

I ' ' " i r - I ~ I '00H COMMAND IX
,, i + - - - - - ~ /

Figure 6-11. CLI Command Li~ Bsffa-

II DIGITAL ~ H e
6-142

Concurrent CP/M Prof~mmm~s Guide

Table 6-16. Command Line Buffer Field Deflnl tk~

P_CLI

Field Definition

*(}OH Must be set to zero for system use.

COMMAND 1-128 ASCII characters terminated with a null character.

The P_CLI system call obtains an ASCII command from the Command Line Buffer
(CLBUF) and then executes it. If the calling process is attached to its default virtual console,
the P_CLI system call assigns the virtual console to either the newly created process, or to
the Resident System Process (RSP) that acts on the command. The calling process must
reattach to its default virtual console before accessing it.

P_CLI calls F_PARSE to parse the command line. If an error occurs in F_PARSE,
P_CLI returns to the calling process with the error code set to the same code that
F_PARSE returned.

If there is no disk specification for the command, P_CLI tries to open a system queue
with the same name as the command. If the open operation is successful, and the queue is
an RSP-type queue, P_CLI then writes the command tail to the RSP queue. If the queue is
full, the system call returns an error code to the calling process. The P_CLI function also
attempts to assign the calling process's virtual console to a process with the same name as
the RSP queue. If the RSP queue cannot be found, the CLI assumes the command is on disk
and continues.

The P_CLI system call opens a file with the filename being the command and the filetTpe
being CMD. If the command has an explicit disk specification, and the F_OPEN system call
falls, P_CLI returns an error code to the calling process. If there is no disk specification
with the command, P_CLI attempts to open the command file on the system disk. If the
F_OPEN system call succeeds, P_CLI checks the file to verify the SYSTEM attribute is
on. This search order is discussed in Section 2.9. I of the Concurrent CP/M User's Guide. If
this second F_OPEN fails or if the DIR attribute is on, P_CLI returns an error code to the
calling process.

Once the P_CLI system call succeeds in opening the command file, it calls the P_LOAD
system call. The P_LOAD system call finds, and then loads the file into an appropriate
memory space. If P_LOAD encounters any errors, the P_CLI system call returns to the
calling process with the error code set by the P_LOAD system call.

Im DIG~AL RESEARCH •

6-143

P-CLI Ceaearrent CP/M Prolratmaer'D Gakle

A stuu:euful load operation embHshzs the c~nmnd file in memory with its Base Psse
partially initialized. The P_CLI system call then contintms Imrs&ng the command tail to set
up the Base Page values from 050H to 0FFI-I.

P_CLI initis/izes an mused Pmce~ Descriptor from the internal PD table, a UDA (e~pandzd
UDA if 8087 IXocessing is required) and a 96-byte stack area. The UDA and stack ere
dynamically allocated from memory. P_CLI then calls the P_CREATE system call. If
P_CLI encounm's an uro~ in my of O~se ,tel~, it releases all memory segments allocated
for the new command, u well u tb¢ Proceu Dea.-'fiptor, aud then rctur~ with the a?pro-
l~iate error code set.

Once the P_CREATE system call returns successfully, the P_CLI system call reigns the
calling proceH's default virtual console ~o the new pt~ceu and then returns.

The calling process should set its lziority to less than the TMP (198) if it wants to attach
to the ~ console after the created process releases it. Once the calling process has
successfully reattached, it should set its priority back to 200.

Refer to Table 6-5 for a list of error codes rettwned in CX.

• DIGITAL ~ H e
6-144

Concurrent CP/M Programmer's Guide P_CREATE

P_CREATE

Create A Process

Entry Pm'ameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

090H (144)
PD Address - Offset
PD Address - Segment
PD filled in

0 on SUO.~esS

0FFFFH on failure
BX: Same as AX
CX: Error Code

The P_CREATE system call allows a process to create a subprocess within its own memory
area. The child process shares all memory owned by the calling process at the time of the
P_CREATE call. If the Process Descriptor (PD) is outside of the operating system area,
the system copies it into a PD from the internal PD Table. The system call returns an error
code if there are no more unused PDs in the table.

The User Data Area (UDA) can be anywhere in memory but is required to be on a paragraph
boundary. The only time the system copies the PD is if it is not within 64k of the System
Data Segment.

Process Descriptors, as well as Queue Descriptors and Queue Buffers, are required to be
within the System Data Segment because they are linked together on various system lists or
am used by more than one process. Because of this, they cannot be in the Transient Process
Area (TPA), where they cannot be protected.

More than one process can be created by a single P_CREATE call if the LINK field of
the PD is nonzero. In this case, it is assumed to point to another PD within the same Data
Segment. After it creates the first process, the system call checks the Process Descriptor's
LINK field. Using this linked list of PDs, a single P_CREATE call can create multiple
processes.

! D~ITAL RESEARCH •

6-145

P_CREATE Cmgm'rent CP/M Pro~-aatm~'s G u i d e

Note: The P_CRKATE system =ill does not check the vafidity of the PD addze=~ pmxd
by the calling process. An invalid PD addr~ can cause Concurrent CP/M to crash if no
hardware memory tm3tection is available on the sy~,m.

Refer to Table 6-5 for a list of error cod= returned in CX.

00

08

10

1 8

20

2 8

L,.K TX~D STAT PR,OR ~O
NAME

'

UDA ," DISK U S E R RESERVED MEM
, ! I

RESERVED PARENT

' ' 1 1 - -
RESER SF~G CNS RESERVED LIST rED

RESERVED

i~-~ 6-t2. l~o. Prot~ l~m-lptor

• DIGITAL I ~ O 1 *
6-146

Cohere'trot CP/M Programmer's Guide

Table 6-17. PD Field Definit~ns

P_CREATE

Field Definition

LINK

THREAD

STAT

Link field for inse~ion on current system list. If this field's initial value
is nonzero, it is assumed to point to another PD. This field is used to
create more than one process with a single Create Process call.

Link field for insertion on Thread List. Initialized to be zero (0).

Current Process activity. Initialized to be zero (0). Activity codes are
listed below:

(30 RUN The process is ready to run. The SIAT field is always
in this state when a process is examining its own
Process Descriptor. The PD is on the Ready List.
The currently running process is always at the head
of Ready List.

O1 POLL The process is polling a device. The PD is on the
Poll List.

02 DELAY The process is delaying for a specified number of
system ticks. The PD is on the Delay List.

06 Read Queue The process is waiting to read a message from a
system queue that is empty. The PD is on the Read
Queue List whose root is in the Queue Descriptor
of the system queue involved.

07 Write Queue The process is waiting to write a message to a sys-
tem queue whose buffer is full. The PD is on the
Write Queue List, whose root is in the Queue
Descriptor of the system queue involved.

R DIGITAL RESEARCH •

6-147

P-CREATE Coucurrant CPIM Preqrmnnmr's Guide

Ttble 6-17. (continued)

Field Definition

08 FLAGWAIT

PRIOR

FLAG

The process is waiting for a system flag to be set.
The PD is in the flag table entry of the flag it is
weiting for.

09 CIOWAIT The process is waiting to attach to a clm'acter I/O
device (console or list) while another process owns
it. The PD is on CQUEUE list whose root is in the
Character Control Block of the device in question.

Cttrrcnt priority. Process scheduling is done based on this field. 'I~ypical
user programs run at a priority of 200. 0 is tim best priority, and 255 is
the worst priority. Tim following is a list of priority usignnmnts used
by mint Concurrent CP/M systems. User processes priorities should be
from 200-254.

I Initialization Process
2 - 31 Interrupt Handlers

32-63 System Processes
64-190 UMefined

191-197 Undefined
198 Terminal Message Proems
199 Undefined
200 Default Priority For Transients

201-254 User Processes
255 Idle

Bit field of flags dem'mining run-tinm clzm'acmristics of a ~ . Ini-
tialize as needed. All undocumented flags am used internally or am
msm'vcd for sysmm use.

O01H SYS System Process. Has privileged access to various
features of Concurrent CP/M. This process can only
be terminamd if the termination code is OFFH. This
process can access restricted sysmm queues. This
flag is turned off if the calling l~'OCess is not a sys-
tem process.

I[Dff~TAL P, LWAItfM •
6-148

Concurrent CP/M Programmer's GuMe

Table 6-17. (continued)

P_CREATE

Field Definition

002H KEEP

NAME

UDA

DISK

USER

MEM

SFLAG

PARENT

This process cannot be ~'minated. This flag is urned
off if the calling process is not a system process.

004H KERNEL This process resides within the operating system.
This flag is turned off if the PD is not within the
operating system.

OIOH TABLE This PD is copied into the PD from the PD table.
When this process terminates, the PD is recycled
into the PD table.

8000H 8087 This process is an 8087-running process.

Process Name. Eight bytes, all eight bits of each byte are used for
matching process names.

Segment address of this process's User Data Area. Initialized to be the
number of paragraphs from the beginning of the calling process's Data
Segment. The User Data Area contains process information that is not
needed between processes. It also contains the System Stack of each
process. Refer to the UDA description below.

Current default disk

Current default user number

Root of linked list of Memory Segment Descriptors that are owned by
this process. Initialized to zero, except for reentrant or shared code RSPs.

Second Flag. If bit 0 of SFLAG (01H) is set, the system suspends this
process whenever it is switched out to the background and runs it only
when it is switched in to the foreground.

Process that created this process. The P_CREATE system call sets this
value at process creation. The parent field is set to zero if the parent
terminates before the child.

im DIGITAl. gF.SEAReH*
6-149

P-CREATE Concurrent CP/M Prolrsmmer's Guide

Ttble 6-17. (contlnoed)

Field Definition

CNS

LIST

RF~ERVED

Ctu'rent default console's number. Initialized to be the default console
number.

Current defeult list device's munber. Initialized to be the default list
device number.

Reserved for internal use. These fields must be initialized to zero (0).

II DIGffAL ILESE,I~HI
6-150

Concurrent CP/M Programmer's Guide P_CREATE

00H

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

58H

60H

68H

FRH

100H

158H

RESERVED I DMA OFFSET I RESERVED

RESERVED

RESERVED
- - + - I ~ I I I

RESERVED

AX BX CX DX
--+ ÷-- - - + - - J I

DI SI BP , RESERVED
- - ÷ 4 ~ ,,F------,-

RESERVED SP RESERVED

INT 0 INT 1
- - ~ I 4 - - - - - = , - - + - - - - + - - + -

RESERVED INT 3
- - + I + - - ~ + - - - - ' - + - -

INT 4 RESERVED

CS DS ES SS
- - + ' ' / - I - , - - , , - - , , - - + ÷ - -

INT 224 ! INT 225
- - + - - + - - + - - , . - - ~ - - + - - + - -

RESERVED
- - + - - + - - + - - + - - + - - + - - + - -

U S E R S Y S T E M S T A C K

- - . - - t - - + - - t - - + - - + - - + - -
c w / s w / RESERVED

RESERVED

- - + - - + - - 4 - - # - - + - - 4 - - @ -
RESERVED

RESERVED

Figure 6-13. UDA - User D a t a A r e a

SFH

FFH

Optlonal
- - 8087

Extenaiol

15FH

The length of the UDA is 256 bytes (352 bytes if 8087 processing is required), and it mug
begin on a paragraph boundary.

m DIGITAL RESEARCH o

6-151

P-CREATE Concurrent CP/M Prosmmmer's Guide

Table &IS. UDA Pidd Definition

Field DefiniHon

DMA OFFS

AX,BX,CX,DX,
DI,SI,BP

SP

The initial DMA OFFSET for the new prec., The ~grnent
address of the DMA is assumed to be the mmc u the initial
Dam Segment (refer to DS below)

The initial register values for the new process, These are typi-
cally set to zero.

initial stack pointer for the new process. The stack pointer
is relative to the initial Stack Segment (refer to SS below). The
initial stack of the new p rec i s must be initialized with the offset
of the first instruction to be ~xecumd by the new process. The
word that the stack pointer points to is the initial insmmion
pointer. Two words must follow the initial IP, wb.kh is filled in
with the initial Code Sagrncnt (refer to CS below) and the initial
flags. The initial flags are set to 0200H, which me, ms that inter-
rupm are on, and all other flags are off. C o n ~ CP/M starts
a new process by executing an Inten~pt ReRun instruction with
the initial stuck.

Note: This stack area is distinct from the User System Stack
at the end of the UDA.

Low Memory

stack area

SS SP IP

0

0

Stuck Initlalkation Area

(CS)

(Hags)

Q DICdTAL RZSf.Agr.~o
6-152

Concurrent CP/M Proip'smmer's Guide

Table 6-18. (continued)

P_CREATE

Field Definition

INT 0, INT 1,
INT 3, INT 4

The initial interrupt vectors for the first five interrupt types can
be set by filling in these fields. The first word of each field is
the Instruction Pointer (IP), and the second word is the Code
Segment (CS) for a list of the interrupt routine that services
these interrupts. Those fields that are zero are initialized to be
the same as the calling processes interrupt vectors. These fields
are typically initialized to be O.

CS,DS,
ES,SS

The initial segment addresses for the new process are taken from
these fields. Those fields that are zero are initialized to be the
same as the calling proceas's Data Segment.

INT 224,
INT 225

Interrupts 224 and 225 are used to conununicate with Concur-
rent CP/M by typical programs. These interrupt vectors are
initialized to be the same as the calling process if these values
are zero. The ability to change these values allows a run-time
system to intercept Concunmt CP/M calls ~ its children make.
The suggested protocol is to keep INT 225 pointing to the Con-
current CP/M entry point and changing INT 224 to point to an
internal routine. When a child process does an INT 224, the
internal routine can filter calls to Concurrent CP/M using INT
225 for the actual Concurrent CP/M call.

RESERVED All reserved fields are used internally and must be initialized
to zero.

USER SYSTEM
STACK

This is the stack area used by the process when it is in the
operating system. The SP variable in the UDA should not point
to this area.

CW* Control word for 8087 processor. Processes bypassing the P_
CLI or P_LOAD system call must set this word to 03FFtt.

SW* Stares word for 8087 processor. Processes bypassin8 the P_CLI
or P_LOAD system call must set this word to 0000H.

*Part of optional 8087 Extension. If the 8087 flag is set in the SFLAG field, this
6-paragraph extension must be included for the 8087 environment.

N ~r r ,ad . ~rO~,XC.H •

6-153

P ~ Y ~ Cr/M rrttmtm=~ Ca~

P_DELAY

Delay For Specified
Number Of System Ticks

Entry thnm~ters:
Register CL: 0gDH (141)

DX: Number of System Ticks

The P_DELAY system call causes the calling process to wait until the specified mhmber
of system ticks has occurred. The P_DELAY system call avoids the necessi~ of prognunmed
delay loops. It allows other processes to use the CPU rmnurce while tim calling process
waits.

The length of the system tick varies among installations. A typical system tick is 60Hz
(15.67 milliseconds). In Europe, it is likely to be 50Hz (20 milliseconds). The ezact length
of the system tick can be obtained by reading tbe TICKS/SEC va/uv from the System Data
Segment (refer to the S_SYSDAT system call).

Them is up to one dck of uncertainty in tlz exact amotmt of tirm dekyed. T l / k ~ m
the P__DELAY system call being called, uyncbronoualy ~ d~ actual ~ haM. The
P_DELAY system call is guaranteed to delay the calling process at least the number of
ticks specified. However, when the calling process is reacheduled to run, it might wait quite
a bit longer if there are higher priority Invccsscs waiting to run. The P...DELAY system call
is used primarily by prognum ~ need to wait g0ecific amounts of time for I/O evonm to
occur. Under tbes¢ conditions, the calling process usually has a very high priority level. If
a process with a high priority calls the P_DELAY system call, tbe actual delay is typically
within a system tick of the amount of ~ wanted.

• 17f.21"AL m C H o
5-154

Ommrrmt C!¢~ ~ ¢ ~ l e P_Di~ATCH

P_DISPATCH

Call Dispatcher

Entry P ~ r ~ t ~ :
Register CL: 08EH (142)

The P_DISPATCH system call forces a rcschedule of processes that are waiting to run.
Normally, dispatches occur at every system tick intermix (usually 60 times a second), and
whenever a process releases a system resource. Dispatching also occurs whenever a process
needs a system resource that is not currently available. A CPU-bound process runs for no
more than one system tick before a dispatch is forced. The dispatch occurs at the next system
tick.

The Concurrent CP/M Dispatcher is priority driven, with round-robin scheduling of equiv-
alent-priority processes. When a process calls the P_DISPATCH system call, it is resched-
tried, so that processes with higher or equivalent priorities are given the CPU before the
call;.ng process obtains it again. The calling process regains control of the CPU resource
when it becomes the highest priority process again.

n DICdT, JJ, L~..~Ra.lo

6-155

P--LOAD CP/M P r ~ ' a i m r ' a

P_LOAD

Load A CMD "Iype File Into Memory

Entry Parmneten:
Reg/ster CL: 03BH 09)

DX: FCB Address - Offset
DS: ~ A d d ~ s - Segment

Reutrned Values:
Register AX: Base Page Address

0Hq~-I on error
BX: Same as AX
CX: Error Code

The P_.LOAD system call loads a disk CMD type file into memory. Upon entry, register
DX contaim the offset, relative to DS, of a successfully opened I~B that specifies the CMD
file to load. Upon return, regiater AX has the value 0FFFH-I if the program load failed.
Otherwiae, AX co~taim the peragraph address of the Base Page belonging to the loaded
program. The imxagmph addmn and lensth of each group loaded from the CMD file is found
in the Brae Page. See Sectiom 3.2 rout 3.3.

Note that before calling P_LOAD, the calling process m a t mtablish the DMA address of
where file CMD file is to be loaded. This is ~ with F_DMASEG and F_DMAOI~.

Note: Open the CMD file in Read-Only mode and close it once the load is completed.

Refer to Table 6-5 for a list of error codes returned in CX.

I! DIGITAl. ~L~,~r..He

CIS~! lSr~rsmma.'s P_.NY~R

P_PDADR

Return The Address Of The
Calling Process's Process Descriptor

Entry Parameters:
Register CL: 09CH 056)

Returned Values:
Register AX: PD Address - Offset

BX: Same as AX
ES: PD Address - Segment

The P_PDADR system call obtains the address of the calling process's Process Delmil~Or.
For a description of the format of the Process Descriptor, refer to the P_CREATE system
call.

mnn I~IGrI'AL It.I~P..4,RCH •

6-157

P ~ O R I T Y

P_PRIORITY

Set The Priority Of
The Calling Pro¢~

Entry Patsme~rs:
Register CL: 091H (145)

DL: Priority

P_PRIORITY system call sets the priority of the calling process to the specified value.
This system call is useful in situations wl'm~ a process needs to have a high priority during
an initialization phase, but aflcrwsrds can run at a lower lxiority.

The be, st or highest priority is 00H, while the worst or lowest priority is 0FFH. Tnmsient
processes arc initialized to run at CgH (200 decimal) by the P_CLI system call

! DIC~AL ~ . ,~CI ' I "
6-158

Concurrent CP/M Prolgrammer'l Guide P_RPL

P_RPL

Resident Procedure Library

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

097H (151)
CPB Address-Offset
CPB Address - Segment

01H if RPL not found
RPL return paramet~-

BX: same as AX
CX: Error Code
ES: RPL return segment if addr

~ p A + m " ~ + m ' F ~ ÷ ~ + ~ + " - - I
NAME |

Figure 6-14. CPB - Call Parameter Block

m DiGiTAL RESEARCH ~

6-159

P...RPL CoflemTent CP/M Prolrammer*s Guide

"Ikb~ 6-19. CPB Fl~,d Deflmfl:ioum

Field D@~rion

NAME Name of Resident Procedure, eight ASCII c ~

PARAM Pamnmmr to send to the Resident

P_RPL permits a pmceu to call a system call in an optional Resident Prtr, edure Library
CRPL).

P._.RPL opens a system queue with the specified name. If the Q_OPEN system call suc-
ceeds, P_.RPL thee.ks the queue to verify 0utt it is an RPL-type queue. If eithm- tim Q_OPEN
fails, or ff it is not an RPL-type queue, P_.RPL returns to the calling Imx:ess with an
eerie.

P_RPL reads a message fi'om the queue that contains the address of the specified system
call. It then places the PARAM field of the CPB in register DX, and #aces the calling
~ s ' s Data Segment address in register DS. P..R.PL performs a Far Call instruction to
the address it obtains from the queue message. Upon return from the RPL, the system call
copies the BX regismr to tim AX regkt~ and then retarm to the calling pruee~s.

Note: The P__RPL system ¢£1 does not writa the midmss of tim Resident Prcc~um back
to the queue. Tim Reaidcnt Procedure itself rrmst do this. If the R=aldemt Procedure is to be
roentmnt, it must wrim the message into the queue upon entry. If it is to be serially reusable,
the procedure must write the message just Imfom returning.

Re, fer to Table 6-5 for • list of m'ror codes returned in CX.

m DiGItAL [t[$O#.Cl-ll
6-160

C P ~ P r q ~ r m ~ r ~ G~kie P_T~,M

P_TERM

Ter~nate Calling Process

Entry Parameters:
Register CL: 08FH (143)

DL: Term Code

Returned Values:
Register AX: OFFFFH on failure

BX: Same as AX
CX: Error Code

The P_TERM system call terminates the calling process. If the termination code is not
0FFH, the system call can only terminate a user process. If the termination code is 0FFH,
the system call can t~minate the calling process even though the proceas's SYSTEM flag is
on. P_TERM cannot terminate a process with the KEEP flag on. If the termination is
successful, the system call releases the mutual e~clusion queues owned by the process. It
also releases all memory segments owned by the process, and returns the Process Descriptor
to the PD table.

A process can own one or more of the following resources: memory segments, consoles,
printers, mutual exclusion messages, and system Lock List enlries that record open files and
locked records. When a process terminates and releases its resources, these resources become
available to other processes on the system. For example, if a terminating process releases a
system console, the console is usually given back to the console's 'IMP. This occurs when
the TMP is the highest priority process waiting for the console.

If the system call returns to the calling process, the P_TERM call has failed for one of
two reasons. Either the process has the KEEP flag on, or it has the SYSTEM flag on, and
the termination code is not OFFH.

W D~ITAL RL~A~CH t

6-161

P_TERMCPM Concurrent CP/M Prolrmnmer~ Gtdde

P _ T E R M C I ~

Entry Parameters:
Register eL: OOH ((3)

Returned Values:
Register AX: 0FFFFH on failure

BX: Same m AX
CX: Error Code

The P_TERMCPM system call terminat¢~ the calling pmcem, xr.b=min8 all system resotuum
owned by the proce~.

P_TERMCPM is implemented internsl]y by calling P_TERM with the termination code
set to 00H.

Under CP/M-86, the P_TERMCPM system call has a further ergument that allows a
lm3ceu not to release its memory, This argument places a piece of code into memory that
becomes an interface for later prosrams. Concurrent CP/M does not include this option.
Memory segments are not recovered by the system until all processes that own the memory
segment have ~leased it.

Refer to Table 6-5 for a list of returned error codes.

El DIGITAL Rrr.SLARCHe
6-]O2

Concurrent CP/M Programmer's Guide P_TERMCPM

6.2.8 ~ System Calls

Queue system calls under Concurrent CP/M use the Queue Parameter Block data structure
to pass parameters to and from the operating system. Listing 6-3 shows the sl~ructur¢ of the
Queue Parameter Block and the equates for its fields.

~ + ~ t ~ * ~ t ~ * ~ t ~ + ~
• oOOOH / OUEUEIO / "O000H / SUFFER I

~ + ~ + ~ + NAME .I. i ÷ ~ 4. - . - - , - - ~

Figure 6-15. QPB - Queue Parameter Block

Table 6-20. QPB Field Definitions

Field Description

QUEUEID

* O000H

BUFFER

NAME

Queue number field; filled in by a Q_OPEN operation

Reserved for internal use: must be initialized to zero

Offset address of Queue Message Buffer

Name of Queue for Q_OPEN operation

m DIGITAL RESEARCH •

6-163

P_TERMCPM Concm'rent CP/M ProlP'zmmer's Guide

.@@@@@@@@@@@@@@@@M@@@@@@@@@~M@@MM@@MM@@@@@@@@@@@@@@@@
s

. @
e

;* QPB - Queue Parameler Block Definition
o~

s

;* O0 O000H q u e u e i d O000H b u f f e r
J

' * 0 8 name J

i

p

;* q u e u e i d - Queue I D , a d d r e e e o f QD

1" b u f f e r - a d d r e s e to r e a d / w r i t e i n t o / f r o m
;* name - name o f queue (f o r open o n l y)
° ~
J

i

qpb._O equ
qpb_queueid equ
qpb_buffer equ
qpb_name equ

word p t r 0
word p t r qpb_O + word
word p t r q p b _ q u e u e i d + 4
b y t e p t r q p b _ b u f f e r + word

qpb _ l en equ
qnams i z equ

qiob_name + q n u s S z
8

Lisl/ng 6-3. Queue Parameter Block Definition

II DIGITAL ~ H •
6-164

Concurrent CP/M Programmer's Guide Q_CREAD

Q_CREAD

Conditionally Read A Message
From A System Queue

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

08AH (138)
QPB Address - Offset
QPB Address - Segment
QPB_queueid filled in by previous
Q_OPEN
QPB_buffer set to message buffer
offset

0 on suot~A~ss
0FFFFH on failure

BX: Same as AX
CX: Error Code message in buffer

The Q_CREAD system call is analogous to the Q_READ system call, but it returns an
error code if there are not enough messages to read, instead of waiting for another process
to write to the queue.

Refer to Table 6-5 for a list of error codes returned in CX.

I I DIGITAL R.~F.~CH •
6-165

Q_CWmTE CP/M Pmjrmsm~'J

Q_CWRITE

Conditionally Write A Message
To A Sysmm Quzue

Entry Pamnmmrs:
Regirmr CL:

DX:
DS:

Returned Valuea:
Register AX:

OgCH 040)
QPB Addmu - Offset
QPB Address - Segment
QPB_qtmueid filled in by previous
Q_OPI~N
QPB-buffer set to message buffer
offset message in current DMA
buffer

0 on success

0FFFFH on failure
BX: Same as AX
CX: Error Code

The Q_CWRrrE system call is analogous to the Q_WRI'I~ sys~m call, but it returns an
;rror code if there is not enough system queuz buffer space for the message to be written,
reread of waiting for another process to read from the queue.

Refer to "I~ble 6-5 for a list of cczor codes mmrmd in CX,

• DIC~"I'AL ~ e

C~-m'rem CP/M ero~'mm~'~ G , , ~ Q _ v n , g r ~

Q_DELETE

Delete A System Queue

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

088H (136)
QPB Address - Offset
QPB Address - Segment
QPB_queueid filled in by a
previous Q_OPEN call

0 Oil succe s s

OFFFFH on failure
BX: Same as AX
CX: Error Code

The Q_DELETE system call removes a system queue from the system. The system returns

error codes if the queue cannot be deleted or if the queue has not been opened prior to the
Q_DELETE call.

Refer to Table 6-5 for a list of error codes returned in CX.

I I DIGITAL RESF.ARCH •

6-167

Q_MAKE Concurrent CP/M Prolrmmmer's Guide

Q_M AI~

Make A System Queue

Entry Paran~tus:
Register CL:

DX:
DS:

Returned V~u~:
Register AX:

086H (134)

QD Address - Offset
QD Addmu - Segment
QD fined in

0 on 8uc, c~l i
OFFFFH on failure

BX: Stone u AX
CX: Error Code

... NAME

G S " 0 0 0 0 H " 0 0 0 0 H
~ , , ~ 4 , 4 ` ~ ,

I ° 0 0 0 0 H B U F F E R

• m . [. u

N A M E . .
, ~ ~ ~ = m , u i i a

M S G L E N

• 0 0 0 0 H

Figure 6-16. QD - Queue Dmcrlptor

i Dk'arrAL RLV, A~]e

6-168

Concurrent CP/M Programmer's Guide

Table 6-21. Queue Dmcrlptor Field De~i f lom

Q _ M A K E

Field Definition

FLAGS

NAME

MSGLEN

NMSGS

BUFFER

* O000H

Queue Flags. The bits are defined as follows

0 0 0 1 H - Mutual ~xclusion queue
0002H - Cannot be deleted
0004H - Restricted to system processes
0008H - RSP message queue
0010H - Used internally
0020H - RPL address queue
0040H - Used internally
0080H - Used internally

Remaining flags reserved for furore use

8-byte queue name. All 8 bits of each character are matched on a
Q_OPEN call.

Number of bytes in each logical message

Maximum number of logical messages to be supported. If the number
of messages written to the queue equals this maximum, no more mes-
sages arc allowed until a message is read.

Address of the qt~t~ lxtt~. This buffex must be (NMSGS * MSGLEN)
byte, s long. The address is an offset relative to the DS register. This
field is unused if the QD resides outside of the System Data Segment.
Typically this field is 0 if the queue is being creatai by a transient
program. RSPs that create queues must initialize this field to point to
a buffer. The Data Segment of an RSP's queue is considered part of
the System Data Segment unless it is beyond 64k of the beginning of
the System Data Segment.

For internal use. Must be initialized to zero.

II DIC~rAL It~D~It.£+H •
6-169

Q_MAKE Co.m-rent CP/M Prolrammer~ Gaide

Every system qumm under Concurnmt CP/M is u m c i a ~ with a Quctm Deaa'fiptor that
rr.sidu within the Cohere'rant CP/M $y~=n Dam $egnmnt. In ttm Q_MAKE system call,
tim calling process pauvs tim addrcu of a Queue Dc~'iptor. If this Queue Dmcriptor is
within the Concurrent CP/M Syst=m Data Scgnmnt, the system uses it directly for the System
Queue. If tlm Queue Dm~riptor is outside of the Symm Dam Segment, tim syre, m obtains
a Queue Descriptor from an internal Queue Descriptor table. If th¢~ arc no untmcd Queue
DesmptorJ in tl~ internal table, the lyste.m call rt~uras an error code.

Rdcr to Table 6-5 for a list of error codes mturued in CX.

The buffer for a syst=m queue must also reside within the System Data Area. For non-
00H length buffe~'s, resident buffers am used dirtily. The systmn obtains a buffer from the
Quet~ Buffer Area if the buffer does no¢ reside within tl~ Sys~m Data Segn~nt. The size
of the buffer is calculated from the NMSGS and MSGLHN fields. Tim sysmm call returns
an error code if them is not enough ummed buffer area I¢fl to acr, omnmdem this uew buffer.

All system queues must have unique ~ . The system call returns an ~ code if a
system queue al m mists by i l l given name.

Under ConmLrrcnt CP/M, all system queues must be explicitly opened (refer to the
Q_OPEN sysmm call) before being ued to read or wrim memgm or to ~ tl~ quctm.

• DICdI'AI. t o o l *
6-170

~ / M Pmllnmm~'~ Glide Q_OegN

Q _ O P E N

Open A System Queue

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

087H (135)
QPB Address - Offset
QPB Address - Segment
QPB_name filled in

O on StlC.,ce~
OFFFFH on failure

BX: Same as AX
CX: Error Code

QPB_queueid filled in

All system queues under Concurrent CP/M must be explicitly opened before a read, write,
or delete operation can be done. The Q_OPEN system call examines each existing system
queue and attempts to match the name in the QPB with the name of a system queue. All
eight bytes of the name must match for a successful open. All bits of each byte are examined.
If the open operation is successful, the Q_OPEN system call modifies the Queue ID Field
of the QPB. Once the the queue is opened, subsequent reads, writes, or a delete are allowed.

Refer to Table 6-5 for a list of error codes returned in CX.

II DIGffAL gF.SlDL~H •
6-171

Q..RZ~ CP/M PrOlp'm~w~l

Q ~

Read A Message From A System Queue

Entry Psmnm~:
Register CL:

DX:
DS:

089H (137)
QPB Addmn - Offset
QPB Addmu - Segment
QPB_queueid filled in by previous
Q_OPEN
QPB_buffer x t to messnge buffer
offmt

Returned Values:
Register AX: O on 8 ~

OFFFFH on failu~
BX: Same as AX
CX: Error Code memmge in buffer

The Q._.READ symem call roads s mmage from • system queue that vats previously
opeued by the ¢~ing i x o ~ . T"~ ,,yn'm,',", c.~ mm.rm m re'rot rode if the queue vnm not
Ixeviomly opened or if the system queue ha8 been deleted since the Q_OPEN call. If there
are not enough messages to read from the queue, the calling l~c, eu waits until another
process writes into the queue before retm'ning.

Refer to Table 6-5 for a list of error codes returned in CX.

6-172

c m e f m s t CP/M Prevmmer~s C~tde Q_wRrrlz

Q_wRrrE

Write A Message To A System Queue

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

08BH (139)
QPB Address - Offset
QPB Address - Segment
QPB_queued filled in by previous
Q_OPEN
QPB_buffer set to message buffer
offset

0 Oil suc.~e$$
OFFFFI-I on failure

BX: Same as AX
CX: Error Code

The Q_WRITE system call writes a message to a system queue that was previously opened
by the calling process. The system call returns an error code if the queue was not previously
opened or if the system queue has been deleted since the Q_OPEN call. If tbere is not enough
buffer space in the queue, the calling process waits until another process reads from the
queue before writing to the queue and returning.

Refer to Table 6-5 for a list of error codes returned in CX.

B ~GITAL RESEARCH •

6-173

6.2.9 System Information System CsJls

CP/M Prolrsmmm.'s

S...BIX)SVER

Return BDOS Version Number

Entry Paramctvrs:
Rcghster CL: OCH (12)

Returned Values:
Register AL: 31 (BDOS Version 3.1)

AH: 14 (Concurrent CP/M)
BX: Same as AX

The S_BDOSVER system call returns the BDOS file systmn version number, allowing
version-independent pmgnunming.

AL High Nibble = BDO8 V~raion Number

AL Low Nibble ffi BDOS Revlelon Level

AH High Nibble = CPU Type

0 = 8080
1 = 8088

AH Low Nibble ffi OS Type

0 = CP/M
1 = MP/M
4 = Concurrent CP/M
6,7 to E = Reserved

a s ,

2 = CP/M w/networking
3 = MP/M w/networking
8 = Concurrent CWM

w/networking

Figure 6-17. BIX)S Version Number Format

• DIGITAL RF.-~.AXCH •
6-174

Cmmrrem CP/M Pre~-amm~'. Guide K..BIOS

S_BIOS

Call BIOS Character Routine

Entry Parameters:
Register CL:

DX:
DS:

032H (5O)
BIOS Desc. Addr. - Offset
BIOS Desc. Addr. - Segment

Returned Values:
Register AX: BIOS Return

BX: Same as AX

Figure 6-18. BIOS Descriptor Format

The S_BIOS system call is provided under Concurrent CP/M for compatibility with pro-
grams generated under CP/M-86 that use this system call (Function 50). Under Concurrent
CP/M, only routines that interface with character devices are supported. The arguments to
character routines such as CONIN and LIST must be converted to those appropriate for the
Concurrent CP/M XIOS. Refer to the Concurrent CP/M System Guide for further information
about the XIOS.

Note: Calls to the XIOS Console Status, Input, and Output system calls do not go to the
XIOS if the referenced device is a virtual console.

[] ~G~AL P.ESEA~CHe
6-175

LOSVIDt C.mm'rmt CP/M Pmlrmmsr 's

K_OSVgR

Return The Version Of Current
Concurrent CP/M System

Entry Parameten:
Rcgistm" CL: 0A3H (163)

Returned Values:
Register AX: Version Number (01#311-I)

BX: Same as AX
CX: E n o r Code

The S_OSVER system call provide~ information that allows version-independent pro-
grammins. The system call returns a two-byte value, with AH set to 014H for Concurrent
CP/M, and AL set to the Concurrent CP/M version leveJ. The AH register contains a value
set to the type of .operating system. A value of 01431H indicate8 Concurrent CP/M 3.1.

Refer to Table 6-5 for a list of error codes returned in CX.

AL High Nibble = Concurrent CWM-I~ Vemlon Number

AL Low Nibble - Concurrent CWM Revision Level

AH High NlbbJo = CPU Type

0 = 8080
1 = 8 0 0 6

AH Low Nibble = OS Type

0 = CP/M
1 • MWM
4 • Concurrent CWM
5,7 to E = R~Nmrved

2 = CP/M w/networking
3 = MWM w/networking
e [] Concurrent CP/M

w/networking

Figure 6-19. Operating System Venion Number Format

I I Dr.dTAL RESEAW.He
6-176

C e a e a ' r ~ Ct'/l~ l h e S r m m ~ G=kle

S_SERIAL

Return Current System's
Serial Number

Entry Parameters:
Register CL: 06BH (107)

DX: SERIAL Address - Offset
DS: SERIAL Address - Segment

Returned Values:
SERIAL filled in

EIzIzIT_IzI
Figure 6-20. SERIAL Number Format

S_SERIAL returns the Concurrent CP/M serial number to the addressed, six-byte SERIAL
field as a six-byte ASCII numeral.

I I D|GtT~. RE..~ARCHO
6-177

S..SYSDAT Concurrem CP/M Programmer's Guide

S..SYSDAT

Return Address Of The
System Dam Segment

Entry Parameters:
Register CL: 09AH (154)

Re. ra i l V a l ~ :
Register AX: Sysdat Ackh~s - Offset

BX: Same as AX
F_& Sy~lat Address - Segment

The S_SYSDAT system call returns the address of the System Data Segment of the calling
process. The System Data Segment conmim all Pmc.eu Desm-ipton, Queue Descriptms, the
room of system lists, and other internal data that Concurrent CP/M uses.

Figure 6-21, illustrates the SYSDAT Table and its fields.

i ~.drAI. Jt£.~JtCHo

6-178

Concurrent CP/M Programmer's Guide S_SYSDAT

00H

08H

10H

18H

20H

28H

30H

3BH

40H

48H

6OH

58H

6OH

68H

70H

78H

6OH

88H

90H

98H

A0H

SUP ENTRY J RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

XlO$ ENTRY / XIOS INIT
~ + ~ ÷ ~ l : .. + ~ ~

RESERVED

DISPATCHER
I

CCPMSEG

NLCB NCCB

TEMP I TICKS
DISK~ /SEC

MDUL
~ +

RLR

RESERVED

VERSION

TOD I TOD
_HR -.MIN

OPEN_FILE

RSPSEG

N- [SYS-
FLAGS DISK

LUL

4-
MFL

+

QMAU
,p

DLR
+

THRDRT

VERNUM

TOD NCON
_SEC I DEV

LOCK_ ~ OPEN_
MAX I MAX

~ + ~ - ~

PDISP
I J '

ENDSEG
I

MMP

CCB

PUL
+

DRL

QLR
!

CCPMVERNUM

NLST{ NCIO
DEV DEV

OWNER_8687

RESER NVCNS
-VED

RESER DAY
-VED FILE

FLAGS

QUL
4-

I
PLR
4-

MAL

TOD_DAY

LCB

RESERVED

RESERVED

RESERVED I XPCNS

OFF_8087 SEG_8087 RESERVED

Figure 6.21. SYSDAT Table

an DIGffAL RESEARCH"
6-179

S._SYSDAT Concurrent CP/M Progrsmmer's Guide

Table ~?~. ~f~DAT ~ Data FJekk

Field Explanation

SUP ENTRY

XIOS ENTRY

XIOS IN1T

DISPATCHER

PDISP

CCPMSEG

RSPSEG

Double-word address of the Supervisor entry point for inter-
module comn~nioation. All internal system calls go through
this entry point.

Double-wont address of the Extended I/O System entry point
fo~ intarmoduk comnmnication. All XIOS function calls go
through this entry point.

Double-word address of the Extended I/O System Initialization
entry point. System hardware initialization takes place by a
call through this entry point.

Double-word address of the Dispatcher enlry point that handles
interrupt returns. Executing a Far Jump to this address is equiv-
alent to executing an Interrupt Return instruction. The Dis-
patcher routine tames a dispatch to occur and then executes
an Interrupt Return. All registers are preserved and one level
of stark k used. This location .houid be used as an exit point
by all XIOS intet'r~lX ~ that ~ the DEV_SET~AG
system call.

Double-word address of the Dispatcher entry point that causes
a dispatch to occur with all registers preserved. Once the dis-
patch is done, a RETF L~truction is executed. Executing s
JMI~ PDISP is equivalent to execttfing a REI'F instracfion.
This location should be used as an exit point whenever the
XIOS raleases a resource t l ~ might be w~ted by a waiting
process.

Starting paragraph of the operating system area. This is also
the Code Segment of the Supervisor Module.

Paragraph Address of the first RSP in a linked list of RSP Data
Segments. The first word of the data segment points to the next
RSP in the list. Once the system has been initialized, this field
is zero.

[] DICXI'AL ~ H m
6-180

Concurrent CP/M Programmer's Guide

Table 6-22. (continued)

S._SYSDAT

Field Explanation

ENDSEG

NVCNS

NLCB

NCCB

NFLAGS

SYSDISK

MMP

DAY FILE

TEMP DISK

TICKS/SEC

LUL

CCB

First paragraph beyond the end of the operating system area,
including any buffers consisting of uninitialized RAM allo-
cate~i to the operating system by GENCCPM. These" include
the Directory Hashing, Disk Data and XIOS ALLOC buffers.
These buffer areas, however, am not part of the CCPM.SYS
file.

Number of virtual consoles, copied from the XIOS Header by
GENCCPM.

Number of List Control Blocks, copied from the XIOS Header
by GENCCPM.

Number of Character Control Blocks, copied from the XIOS
Header by GENCCPM.

Number of system flags as specified during GENCCPM.

Default system disk. The CLI looks on this disk if it cannot
open the command file on the user's current default disk. Set
during GENCCPM.

Maxinmm memory allowed per process. Set during GENCCPM.

Day File option. If this field is 0FFH, the operating system
displays file logging information on system consoles at each
command. Set during GENCCPM.

Default temporary disk. Programs that create temporary files
should use this disk. Set during GENCCPM.

The number of system ticks per second.

Link list root of unused Lock List items.

Address of the Character Control Block Table, copied from the
XIOS Header by GENCCPM.

a DIGITAL RESEARCH e
6-181

8_SYSDAT Concurrent CP/M Progmmmer~ Guide

Table 6-2-. (continued)

FieM Explanarfon

FLAGS

MDUL

MFL

PUL

QUL

QMAU

RLR

DLR

DRL

PLR

THRDRT

QLR

MAL

VERSION

VERNUM

Address of the Flag Table.

Link list root of unused Memory Descriptors.

Link list root of free memory partitions.

Link list root of unused Process Descriptors.

Link list root of unused Queue Descriptors.

Queue Buff= Memory Allocation Unit.

Ready List Root. Linked list of PDs that are ready to run.

Delay List Root. Link list of PDs that are delaying for a spec-
ified number of system ticks.

Dispateh~ Reedy List. Temporary homing #ace for PDs that
Mve jmt Men ~ reedy m ~,n.

Poll List Root. Linked list of PDs that are polling on devices.

Thread List Root. Linked list of all current PDe on the system.
The list is threaded through the THREAD field of the PD
inztud of the LINK field.

Queue List Root. Linked llst of ell System QDs.

Link list of active memory allocation units. A MAU is created
from one or more memory partitions.

Address, relative to CCPMSEG, of version string.

Concurrent CP/M version number (system call 12,
S._BDOSVER).

Concurrent CP/M version number (system call 163, S_OSVER). CCPMVERNUM

6-182

Concurrent CP/M Programmer's Guide

Table 6-22. (continued)

S_.SYSDAT

Field Explanation

TOD_DAY

TOD_HR

TOD_MIN

TOD_SEC

NCONDEV

NLSTDEV

NCIODEV

LCB

OPEN_HLE

LOCK_MAX

OPEN_MAX

OWNER_.8087

Time-of-Day. Number of days since 12/31/77.

Time-of-Day. Hour of the day.

Time-of-Day. Minute of the hour.

Time-of-Day. Second of the minute.

Number of XIOS consoles, copied from the XIOS Header by
OENCCPM.

Number of XIOS list devices, copied from the XIOS Header
by GENCCPM.

Total mmber of chang-ter devices (NCONDEV + NLSIDEV).

Offset of the List Control Block Table, copied from the XIOS
Header by GENCCPM.

Open File Drive Vector. Designates drives that have open flies
on them. Each bit of the word value represents a disk drive;
the least significant bit represents Drive A, and so on through
the most significant bit, Drive P. Bits which are set indicate
drives containing open files.

Maximum number of locked records per process. Set during
GENCCPM.

Maximum number of open disk files per process. Set during
OENCCPM.

Specifies 8087 information. If set to 0 ~ , the system
assumes there is no 8087 in the system. If set to 0, there is an
8087 but no one owns it. If set to any other value, the system
assumes that this value is the PD offset of the 8087 current
process.

[] DIGITAL RESEARCH •

6-183

S..SYSDAT Conem'rent CP/M Prolntrnmer% Guide

Table 6-22. (continued)

Field Explanation

XPCNS

OFF_8087

SF_,G_8087

Specifies the number of physical consoles.

Offset of the hardware-dependent g087 interrupt vector, If you
supply your own 8087 exception handler routine, store the
offset of your exception handler routine at this offset address.

Segment address of the hardware-dependent 8087 interrupt
vector. If you supply your own 8087 exception handler routine,
store the segment address of your exception handler routine at
this segment address.

u 12C,¢fAI. gf.SDklt~o
6-184

Concurrent CP/M Programmer's Guide T_GET

T_GET

Get System Time And Date

Entry Parameters:
Register CL: 069H (105)

DX: TOD Address - Offset
DS: TOD Address - Segment

Returned Values:
Register AL: Seconds

TOD filled in
(Days, Hours and Minutes only)

DAY HOUR MIN SEC F,_I_LIB
Figure 6-22. TOD. Time-of.Day Structure

I I DIGffAI. RESEARCH •

6-185

T_GET Concurrent CP/M Programmer's Guide

6.23. Tbx, .of . l~y ~ l ~ t ~ o m

Field Definition

DAY

HOUR

MIN

$EC

The number of days since 12/31/77. The day is stored as a 16-bit integer.

The current hour of the current day. The hour is represented as a 24 hour
clock in 2 binary ctxkd decimal (BCD) digits.

The current minute of the current hour. The minute is stored as 2 BCD
digits.

The current second of the current minute. The second is stored as 2 BCD
digits.

The T_GET system call obtains ti~ system internal ~ and date. The calling process
passe~ the address of a four-byte data structure that r~.eive~ the ~ and date values. This
system call is equivalent to the T_SECONDS system call, except that it does not return the
SECONDS field of the inteanal time.

i DiCdlrAL ~ o
6-186

CP/M Prq~mmm"n 61~le T..BECOND$

T_SECONDS

Get Current System Time And Day

Entry Psrameters:
Register CL: 09BH (155)

DX: TOD Address - Offset
DS: TOD Address - Segment

Returned Values:
TOD filled in
(Days, Hours, Minutes, and S~conds

The T_SECONDS system call returns the current encoded time and date (including sec-
onds) in the TOD structure passed by the caUing process.

I D ~ T ~ R ~ R C H •
6-187

T - B ' T C.mmrrmt C~tM ~usrmm.m-~ C.~m

T_SET

Set System Time And Date

Entry Psmmet~:
Register CL: 068H (104)

DX: TOD Address - Offset
DS: TOD Addrem - Segment

The T_SET system call sets the system inlm~J time and date. The calling process passes
the address of • 4-byte structure containing fl~e time and da~ specification.

The dat= is mpre, Jented st a 16-bit i n ~ , r wf~ day 1 corresponding to January I, 1978.
The time is represented as two bytes hours and minutes stored as two BCD disits.

Under Concunmlt CP/M, this system call also sets the second field of the system time and
date to 00H.

e.~ of sect,, 6

I DIGITAL tU...~umt.X.HO
6-188

Appendix A
System Call Summary by

Function Number

This appendix lists the Concurrent CP/M system calls by function number including the
pm'ameters a process must pass when calling the function, and the values the function returns
to the process.

Table A- l , System Call Summary by Function Number

Dec Hex Mnemonic Input Parameters Returned Values

0 0 P_TERMCPM none AX = Rtn Code
1 1 C_.READ none AL = char
2 2 C_WRITE DL = char none
5 5 L_WRITE DL = char none
6 6 C_RAWIO see def see def
9 9 C__WRITESTR DX = .Buffer none
I0 A C_READSTR DX = .Buffer see def
11 B C_STAT none AL = l if ready

= 0 if not ready
12 C S_BDOSVER none AX = Version#
13 D DRV_ALLRESET none see dof
14 E DRV_SET AL = Drive # see clef
15 F F_OPEN DX = .FCB AL = Dir Code
16 10 F_CLOSE DX = .FCB AL = Dir Code
17 I l F_SFIRST DX = .FCB AL = Dir Code
18 12 F__SNEXT none AL = Dir Code
19 13 F_DELETE DX = .FCB AL = Dir Code
20 14 F_READ DX = .FCB AL = Err Code
21 15 F_WRITE DX = .FCB AL = Err Code
22 16 F_MAKE DX = .FCB AL = Dir Code
23 17 F_RENAME DX = .FCB AL = DirCode
24 18 DRV_LOGINVEC none AX = Login Vect.
25 19 DRV_GET none AL = Cur Drive
26 IA E..DMAOFF DX = .DMA none
27 IB DRV_ALLOCVEC none ES:AX = A l l o c Addr

I~' DIGITAL RESEARCH e

A- I

A System Call Summary Conetwrmt CP/M Prolrammer'w Guide

Table A-1. (continued)

Dec Hex Mnemonic Input Parameters Returned Values

28 IC DRV__SETRO none see def
29 ID DRV_ROVEC none AX -- R/O Vect.
30 1E F_.ATI'R.IB DX = .FCB see def
31 1F DRV_.DPB none ES:AX -- DPB Addr
32 20 F_USERNUM DL -- 0FFH (get) AL = User #

-- User # (eet) none
33 21 F__READRAND DX = .IK2B AL = Err Code
34 22 F_WRITERAND DX = .FeB AL = Err Code
35 23 F_SIZE DX = .FCB R0, R1, R2

AL = Dir Code
36 24 F_RANDREC DX = .FeB R0, R1, R2
37 2.5 D R V _ R ~ E T DX = drive Vegt AL = Err Code
38 26 DRV_ACCESS DX = drive Vtmt none
39 27 DRV__FREE DX = drive Vect none
40 28 F_WRITEZF DX = .FeB AL = Err Code
42 2A F...LOCK DX = .FCB AL = Err Code

4.3 2B F_UNLOCK DX = .FeB AL = Err Code
44 2C F_.MULTISEC DL-- # of Records AL = Rtn Code
45 2D F ~ O D E DL = Error Mode nora
46 2E DRV_SPACE DL = Drive # see clef
47 2F P_CHAIN see clef none
48 30 DRV_FLUSH none see clef
50 32 $__BIOS DX = .BD AX = BIOS Rtn
51 33 F...DMASEG DX = .DMA Seg none
52 34 F...DMAGET none ES:AX = DMA Addr
53 35 MC_MAX DX = .MCB see clef
54 36 MC_ABSMAX DX = .MCB see clef
55 37 MC_ALLOC DX - .MCB see def
56 38 MC_.ABSALLOC DX = .MCB see def
57 39 MC._FREE DX --- .MCB see clef
58 3A MC- .AI£2RF2 none none
59 3B P_LOAD DX = .FeB AX = BP Addr
99 63 F_TRUNCATE DX = .FeB see def
100 64 DRV_SETLABEL DX - .FeB AL = Dir Code
101 65 DRV_GETLABEL DX = Drive # AL = Label Data Byte
102 66 F_TIMEDATE DX = .XFCB AL -- Dir Code
103 67 F_WRITEXFCB DX = .XFCB AL = Dir Code
104 68 T_SET DX - .TOD none

• DIGrrAL IP.IL,~.ARCI,,IO
A-2

Coneurteat CP/M Programmer's Guide

Table A-1. (eontlnued)

A System Call Summary

Dec Hex Mnemonic Input Parameters Returned Values

105 69 T_GET DX = .TOD AL = seconds
106 6A F_PASSWD DX = .Password none
107 6B S_SERIAL DX = .serial# serial #
109 6D C_MODE DX = Con Mode none

= 0FFFFH AX = Con Mode
1 I0 6E C_DELIMIT DL = Out Delim none

= OFFFFH AL = Out Delim
I11 6F C_WRITEBLK DX ffi .CHCB none
112 70 L_WRITEBLK DX ffi .CHCB none
128 80 M...ALI.L~ DX = .MPB AX = R t n Code
129 81 M_ALI.£X~ Same as above Same as above
130 82 M_FREE DX = .MPB none
131 83 DEV_POLL DL = Device none
132 84 DEV_WAITFLAG DL = Flag AX = Ran Code
133 85 DEV_SETFLAG DL = Flag AX = Ran Code
134 86 Q_MAKE DX ffi .QD none

135 87 Q_OPEN DX --- .QPB AX = Rtn Code
136 88 Q_DELETE DX = .QPB AX = Ran Code
137 89 Q_READ DX = .QPB none
138 8A Q_CREAD DX = .QPB AX = Rtn Code
139 8B Q_WRITE DX = .QPB
140 8C Q_CWRITE DX = .QPB AX = Ran Code
141 8D P_DELAY DX = #ticks none
142 8E P_DISPATCH none none
143 8F P_TERM DL = Term. Code AX = Rtn Code
144 90 P_CREATE DX = .PD none
145 91 P_PRIORITY DL = Priority none
146 92 C_ATTACH none none
147 93 C_DETACH none none
148 94 C_SET DL = Console none
149 95 C_ASSIGN DX = .ACB AX = R t n Code
150 96 P_CLI DX = .CLBUF none
151 97 P_RPL DX = .CPB AX = result
152 98 F_PARSE DX = .PFCB see clef
153 99 C_GET none AL = con #
154 9A S_SYSDAT none ES:AX = Sys Data Addr
155 9B T_SECONDS DX = .TOD TOD filled in
156 9(3 P_PDADR none ES:AX = PD Addr

DIGITAL RESEARCH ¢
A-3

A System Call $ummry Concurrent CP/M Prol~mn~"z Gukle

Tsb le A - 1 . (con t inued)

Dec Hex Mnemonic Input Parameters Returned Values

157 9D P_ABORT DX = .ABP AX = R[a Code
158 9E L._ATTACH none none
159 9F [._DETACH none none
160 A0 L_SET Did = List # none
161 A1 L_CATTACH none AX = Rtn Code
162 A2 C_CATTACH none AX = Rm Code
163 A3 S_OSVER none AX = Version #
164 A4 L._GET none AL = List #

i DIGITAL Rr~,ARCH ¢
A-4

CP/M l ~ x a m m ~

Conventions used in Appendix A:

= Address of
= Number
ACB = Assign Control Block
Addr = Address
APB = Abort Parameter Block
BD = Bios Descriptor
BP = B a s e Page

Char = ASCII Character
CHCB -- Character Conm)l Block
CLBUF = Command Line Buffer
Con = Conmle
CPB = Call Parameter Block
Cur = C l t m n t
Delim -- Delimiter
Dir = Directory
DMA = Direct Memory Address
Err = Error

FCB . = File Control Block
MCB = Memory Control Block
MPB = Memory Parameter Block
Num = Number
Out = Output
PD = Process Descriptor
PFCB = Parse Fi lename Contro l B lock

QD = Queue Descriptor
QPB -- Queue Parameter Block
Rec = Record
Rtn = Return
Sys = System
Term. -- Termination
TOD = Time of Day
Vect = Vector

A 8ystmn CaD Summary

End of Appe~IL~ A

:Iw DIGITAL RESEARCH ¢
A-5

Appendix B
ASCII and Hexadecimal Conversions

TI~ appendix contains tables of the ASCII symbols, including their binary, decimal, and
hexadecimal conversions.

Table 13-1. ASCII Syrabois

~ymbol Meaning Symbol Meaning

ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace I-IT horizontal tabulation
CAN cancel LF line feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form feed US unit separator

VT vertical tabulation

Table B-2. ASCII Conversion Table

Binary Decimal Hexadecimal ASCII

000(X)(~ 000 00 NUL
0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-C)
000(3100 004 04 EOT (CTRL-D)
000(3101 005 05 ENQ (CTRL-E)

B DIGITAL RESEARCH e

B-l

B ASCII and Hexadechmd Couvmlom Concurrent CP/M Prolmmmer's Guide

Table B-2. (mmtbamd)

~ 0 ' Decimal Hexadecimal A $CII

00001 I0 006 06 ACK (CTRL-F)
0000111 007 07 BEL (CTRL-G)
0001000 008 08 BS (CIRI~H)
0001001 009 09 HT (CTRL.-I)
0001010 010 0A LF (CTRL.-J)
0001011 011 0B VT (CTRL-K)
0001 I00 012 0C FF (CTRL-L)
0001101 013 0D CR (CTRL-M)
00011 I0 014 OE SO (CTRL-N)
0001111 015 OF SI (CTRL-O)
0010000 016 10 DIE (CTRL-P)
0010001 017 I I DCI (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-S)
0010100 020 14 DC4 (CTRL-T)
0010101 021 15 NAK (CTRL-U)
0010ll0 022 16 SYN (CTRL-V)
0010111 023 17 ETB (CTRL-W)
0011000 024 18 CAN (CTRL-X)
0011001 0"25 19 EM (CTRL-Y)
0011010 026 IA SUB (CTRL-Z)
0011011 027 IB ESC (CTRL-D
0011100 028 lC FS (CTRL-)
0011 I01 029 ID OS (CTRL-])
0011110 030 IE RS (CTRL -^)
0011111 031 IF US (CTRL-_)
0100000 032 20 (SPACE)
0100001 033 21 !
0100010 034 22 "
0100011 035 23 #
0100100 036 24 $
0100101 037 25 %
01001 I0 038 26 &
0100111 039 27 '
0101000 040 28 (
0101001 041 29)
0101010 042 2A *
0101011 043 2B +

ill DIGffJU. R L S ~ ¢
B-2

Concurrent CP/M Programmer's Guide B ASCII snd Hexadedmll Conventions

Table B-2. (continned)

Binarj' Decimal Hexadecimal A SCH

0101100 044 2(2 ,
0101 I01 045 2D -
0101110 046 2E
0101111 047 2F /
01 I0000 048 30 0
Ol I0001 049 31 I
Ol I0010 050 32 2
01 I0011 051 33 3
01 I0100 052 34 4
0110101 053 35 5
0110110 054 36 6
01 I0111 055 37 7
011 I000 056 38 8
0111001 057 39 9
011 I010 058 3A :
011 I011 059 3B ;
0111 I00 060 3C <
0111101 061 3D =
0111110 062 3E >
0111111 063 3F ?
1000000 O64 4O @
1000001 065 41 A
I000010 066 42 B
I000011 067 43 C
I000100 068 44 D
I000101 069 45 E
I0001 I0 070 46 F
1(300111 071 47 G
1001000 072 48 H
1001001 073 49 I
1001010 074 4A J
1001011 075 4B K
1001100 076 4C L
lO01101 077 4D M
1001110 078 4E N
1001111 079 4F O
1010000 080 50 P

~ DIGITAL R£SEARCH s
B-3

B ASCII and Hexadecimal Couvmiom Concurrent CP/M Programmer's Guide

Table B-2. (cmtlmed)

Binary Decimal Hexadecimal .,4 SCII

1010001 081 51 Q
1010010 082 52 R
1010011 083 53 $
1010100 084 54 T
1010101 085 55 U
1010110 086 56 V
1010111 087 57 W
1011000 088 58 X
1011001 089 59 Y
1011010 090 5A Z
1011011 091 5B [
1011100 092 5C \
1011101 093 5D]
1011110 094 5E ^
1011111 095 5F <
1100000 096 60 '
11004301 097 61 a
1100010 098 62 b
1100011 099 63 ¢
1100100 I00 64 d
1100101 I01 65 •
1100110 102 66 f
1100111 103 67 g
II01000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 613 k
1101100 108 6(2 1
II01101 109 6D m
1101110 110 6E n
1101111 111 6F o
1110000 112 70 p
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
III0100 116 74 t
1110101 117 75 u

I ~ P d . ~ o
Bat

Concurrent CP/M Programmer's Guide B ASCII and Hexadecimal Conversions

Table B-2, (continued)

Binary Dec imal Hexadecimal ASCII

1110110 118 76 v
1110111 119 77 w
1111000 120 78 x
1111001 121 79 y
1111010 122 7A z
1111011 123 7B {
11111oo l u 7c I
1111101 125 7D }
1111110 126 7E -
1111111 127 7F DEL

End of Appendiz B

m DIGITAL R£SEARCH •

B-5

Appendix C
Error Codes

Table C-1. Concurrent CP/M Error Codu

Code # Definition

0
1
2
3
4
5
6
7
8
9

10
12

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30

NO ERROR
FUNCTION NOT IMPLEMENTED
ILLEGAL FUNCTION NUMBER
CAN'T HND MEMORY
ILLEGAL SYSTEM FLAG NUMBER
FLAG OVERRUN
FLAG UNDERRUN
NO UNUSED QUEUE DESCRIPTORS LEFT IN QD TABLE
NO UNUSED QUEUE BUFFER AREA LEFT
CAN'T HND QUEUE
QUEUE IN USE
NO UNUSED PROCESS DESCRIPTORS LEFT IN PROCESS
DESCRIPTOR TABLE
QUEUE ACCESS DENIED
EMPTY QUEUE ~.
FULL QUEUE
CLI QUEUE MISSING
NO 8087 IN SYSTEM
NO UNUSED MEMORY DESCRIPTORS LEFT IN
MEMORY DESCRIPTOR TABLE
ILLEGAL CONSOLE NUMBER
CAN'T FIND PROCESS DESCRIPTOR BY NAME
CONSOLE DOES NOT MATCH
NO CLI PROCESS
ILLEGAL DISK NUMBER
ILLEGAL FILE NAME
ILLEGAL HLE TYPE
CHARACTER NOT READY
ILLEGAL MEMORY DESCRIPTOR
BAD LOAD
BAD READ
BAD OPEN

I I DIGITAL RF.S~L~CH •

C-I

C k r ~ Culm

l'hbie C-1. (cmtlmmd)

Code ~ Definition

31
32
33
34
35
36
37
38
40
41
42

NULL COMMAND
NOT OWNER
NO CODE SF~MENT IN LOAD FILE
ACTIVE PROCESS DESCKWIDR
CAN'T TERMINATE
CAN'T ATTACH
ILLEGAL LIST DEVICE NUMBER
ILLEGAL PASSWORD
EXTERNAL TERMINATION OCCURRED
FIXUP ERROR UPON LOAD
FLAG SET IGNORED

End of Appendix C

IIDtC~AL R[SU~CHe
C-2

oopmint
o wrltestr
o-detach
o-sst

q open
q-read
(writs
p_prlorlty

pdlen

pons
p~dlsk
p user
p_-list
ps run
pf~keep

rsp_top
rsp pd
rspuda
rep_bottoe

qf rsp

Appendix D
ECHO.A86 Listing

Listing D-I. ECHO.AS6

ECHO- Resident System Process
Print Command tail ts console

DEFINITIONS

squ 224
equ 9
equ 147
equ 148
equ 134
equ 155
equ 157
equ 159
equ 145

squ

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ

;cope entry interrupt
;print string
;detach console
;set default consols
;create queue
;open queue
;read queue
;write queue
;set priority

48 ;length of Process
; Descriptor

byte ptr 020h ;default cns
byte ptr Ol2h ;default dlsk
byte ptr O13h ;default user
byte ptr 024h ;default list
0 ;PD run status
2 ;PD noki l l f lag

0 ;rsp offset
OlOh ;PD offset
040h ;~A offset
140h ;end rsp header

08h ;queue RSP flag

RI DIGffAL RESEARCH •
D-l

D ECHO.AU Concurrent CPIM Programmer', Guide

L i b e l D-I. (continued)

; CODE SEGIDff

CSEG
org 0

o c t :

~atn:

int copllut
ret

;create E~0 queue
nov c l , qMke ! |or dx, offeet qd
call oupa

;upon ECHO queue
eov c l .qopen ! nov dx,offee% qpb
call cope

;set pr ior i ty to norlal
nov cl,p_prior£t¥ ! ~ov dx,200
call oop~

;ES points to SYSDAT
nov ee,ldateei

loop: ;forever
;read omdtall froa queue

icy cl,q_read !eov dx,offeet qpb
call ocpa

;sot default values fro1
Iov bx, pdldr
Icy dl.es:p dlek[bx] ;p dlsk=0-15
lno dl t not disk,dl ;nLke disk=l-16
Icy dl, es:p_user[bx]
1or user, dl
nov dl,ee:p llst[bx]
nov llst,dl-
eov dl ,es :p cns[bx]
nov console~'dl

• ~ A t ~V~RCHO
!>2

Concurrent CP/M Programmer's Guide

Listing D-1. (continued)

; s e t default console
nov dl ,console
mov cl,C SET ! call ccpm

;scan cmdtail and look for '$' or O.
;when found, replace w/ cr,lf,'@'

lea
mov

nextohar:
cmp
cmp
cmp

endcmd:
Nov
NOV
mOV

bx,cmdtail I mov a l , ' $ ' ! mov ah,O
d x , b x ! add dx, i31

bx,dx [Ja endcmd
[bx],aZ ! Je endcld
[bx],ah ! Je endcad
lnc bx ! imps nextchar

byte ptr [bx],13
byte ptr l[bx],lO
byte ptr 2[bx].'$'

;write command tail

lea dx,cmdtail ! mov cl,C WRITESTR
call ccpm

;detach console
mov dl ,oonsole
mov c l , c detach [c a l l ccpm

?done, get next command
jmps loop

; DATA SEGMENT
w

D ECHO.AU Lktin|

DIGITAL RESEARCH •
D-3

D ECHO.AU LMtln1[

sdatseg

org

org

rsp_.top

rsp_lxl

dw
db
dh
dw
db
dT
db
db
dv
d~
db
dw
db
db
db
db
dw

Concurrent CP/M Pro l~mmer ' : Guide

Lkt ln | D-I. (©ontlnued)

0,0 ,0
0 ,0 ,0
0,0

0,0
pe run

pf keep
'~0
offset uda/lOh
0,0
0,0
0
0,0
0,0
0
0
0,0,0
0
0 ,0 ,0
0 ,0 ,0 ,0

; link, thread
; s ta tus
; p r io r i ty
; f lags
; nsJe
; uda esg
; disk,user
; lo~d dsk,usr
; sea
; dvraot, wait

; consols

; l i s t

El DIOITAL Itf, Sr~RCH •
D-4

Co~mm'~ CP/M Prosrmm~'n Guide D ECHO.A~

uda

qbuf

qd

org

org

Lilting D-I, (continued)

rsp uda

dw

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

O.offset dma. 0.0 ;0
0.0,0,0
0,0.0,0 ;lOh
0.0,0,0
0,0,0,0 ;20h
0,0,0,0
0 ,0 ,o f f s e t s tack tos,0 ;~0h
0,0,0,0
0,0,0,0 ;40h
0,0,0,0
0,0,0,0 ;50h
0,0.0.0
0,0,0,0 ;60b

rsp bottom

rb 131 ;Queue buffer

dw 0
db 0,0
dw qf rsp
db ' E~O '
dw 131
dw 1
dw 0,0
dw O,O
dw offset qbuf

; l ink
; net, org
; f lags
; name

; msglen
; nms~s
; dq, nq
; esgcnt, u g o u t
;buffer addr.

,id DIGITAL RESEARCH •

D-5

D ECHO.A~ Lbtln|

d ~ rb 128

stack dv
dw
dw
dw
dw

stack toe dw
dw
dw

pdadr re
cndta i l rb

db

qpb
dw
dw
dw
db

console db 0
;disk db 0
;user db 0
; l i s t db 0

end

Coneurrmt CP/M Prolprammer', Guide

Lkt in | D-I. (continued)

Occcch,Ocooch,Ocoooh
Ococch,Occcch,Occcch
Occcch.Occoch,Occcch
Occcch,Ococch,Ocooch
Occoch,Ococoh,Occoch
o f f s e t main ; s t a r t of fse t
0 ; s t a r t soK
0 ; l n l t f lags

1 ; QPB Buffer
129 ; s t a r t s here
13 .10 . '$ '

0,0 ;suet be zero
0 ;queue ID
1 ;nmags
o f f s e t pdsdr ;buf f l r addr.
'ECHO ' ; n a x t o open

End o/ Appe~ D

UDIGgAL ~ H s
D-5

Appendix E
8087 Exception Handling

This appendix includes an example of an 8087 interrupt handling routine to demonstrate
the requirements for u.qing the 8087 processor. Refer to Intel's IAPX 86,88 User's Manual
for a description of 8087 exception handling in the section on "8087 Numeric Dam Preceder".

In order to guarantee the data integrity for each 8087 Ixocess in the multitasking envi-
ronment, any user--defined exception handler must adhere to a minimum sequence of steps
within the exception handl~

1. Save the 8086 environment of the 8086-running process.

2. Save the environment of the 8087-running process. The OWNEK_8087 field in
SYSDAT will contain the offset of the 8087-running process (see description of
SYSDAT in Section 6 with the S_SYSDAT system call).

3. Clear the 8087 interrupt r~:luest bit in the status word.

4. Disable the 8087 interrupts.

5. Clear the PIC interrupt (this instruction is hardware-dependent).

6. At this point, you might want to modify the 8087 environment image saved in step
2 above.

7. Before enabling the 8086 interrupts, restore the 8087 environment with its status
word's interrupt request bit cleared. If the environment is not restored before 8086
interrupts are enable, and an interrupt occurs (like a tick), a different 8087 process
can gain control of the 8087 and swap in its 8087 context. On a second interrupt,
or on an IRET instruction, the 8086-running process that happen~ to be executing
the exception handler code is brought back into 8086 context and writes over the
new 8087 context.

The user program, which uses its own exception handler, must replace the system's
interrupt vector with its own. Once this is done, the system swaps this vector into
memory every time the program comes back into 8087 context. The address of the
interrupt vector is in the SYSDAT table at offset A0H (the description of the SYSDAT
Table is included in the description of the S_SYSDAT system call in Section 6).

The default exception handier aborts those 8087 programs that have enabled 8087
interrupts and that generate a severe error (such as stack underrun, divide by zero,
and so forth). Any other errors are ignored by the default exception handler.

I i D~.O'AL ~ C H e
E-i

E 8087 Exception Handlim| Concurrent CP/M ProgrammeT's Guide

Lk l l~ E-I. 80~7 ~ace]pl~ I-]be~Db~

ndpint: ; 8087 interrupt routine

This exception handler is non-specific and
is noant as an example
default. It is assumed that if the 8087
prograner has enabled 8087
interrupts and has specified exception fla~s
in the control word, then
the prograuer has also included an
exception handler to take
specific actions within the prograa
before continuing in the 8087.
This handler will ignore non-severe
errors (overflow, etc) and will
terminate processes with severe errors
{divide by zero,stank violation).

Im DIGTAL KE~d~CHe
E-2

Concurrent CP/M Prolramm~'s Guide E 8087 Exception Handling

Listln| E-I. (continued)

push ds
mov ds, sysdat
mov ndp s s r e g , s s
mov ndp-spreg, sp
mov ss ,~ysdat
mov s p , o f f s e t ndp tos
push ax! push bx
push ox! push dx
push di! push si
push bp! push ss
aov es, sysdat
FNSTENV env 8087
FWAIT
FNCLEX
xor ax,ax

FNDISI
mov al,O20h
out 06Oh, al
Nov al,O20h
out 058h, al
oall in 8087

mov bx ,o f f s e t env 8087
mov byte p t r 2[bxT,O
pop es! pop bp
pop s i ! pop d i
pop dx! pop cx
pop bx! pop ax

; SAVE CURRENT DATA SEGMENT
; GET XIOS DATA SEGMENT
; DO STACK SWITCH FOR 8086 ENVIRONMENT
; SAVE

; SAVE THE 8086 REGISTERS

; NOW SAVE THE 8087 ENVIRONMENT
; SAVE 8087 PROCESS INFO

; CLEAR ITS INT REQUEST BIT

; DISABLE ITS INTerRUPTS
; SEND 2 INT~AUPT ACKNOWLEDGES - 1 FOR
; ONE FOR MAST~ PIC, ONE FOR SLAVE

; IN 8087 WILL CHECK THE 808"/ ~ROR
; CO[~DITION. IF ERROR IS SEVERE, IT
: WILL ABORT, ELSE IT WILL RETURN WITH
; NO CHANGES.
: CLEAR ITS STATUS WORD FOR EI~ RESTORE

; RESTORE THE 8086 ENVIRONMENT

nov ss,ndp._ssrsg
mov sp,ndp spreg
FLDENV env-8087
~AIT
pop ds
iret

; SWITCH BACK TO PREVIOUS STACK

; RESTORE 8087 ENV WITH GOOD STATUS

; RESTORE PREVIOUS DATA SEGMENT

[] DIGITAL RESEARcHe

E-3

E 11017 Exception I-Im~lml Concurrent CP/M Pro|rlmmer°s Guide

Listing E-I. (continued)

in 8057:

; entry: DS = SYSDAT
; Only user-specif ied error
; interrupts fron the 8057.

conditions generate

end 87:
m

10V ~ , Oi ler ~08"[
tes t bx,bx
Jz end 87
soy siV of fse t env 8057 ;
nov ax, ststusw[siT ;

tes t ax,OS~
Jnz end 57
or p_flag[bx],080h ;

ret

GET THE PROCESS DF~CRIPTOR
CHECK IF OWN~ HAS ALREADY
T~INAT~
IF IT'S A SEVerE ERROR, T~dlINATE

IF NOT SEVerE, RETURN & CONTINUE
SA = U~/OVEP~LOW.PP~CISION,

AND D~ORMALIZ~) OP~D
NOT SA = Z~O DIVIDE OR INVALID
OPm~ITION (STACK ERROR)

End of Appendix E

B DENTAL I£SE~X~4e

E-4

Glossary

Base Page: Memory region between 0000H and 0100H relative to the beginning of the
Data Segment used to hold system parameters. Base Page serves primarily as an" interface
region betwe,~n user programs. Note that in the 8080 Model, the code and data are intermixed
in the code segment.

BCD: Acronym for Binary Coded Decimal. Representation of decimal numbers using
binary digits. See Table B-2 for representations of ASCII codes.

BDOS: Basic Disk Operating System (BDOS). The BDOS manages the Concurrent
CP/M file structure and executes most of the Concurreat CP/M system calls.

block: Basic unit of disk space allocation under Concurrent CP/M. Each disk drive has a
fixed block size (BLS) defined in its disk Parameter Block in the XIOS. Th~ block size can
be 1K, 2K, 4K, 8K, or 16K of consecutive bytes. Blocks are numbered relative to zero on
a disk. Blocks are not shared between files.

Boolean: Variable that can have only two values; usually interpreted as true/false or
on/off.

Checksum Vector (CSV): Contiguous data area in the XIOS with one byte for each
directory sector to be checked, that is, CKS bytes. A Checksum Vector is initialized and
maintained for each logged-in drive. Each director~ access by the system results in a
checksum calculation that is compared with that in the Checksum Vector. If there is a
discrepancy, the drive is set to Read-Only status. This prevents the user from inadvertently
switching disks without logging in the n ~ disk with a CTRL-C. If not logged in, the new
disk is treated the same as the old one, and you can destroy data on it if you write to it.

CIO: Character I/O (CIO) Module. The CIO module handles all character I/O to and from
consoles and list devices.

CLI: Command Line Interpreter. The P_CLI system call interprets the command requested
in a command line and performs the system calls needed to open a process, load the command
file, and execute the code.

RDIGffAL ~ C H S
Glossary-!

GIos~'y Cmeurrmt CP/M Proffanuner's Guide

CMD: Filetype for Concurrent CP/M command files. These are machine language object
modules ready to be loaded and e=ecuted. Any file with this type can be executed by simply
typing the fileneme after the drive prompt. For egemple, the Ix~gram PIECMD can be
executed by simply typing PIP.

command: Set of instructions that are ~ e ~ t e d when the command name is typed after
the system prompt. These instructions can be buih in the Concurrent CP/M system or can
reside on disk as a file of type CMD. Concurrent CP/M commands consist of three parts:
the command name, ~e command nail, and a carriage return.

commie: Primary I/O device used by Concurrent CP/M. The console usually consists of
a CRT screen for displaying output and a keyboard for input.

coatrol charisma': Nonpfinting ASCII character produced on the console by holding down
the CTRL (CONTROL) key while s/riking the character 1~. CI'RI~H rrf, a ~ hold down
CTRL and press H. Control characters are sometimes indicated using the up-arrow symbol
(^), so CT]U..-H can be represent~l as ^H. Certain control c ~ are treated as special
commands by Concurrent CP/M.

Default Buffer: 12g-byte buffer maintained at 0080H in the Base Page. When the CLI
leeds a CMD file, it initializes this hoffcr to the command t~1, that is, any characters typed
s ~ r the CMD f ~ tame. The first by~ It O080H o ~ the length o~ ~z ccmmagi ~ l
while the command ~ / i t ~ I f begins at 0081H. A binary zero terminates the command ~ !
value. The I command under DD'I ~ initializes this buffer in the same way as the CLI.

I)ffsult FCB: One of two FCBs r~intaln¢~ at 005CH and 006CH in the Base Page. The
P_CLI system call initi~li~s the fL~t default FCB from the first delimited field in the
command tail and inhial i~ the second default I~B from the nmt field in the command
tail.

delimiters: ASCII char~ters used to separate constituent parts of a file specification. The
P_CLI sys~m call recognizes certain delimiter characters as : . = ; < > _ ' blank, and
carriage return. Sevend Concurrent CP/M commands also treat ; [] () , and $ as delimiter
characters. It is advisable to avoid the use of delimiter cha~'ters and low.~'case characters
in filenames.

directory: Portion of a disk containing entries for each file on the disk and locations of
the blocks allocated to the files. Each file directory entry is in the form of a 32-byte FCB,
although one file can have several entries, depending on its size. The maximum number of
d~ctory entries supported is specified in the drive's Disk Parameter Block.

B DIGITAL ~ o
Glossary-2

Concurrent CP/M Programmer's Guide Glom,~

directory entry: 32-byte entry associated with each disk file. A file can have more than
one directory entry associated with it. There are four directory entries per directory sector.
Directory entries can also be referred to as directory FCBs.

disk, diskette: Magnetic media used for mass storage of data in the computer system. The
term disk can refer to a diskette, a removable cartridge disk, or a fixed hard disk.

Disk Parameter Block (DPB): Table residing in the XIOS that defines the characteristics
of a drive in the disk subsystem used with Concurrent CP/M. The address of the DPB is in
the Disk Parameter Header at DPbase + OAH. Drives with the same characteristics can use
the same DPB. However, each logical drive must have its own Disk Parameter Header and
DPB. The address of the drive's Disk Parameter Header must be returned in registers HL
when the BDOS calls the SELDSK entry point in the XIOS. DRV...DPB returns the DPB
address.

Disk Parameter Header (DPH): 16-bym area in the XIOS containing information about
the disk drive and a scrstchpud area for certain BDOS operations. See the Concurrent
CP/M System Guide for further details.

extent (EX): 16K consecutive bytes in a file. Extents are numbered from 0 to 31. One
extent can contain I, 2, 4, 8, or 16 blocks. EX is the extent number field of an FCB and
is a one-byte field at FCB + 12, where FCB labels the first byte in the FCB. Depending
on the Block Size (BLS) and the maximum data Block Number (DSM), a directory entry
contains I, 2, 4, 8, or 16 extents. The EX field is usually set to 0 by the user, but contains
the current extent number during file I/O. The term "Extent Folding" describes directory
entries containing more than one extent. In CP/M version 1.4, each FCB contained only
one extent.

FCB: See Hie Control Block.

file: Collection of data containing from zero to 242,144 records. Each record contains 128
bytes and can contain either binary or ASCII data. Files consist of one or more 16K extents,
with 128 records per extent.

File Control Block (FCB): Thirty-six consecutive bytes maintained and updated by system
calls for file I/O. The FCB fields are described in Section 2.4.

hex file fornmt: Absolute output of ASM86 for the Intel 8086. A HEX file contains a
sequence of absolute records, which give a load address and byte values to be stored starting
at the load address (refer to Section 4.3).

u~ ~C~rAL RI~.P~C]-Io
Glossary-3

G ~ r y Concurrent CP/M ProlrammtT's Guide

I/O: Acronym for Input/Output operations or routinss handling the input and output of
data in the computer system.

logical drive: Logically distinct region of a physical drive. A physical drive can be
divided into one or more logical drives, and designated with specific drive references (such
as a: or f:). Thus. at the user interface, it appears that there are several disks in the system.

MEM: Memory Module. The Memory Module handles all memory management calls by
methods transparent to your applications program.

pm-se: Separate a command line into its syntactic parts.

queue: Data structure used by the file system to keep trick system information, such as
processes ready to run, lcclo~i files, and resourcas currently in use by processes. Processes
also use queues to communicate with one another. The BDOS system calls create and maintain
queues.

Read-Only: Condition in which a logical disk drive can be wad but not written to. A
drive can be set to Read-Only status by using the SET utility. This protects ~ user from
switching disks without ~ecuting a disk reset. Files can also be set to Read-Only status
with the SET utility or the F...ATI'RIB system call. Read-Only is often abbreviated as
R/O.

record: Smallest unit of data in a disk file that can be read or written. A record consists
of 128 consecutive bytes whose byte displacement in a fiie is the product of the Record
Number times 128. A 12S-byte record in a file occupies one 128-byte sector on the diskette.
If the blocking and deblocking algorithm is used, several records can occupy each disk
sector.

reentrant code: Code that can be used by one process while another is already executing
it. Reentrant code must not be self-modifying; it must be pure code that does not contain
data. The dam for reen~Lnt code can be kept in a separate data area or placed on the stack.

RSP: Reserved System Process. An RSP is a Concurrent CP/M utility included within
Concurrent CP/M during the execution of GENCCPM.

RTM: Real Time Monitor. The RTM is the nucleus of Concurrent CP/M. managing queues
and flags, polling devices, and dispatching and suspending processes. Application programs
gain access to RTM functions through system calls.

• Dir.21"AL gl~Oqt~le
Glossary-4

Concurrent CP/M ProlP'mnmer's Guide Glossary

sector: Unit of data read from and written to the disk by the XIOS. The sector size is
dependent on the disk drive hardware and is usually a power of two, such as 256, 512,
1024, or 2048 bytes. These disk sectors are referred to as Host Sectors.

muree file: ASCII text file usually created with a text editor that is an input file to a
program, such as a compiler, assembler, or a text formatter.

stack: Reserved area of memory where the processor saves the return address when it
receives a Call instruction. When the processor encounters a Return instruction, it restores
the current address on the stack to the Instruction Pointer. Data such as the contents of the
registers can also be saved on the stack on a first-in-last-out basis. The Push instruction
places data on the stack and the Pop instruction removes it. 8086 stacks are 16 hits wide;
instructions operating on the stack add and remove stack items one word at a time. An item
is pushed onto the stack by decrementing the stack pointer (SP) by 2 and writing the item
at the SP address. In other words, the stack grows downward in memory.

SUP: The Supervisor (SUP) manages communications between processes and the operating
system kernel, and between other operating system modules. All system calls are intercepted
by the SUP.

track: Concentric ring on the disk; the standard IBM single density disks have 77 tracks.
Each track consists of a fixed number of numbered sectors. Tracks are numbered from 0 to
one less than the number of tracks on the disk. Data on the disk media is accessed by
combinations of track and sector numbers.

TMP: Terminal Message Processes. The TMFs are Resident System Processes that inter-
cept command lines from the virtual consoles, check for errors, and pass on executable
requests to the CLL The TMP prints the prompt and some system error messages on your
console. Each virtual console has an independent TMP heading defining the console's envi-
ronment, including the default disk, user number, printer, and console.

transient command file: File of type .CMD stored on disk. Such files must be loaded
into the system each time they are executed, and therefore execute more slowly than Resident
System Processes (RSPs), which are an integral part of the operating system and execute
rapidly. Transient commands are created with the GENCMD utility; RSPs are included in
the operating system during execution of GENCCPM.

user: Logically distinct subdivision of the directory. Each directory can be divided into
16 user numbers.

I DIGI'I'AI. I~.~,~lC.I-I •

Glossary-5

Glomu7 ConcmTent CP/M Prolmmmer's Guide

w6dcard: A ? or * character. The BIX)S directory search calls matches ? with any single
character and * with multiple characters. Refer to the F._SFIRST and F_SNEXT system
calls for further d~tailJ.

XIOS: Extended I/O System. In Concurrent CP/M, the BDOS is the invariant file-handling
system, which operates independent of the hardware implementation. The XIOS is the
customizable I/O interface configured for your hardware system by the system manufacturer.
The XIOS is similar to the BIOS in CP/M and CP/M-86, but it has been extended to implement
virtual consoles and associated features.

End of Glosxary

M DroIT,4J. I~S~RCHO
Glossary-6

Index

8080 and Small RSP Models, 5-2
8080 keyword, 4-6
8080 Memory Model, 1-12, 3-5, 3-7,

4-I, 4-3, 5-2, 5--6
exception handling, 3-3

8087 Flag
PD, 5-8
processor, 3-2
support, I-2, 3-2

96-byte initial stack, 3--1
file reference, 2-7

A

absolute address, 4-7
ACB--Assign Control Block

(Figure 6-1), 6-21
access stamp, 2-24, 6-84
address

Flag Table, 6-86
maximum, 4-7
PD, 6-157
queue buffer, 6-169
System Data Segment, 6-17g
version string, 6-182

Ahbhh parameter 4-7
AL0, 6-50
ALl, 6-50
Allocation Block Mask, 6-.49
Allocation Block Shift Factor, 6--49
allocation vector, 2-39, 6-46
ambiguous reference, 2-6, 6-16
APB--Abort Parameter Block

(Figure 6-I0), 6-139
Archive, 6-65

attribute, 2-15

ASM-86 utility, 2-9
asterisk, 2-6
attribute bits, 2-1 I, 2-14
attribute

compatibility, 2-31
file, 2-14
interface, 2-14
interface F5', 2-30
interface F6', 2-30

AX
UDA field, 6-152

A-Base, 3.4, 5-11

B

B value, 4-7
background, I-I0
backslash, 2-6
backspace, 6-32
BACKSPACE, 6-34
base extent, 6- I I, 6- I 16
Base Page Initialization, 3-5
Base Page, 4-3, 6-141, 6-144

Compact Model, 4-5
initial Data Segment, 3-I
Small Model, 4-4

BASE
MCB, 6-129

Basic Disk Operating System, I-4,
I-9, 2-I

BDOS, 1.4
BDOS Error Codes, 2--47
BDOS Error mode, 6-45, 6-75
BDOS file system, 2-I
BDOS Multisector Count, 6-I13
BDOS physical errors, 2-44

i [MCdTAL RESrcARCH®
Index-I

BDOS revision level, 6-174
BDOS Version Number Format

(Figure 6-17), 6-174
BDOS

Concurrent CP/M, 1-9
single-tasking CP/M-86, 1-9

Bhhhh parameter, 4-7
BIOS, I-I I
BIOS Descriptor Format

(Figure 6-18), 6-175
bit map, 6-56
BLM, 6-49
blocking/deblocking, 2-38, 6-52
BP

UDA field, 6-152
BSH, 6-49
BUFFER field, 5-10

size, 5-10, 6.73
BUFFER

QD field. 6.169
QPB field, 6.163

buffers
disk data, 6.181
XIOS ALLOC, 6-181

burst mode, 2-34
BX

UDA field, 6-152
byte count, 2-37, 2-38, 6-65, 6-83

C

C option
SYSTAT, 1-14

C(onsole) option, 1-15
C(onsoles) option

SYSTAT, 1-14
C-Ses, 4.11
Call Parameter Block, 6-159
carriage return, 2-9, 6-32, 6-33, 6-34,

6-90

CCB, I-I0
SYSDAT field, 6-181

CCPM.SYS file, 5-I I, 6-180
CCPMSEG, 6-182

SYSDAT field, 6-179
CCPMVERNUM

SYSDAT field, 6-182
Character Control Block, I-I0, 6-39,

6-128, 6-148, 6-150, 6-181
character device, 6-175, 6-183
Character I/O Module, I-4, 1-10
CHARACTERS

C_READSTR, 6-34
CHCB format, 6-39, 6-128
checksum, 2-I l, 2-17, 2-27, 2-33, 4-12,

6-68, 6-8O, 6-84
Checksum Vector Size, 6-50
Checksum Vector Size field

DPB, 2-40
checksum verification, 2-27

disable, 2-33
child process, 5-10
CIO. I-4, I-I0
CIOWAIT

Activity code, 6.148
CKS, 6-50
CKS field

Disk Parameter Block, 1-11
CLBUF, 6-143
CLI, l-ll, 6-181
CLI Command Line Buffer

(Figure 6-I I). 6-142
CL[

handling RSPs, 5-4
CLOCK, I-8
CLOCK process, I-2, I-8
clock ticks, 1-45
Close Checksum error, 2-33, 2-45
CMD, 1-12
CMD filetype, 6-143

II DIC~AL ~ o
Index-2

CMD file, 2-9, 4-1, 4.-6, 5-5, 6-141,
6-156

CMD File Header Format
(Figure 3-1), 3-3

CNS
APB field, 6-140
C..ASSIGN system call, 6-22
PD field, 6-150

Code Group Descriptor, 3-2, 5-2
Code Segment, 3-2, 6-152, 6.153

Supervisor, 6-180
Command Line Buffer, 6-143
Command Line Interpreter, 1-1 l, 3-1
Command RSP, 5-4, 5-5, 5-6
COMMAND TAIL

RSP Command Queue Messa.ge,
5-5

COMMAND
CLI Command Line Buffer, 6-142

Compact Memory Model, 3-5, 4-5
Compact Model, 1-12, 4-2, 4-5
compatibility attribute, 2-15, 2-3 i

definition, 2-32, 2-33
COMPATMODE option

GENCCPM, 2-32
compute file size, 2-2
Concurrent CP/M Compact Memory

Model (Figure 4-4), 4-5
Concurrent CP/M Functional

Modules (Figure 1-2), I-3
Concurrent CP/M Virtual/Physical

Environments (Figure l-l), I-I
Concurrent CP/M Base Page Values

(Figure 3-3), 3-6
concurrent file access, 2-35
conditional queue write, 6-166
conditional read

queue, I-7
conditional write

queue, 1-7
CONIN, 6-39, 6-175

CONOUT:, 6-39
console, l-I I

. Console Buffer Format (Figure 6-2),
6-33

console I/O, 1-10
Console I/O System Calls, 6.4, 6-2'I
console

input, 6-131, 6-175
mode, 6-39
number, 6-36
number of XIOS, 6-183
number of SYSDAT, 6-184
Output, 6-175
status, 6-31, 6-175
system calls, 6-2
virtual, 6-181

contiguous memory segment, 6-131
Continous display option

SYSTAT, 1-14, 1-15
control characters, 2-6
Control Word

UDA 8087 extension, 6-153
copy number

RSP, 5-3
CP/M Compatible Memory

Allocation System Calls, 6-9
CP/M-86 compatibility, 6-175
CP/M-86 memory allocation scheme,

6-128
CPB, 6-160
CPB--Call Parameter Block

(Figure 6-14), 6-159
CPU type, 6-174, 6-176
CR byte, 6-113
CR field, 3-7, 6-79, 6-83, 6-84, 6-93,

6-96
CR field of FCB, 6-66
CR field

FCB, 2-12, 2-38
CS, 6-153

I I DkTgrAL ~ C . . H o

Index-3

CS field
FEB, 2-1 I, 2-38

CS register
Small Model, 4-4

CS
UDA field, 6-153

CSEG directive
ASM-86, 4-4

CTRL-C, 1-10, 1-15, 5-8, 6-31, 6-32,
6-37

disable, 6-29
enable, 6-29

CTRL-E, 6-34
CTRL-H, 6-34
CTRL-I, 6-32, 6-34, 6-39
CTRL-J, 6-34, 6-35
CTRL-M, 6-34, 6-35
CTRL-O, 1-10, 1-11, 6-31

disable, 6-29
enable, 6-29

CTRI.-P, 1-10, 1-11, 6-29, 6-31
CTRL-Q, 1-I0

disable, 6-29
enable, 6-29

CTRL-R, 6-35
CTRL-S, 1-10, 1-11, 6-31

disable, 6-29
enable, 6-29

CTRL-U, 6-35
CTRL-X, 6-35
CTRL-Z at EOF, 2-9
current DMA, 6-61, 6-91, 6-96, 6-101
current DMA address, 6-113
current DMA buffer, 6-107
Current Output Delimiter, 6-25
current processes, 1-I3
current record field, 6-93

FCB, 2-12
current record position, 3-7
current user number, 2-17, 6-149
current process activity, 6-147

CW
UDA 8087 extension, 6-153

CX Error Code Reports, 6-19
CX error codes, 1-13
CX

UDA field, 6-152
C__ASSIGN system call, 6-22
C_ATTACH system call, 6-22, 6-23
C._CA'I'I'ACH system call, 6-24
C_.DELIMIT system call, 6-25, 6-40
C_DETACH system call, 6-22, 6-26
C_GET system call, 6-27
C_MODE, 3-I, 6-37
C..MODE call, 1-11
C_MODE system call, 6-28
C..RAWIO, 6-37
C_RAWIO call, !-11
C._RAWIO system call, 6-30
C_READ system call, 6-32, 6-33, 6-38
C._READSTR call, 1-10
C._READSTR system call, 6-33
C_SET system call, 6-36
C-STAT, 6-29
C._STAT system call, 6-37
C_WRITE, 6-29
C__WRITE system call, 6-38
C..WRITEBLK, 6-29
C._WRITEBLK system call, 6-39
C_WRITESTR, 6-25, 6-29
C..WRITESTR system call, 6-40

D

D0-D 15 field
FCB, 2-12

data area, 2-I, 2-8
data block size, 2-8
Data Group Descriptor, 5-2, 5-I I
Data Record, 4-9, 4-10
Data Segment, 5-I

l DIC~AL ttY..q.t~CH ®
Index-4

Data Structures Index, 6-18
date and time, I-2
date and time stamps, 2-3, 2-18, 2-24,

6-61
DATE utility, 2-25
Day file option, 6-181
DAY FILE

SYSDAT field, 6-181
DAY

TOD field, 6-185
days

number of, 6-183, 6-185
DDT-86, 5-1 l
Default Close, 6-68
default console, 6-26, 6-27, 6-150

C...ATrACH, 6-23
C._CA'VrACH, 6-24

default disk, l-I I, 6-.47, 6-54, 6-59,
6-149

default DMA base, 6-74
default DMA buffer, 3-8, 6-141
default drive, 2-3, 2-5, 3-7
default error mode, 1-10, 2-43
default list device, 6-122, 6-123, 6-124,

6-126, 6-127
default list device number, 6-125,

6-150
default mode

BDOS Error mode, 6-75
Locked mode, 2-26
password, 2-3, 2-23, 6-91, 6-107
TM P, 2-23

Delay List, I-6,1-9, 6-147, 6-182
DELAY

Activity code, 6-147
Delete mode, 2-22
delimiters, 2-6, 6-88
Device System Calls, 6-2, 6-5, 6-41
DEV_POLL system call, I-II, 6-41
DEV_SETFLAG, 6-42, 6-43, 6-180
DEV_WAITFLAG, I-8, 6-42, 6-43

DI
UDA field, 8-152

DIR attribute, 6-143
DIR utility, 2-I, 2-15
Direct Memory Address, 6-73
direct video mapping, 3-8
Directory Allocation Vector 0, 6-50
directory area, 2-1

code, 2-46, 2-,48, 6-17
code definitions, 2-48
entry, 6-79
label, 2-3, 2-18, 2-19, 2-20, 6-55,

6-60, 6-I13
directory label data byte, 2-19, 2-20,

6-55, 6-60
Directory Label Format (Figure 2-2),

2-18
Directory Maximum, 6-50
Directory Record with SFCB

(Figure 2-4), 2-24
directory space, 2-I
directory write operations, 2-38
Disk Data buffers, 6-181
disk directory area, 2-8
disk drive organization, 2-8
Disk Drive System Calls, 6-2, 6-5,

6-44
Disk File System Calls, 6-7
Disk Free Space Field Format

(Figure 6-5), 6-63
Disk I/O error, 2-44
Disk Parameter Block, I-I I, 2-40,

6-48, 6-49
Disk Reset, 6-51
Disk Storage Maximum, 6-50
Disk System Reset (Figure 2-6), 2-41
DISK

DP field, 6-149
disk

temporary, 6-181

H DIOTAL RESEARCH®
Index-5

Dispatcher, 1-5
Dispatcher entry point, 6-180
Dispatcher Ready List, 6-182
DISPATCHER

SYSDAT field, 6-180
DL field

directory label, 2-19
DLR

SYSDAT field, 6.182
DMA address, 2-3, 3-I, 6-156
DMA bate, 3-I
DMA Buffer, 5-6, 5-9, 6-73
DMA OFFS

UDA field, 6-152
DMA offset, 3-1, 6-72, 6-152
DMA

default address, 6-47
DPB, 2-40, 6-48
DPB--Disk Parameter Block

(Figure 6.4), 6-48
DR FCB field, 6-59
DR field

directory label, 2-19
FCB, 2-11
XFCB, 2-21

Drive Code
FCB, 2-11

drive code
XFCB, 2-21

drive
directory label, 6-101
field, 6-89
reset, 2-39, 2-41
specifier, 2-5
status, 2-2, 2-3

Drive Vector, 644
Drive

R/O, or Login Vector Structure
(Figure 6-3), 6-44

DRL
SYSDAT field, 6-182

Index-6

DRM, 6-50
DRV.., 2-2
DRV_ACCESS system call, 2-39,

2-42, 6-45
DRV_ACCESS call, 2-42
DRV_ALLOCVEC system call, 6-46
DRV..ALLRESET, 3-I, 6-73
DRV_ALLRESET system call, 2-39,

6-47, 6-62
DRV._DPB system call, 6-48
DRV...FLUSH system call, 6-52
DRV_FREE, 2-29
DRV._FREE system call, 2-39, 2-42,

6-53
DRV_GET system call, 6-54
DRV_GETLABEL system call, 2-20

6-55
DRV...LOGINVEC system call, 6-56
DRV..RESET, 2-40, 3-I
DRV._RESET call, 1-I I
DRV_RESET operation, 2.40, 6-62
DRV..RESET system call, 2-39, 6.57
DRV_ROVEC system call 6-47, 6-58
DRV..SET system call, 6-59
DRV..SETLABEL system call, 2-19,

6-60
DRV_SETRO system call, 2-40, 2-42,

2.44, 6-47, 6-58, 6-62
DRV_SPACE, 6-73
DRV..SPACE system call, 6-46, 6-64
DS and ES registers

Small Model, 4.4
DS

UDA field, 6-153
DSEG directive, 4-4
DSM, 6-50
DX

UDA field, 6-152

I! I~C/I"AL IU~:,t,~.He

E

E(xit) option, 1-15
SYSTAT, 1-14

ECHO, 5-8
ECHO RSP, 5-I, 5-3, 5-11
ENDSEG

SYSDAT field, 6-181
EOF, 6-12
EOF (CTRL-Z). 2-9
error codes, 1-13, 2-46, 2-47
error flag, 2-47, 2-49
error handling, 2-43
Error mode, 2-3, 2-43
ES

UDA field, 6-153
EX field, 6-79

FCB, 2-11
exception handling

8087, 6-184
exclusive lock, 6-76
exclusive locks, 2-35
exit point, 6-180
EXM, 6-49
EXT

MCB, 6-129
Extended Address Record, 4-9, 4-10
extended error codes, 2-49
Extended Error Module, !-!0
extended errors, 2-43, 2-45, 2-46
extended file lock, 2-30, 6-15, 8-107
Extended I/O System, 1-4
Extended I/O System entry point,

6.-180
Extended Input/Output System, l-ll
extent, 6-93
Extent Mask, 6-49
extent number

FCB, 2-I I
Extra Segments, 5-1

F

FI' compatibility attribute, 2-32
F I'-F4', 2-15
FI'-F4' compatibility attributes, 2-32
FI 'F4 ' file attribute, 6-65
FI'-F8', 2-14
FI-F8 field

FCB. 2-11
F2' compatibility attribute, 2-33
F3' attributes, 2-36
FY compatibility attribute, 2-33
F4' compatibility attribute, 2-33
F5', 2-17
F5' interface attribute, 2-30, 2-35,

6-65, 6-68
F5' interface attribute, 6.-70
F5' interface attribute, 6-76, 6-79, 6-

107, 6-111
F5' interface attribute, 2-36
F5'-F8', 2-16
F5"F8' attribute, 6-66
F6', 2-17
F6" interface attribute, 2-27, 2-30,

2-36, 2-38, 6-65, 6-68, 6-83
F7', 2-17
FS', 2-17
Far Jump instruction
Far Return, 3-I, 4-2, 4-3
FCB, 2-9, 6-17, 6-64

M OKTd'rAL RESEARCH®
Index-7

FCB--File Control Block
(Figure 2-1), 2-10

checksum. 2-29
checksum verification, 2-33
drive code, 6-59
extent number, 6-80
format, 2-17
initialization, 2-12
length, 2-10
usage, 2-12
verification, 2-41

FCB
File Namel, 3-7
File Name2, 3-7

FCBADR
PFCB, 6-87
file access. 2-35

concurrent, 2-35
shared, I-I0

File Already Exists error, 2-46
file attributes, 2-14, 8-65
file byt,~ count, 2-37
File Control Block, 2-9, 664
File Currently Open error, 2-45
File field

XFCB, 2-21
file header

CMD, 3-2
File ID, 2-12, 2-26. 2-35, 6-76, 6.80,

6-84, 6-109
File lock, 6-14

extended, 6.65, 6-68
file locking, 1-9

extended. 2-30
file log~ging information, 6-18 I
file open modes, 2-26
File Opened in Read/Only Mode

error, 2-45

file
organization, 2-8
security, 2-27
size, 2-8
specification, 2-5
system, 2.1, 2-18, 2-37
system calls, 2-3, 2,-4

File-Access System Calls, 6-2, 664
filename, 2-1, 6-89

field, 2-I, 2-5
file size,

maximum, 2-8
filetype, 2-1, 6--89

FCB, 2-11
filetype conventions, 2-7
filetype field, 2-5, 2-6, 2-I I

XFCB, 2-21
Flag I

tick flag, I-9
Flag 2

second flag, I-8
FLAG field

PD, 6-140
flag IP, 6-42
flag numbers, 6-43
Flag Table

address, 6-182
FLAG

PD field, 6-149
flag

Process Keep, l- l l
SYS, 6-140

flags 0
1, 2, and 3, 6-43

FLAGS field, 5-8. 5-9
flags

initial, 6-152
FLAGS

QD field, 6-169
flags

queue, 6-169

Index-8
E D ~ ' N . RF.SEN~H:

FLAGS
SYSDAT field, 6-182

FLAGWAIT
Activity code, 6-149

flush buffers, 2-39
Function 0, 6-162
Function 1, 6-32
Function 2, 6-38
Function 5, 6-127
Function 6, 6.30
Function 9, 6-40
Function 10, 6-33
Function 11, 6-37
Function 12, 6-174
Function 13, 6-47
Function 14, 6-59
Function 15, 6-83
Function 16, 6-68
Function 17, 6-104)
Function 18, 6-104
Function 19, 6-70
Function 20, 6-93
Function 21, 6-113
Function 22, 6-79
Function 23, 6-98
Function 24, 6-56
Function 25, 6-54
Function 26, 6-73
Function 27, 6-46
Function 28, 6-62
Function 29, 6-58
Function 30, 6-65
Function 31, 6-48
Function 32, 6-112
Function 33, 6-95
Function 34, 6-116
Function 35, 6-102
Function 36, 6-92
Function 37, 6-57
Function 38, 6-45
Function 39, 6-53

nlDIGffAL RESEARCH®

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

~, 6-121
42, 6-76
43, 6-109
44, 6-82
45, 6-75
46, 6-.63
47, 6-141
48, 6-52
50, 6-175
51, 6-74
52, 6-72
53, 6-138
54, 6-134
55, 6-136
56, 6-133
57, 6-137
58, 6-135
59, 6-156
99, 6-I07
100,6-60
I01, 6-55
I02, 6-I05
103, 6-I 19
104, 6-188
105, 6-185
106, 6-91
I07, 6-177
109, 6-28
I I0, 6-25
III, 6-39
112, 6-128
128 6-131
129 6-131
130 6-132
131 6-41
132 6-43
133 6-42
134 6-168
135 6-171
136 6-167
137 6-172

Index=9

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

138 6-165
139 6-173
140 6-166
141 6-154
142 6-155
143 6-161
144 6-145
I45 6-158
146 6-23
147 6-26
148 6-36
149. 6-21
150, 6-142
151 6-159
152. 6-86
153, 6-27
154. 6-178
155 6-187
156 6-157
157, 6-139
158. 6-122
159. 6-124
160 6-126
161. 6-123
162 6-24
163 6-176. 6-182

Function 164 6-125
I ~' ' interface attribute, 6-76
F.., 2-2
F_ATTRIB system call, 2-14, 2-30,

2-31, 2-38, 6-65, 6-83, 6-98
F_CLOSE system call, 2-30, 2-33,

2-39, 6-68
F_DELETE system call, 2-30, 6-70,

6-80
F_DMAGET system call, 6-73
F_DMAOFF, 6--156
F_DMAOFF system call, 5-6. 6-74,

6-75
F_DMASEG. 6-73, 6-156
F_DMASEG system call. 5-6. 6-74

F_ERRMODE system call, 2-29. 2-49.
6-45, 6-75

F_FLUSH system call, 2-39
F_LOCK. 2-35
F_LOCK system call, 2-26. 2-34, 2-36.

6-76, 6-82
F_MAKE, 6-76
F_MAKE system call, 2-10, 2-14,

2-21, 2-22, 2-27, 2-38, 6-79, 6-93,
6-113

F_MULTISEC system call, 2-34. 6-82,
6-93, 6-95, 6-113

F_OPEN, 6-76
F_OPEN call, 2-26
F_OPEN system call, 2-9, 2-10, 2-14,

2-26, 2-27, 2-31, 2-38, 6-66, 6-83,
6-93, 6-109, 6-113, 6-143

F-PARSE system call, 2-45, 3-1, 6-87,
6-143

F_PASSWD, 6-98
F_PASSWD system call, 2-23, 6-61,

6-65, 6-91, 6-107
F_RANDREC system call, 6-92
F_READ system call, 2-34, 6-93
F_READRAND system call. 2-34,

6-96
F_RENAME system call, 2-12, 2-30,

2-31, 6-98
F_SFIRST system call, 2-14, 2-15,

2-20, 2-23, 2-25, 2-38, 6-66, 6-70,
6-100

F_SIZE system call, 6-102
F_SNEXT system call, 2-14, 2-15,

2-20, 2-23, 2-25, 2-38, 6-66, 6-70.
6-100, 6-104

F_TIMEDATE system call. 2-25,
6-105

F_TRUNCATE system call. 2-30,
6-107

F_UNLOCK, 2-35

m DIGITAL RESEARCHO
Index-10

F_UNLOCK system call, 2-26, 2-34,
2-35, 2-36, 2-37, 6-84, 6.109

F~USERNUM system call, 2-17,
6.112

F_WRITE system call, 2-34, 6.113
F_WRITERAND system call, 2-34,

6-94, 6-102, 6-116
F_WRITEXFCB system call, 2-21,

2-22, 6-I 19
F_WRITEZF system call, 2-34, 6.94,

6-121

G

G_Form, 3-3
G_Type field, 3-2
GENCCPM, 2-29, 3-I, 5-1, 5-3, 5-11,

6-181
GENCMD, 4-6, 4-9, 5-2
generic category, 2-7
Group Descriptor, 3-3
Group Descriptor Format

(Figure 3-2), 3-3
G_Length, 3-4
G_Max, 3-4
G-.Min, 3-4

H

H86 filetype, 4-6
Hard Disk, 6.51
hardware initialization, 6-180
Header Record, 3-3

CMD file, 4-I, 4-7
header

RSP, 5-2
HEX file, 4-6, 4-7
highest priority process, 1-6
hour of day, 6-186

HOUR
TOD field, 6.186

Illegal ? in FCB error, 2.46
independent group, 3-7
initial flags, 6-152
initial stack area, 4-2
initial stack

8080 model, 4-2
initial values

instruction pointer, 4-I
segment registers, 4-I
stack pointer, 4-1

initialization
hardware, 6-180

initialize directory, 2-39
Instruction Pointer, 4-3, 6.153
INT 0, 6-153
INT 1, 6.153
INT 3, 6.153
INT 4, 6.153
INT 224, 1-12, 6-153
INT 225, 6.153
Intel hexadecimal file format, 4-9
Intel utilities, 4-7
Intel

small model, 4-1
interface attribute

F5', 6.68, 6.70, 6-83
F6', 6.70, 6-83
F7', 6-84
FS', 6-84

interface attributes, 2-14, 2-16, 2-27,
6-65

Interrupt Return instruction, 6-152,
6-180

interrupt returns, 6.180
interrupt vectors, 6-153

M DIC./TAL RESEAECH®
Index-I I

interrupt
logical. 1-2
physical, !-2
types, 6-43

interrupts enabled. 5-9
Invalid Drive error. 2..44
IO-CONIN

XIOS. 1-10
IP. 6-153
IP flag, 6-42
IP register. 4-3

Small Model, 4-4
IP

instruction pointer. 6-152
IRET instruction, 5-9
IRET structure, 5-I 1

J

JMPF PDISP instruction. 6-180

K

KEEP Flag, 5-8
KEEP flag, 5-9. 6-149, 6-161
KERNEL flag, 6.149

L

label
directory, 2-18

last record byte count, 6-65
last record number. 6-107
LCB, I-I0

SYSDAT field, 6-183
Ld Addr, 4-11
Least Recently Used order. 3-2

LENGTH
MCB. 6-129

line feed, 2-9. 6-32, 6-33. 6-34. 6-90
line-editing, 6-33, 6-34
LINK field, 6-146. 6-182

RSP header, 5-7, 5-11
Link list root, 6-181
Link list

memory allocation units, 6-182
LINK

PD field, 6-147
LIST, 6-175
List Control Block, 1-I0. 6-181, 6-183
list device, l-I 1, 6-122, 6-123, 6-124,

6-126, 6-127
List Device I/O System Calls, 6-122
List Device System Calls, 6-2, 6-8
list devices

number of XIOS, 6-182
List field

process descriptor, 1-11
list I/O, 1-10
LIST

PD field, 6-150
lock existing records only, 6-76
Lock List, 2-27, 2-28, 2-29, 2-30. 2-33,

2-37, 2-4I, 2-42. 6-45, 6-53, 6-77,
6-81, 6-85, 6-110, 6-161, 6-181

lock logical records, 6.76
lock operations, 2-36, 2-37
Locked, 2-2
Locked mode, 2-26, 2-30, 6-19, 6-80,

6-83
locked records

maximum number. 6-183
locks

exclusive, 2-35
shared, 2-35

LOCK_MAX
SYSDAT field, 6-183

log-in drive, 2-3

I Dk~T;~. RESEARCHO
Index-12

log-in operation, 2-39
logged-in, 2-39
logical console, 6-37, 6-39
logical drives, 2-8
logical extent, 6-I 13
logical interrupt, 1-2, 6-42
logical list device, 6-128
logical message, 6-169
logical record size, 2-37
Login Vector, 6-44, 6-56
lowercase, 2-6, 2-7
LRU, 3-2
LST:, 6-128
LUL

SYSDAT field, 6-181
L_A'FI'ACH, 6-127
L..ATTACH system call, 6-122
L_CATTACH system call, 6-123
L_DETACH system call, 6-124
L_GET system call, 6-125
L_SET system call, 6-126
L-WRITE system call, 6-127
L_WRITEBLK system call, 6-128

M

M value, 4-8
M80 byte, 3-7
machine code

Small Model, 4--4
make system queue, 6-168
MAL

SYSDAT field, 6-182
MATCH

C-.ASSIGN system call, 6-22
MAX number of paragraphs, 6-131
MAX

C_READSTR, 6-34
MPB, 6-130

MCB--Mcmory Control Block
(Figure 6-7), 6-128

MC..ABSALLOC system call, 6-133
MC_ABSMAX system call, 6-134
MC_ALLFREE system call, 6-135
MC_ALLOC system call, 6-136
MC_FREE system call, 6-137
MC_MAX system call, 6-138
MDUL

SYSDAT field, 6-182
media change, 2-3, 2-29, 2-39, 2-40,

2-41, 2-42
media

nonremovable, 6-50
MEM, I-4, I-9
MEM field

Process Descriptor, 5.4
MEM

DP field, 6-149
memory, 3-7
memory allocation, 1-13
Memory Allocation System Calls

MP/M Compatible, 6-9
CP/M Compatible, 6-9

memory allocation units, 6-182
Memory Control Block, 6-128

Definition, 6-129
Memory Descriptors

unused, 6-182
Memory Management System Calls,

6-2, 6-3
Memory Management Module, 1.4
memory model, 4-1

RSP, 5-1
Memory Module, 1-9
Memory Parameter Block Definition,

6-130
memory partitions

free, 6-182
memory protection, 6-146
Memory Segment Descriptors, 6-149

u D~TAL RE.SEA.~CHe
Index-13

Memory System Calls, 6-128
memory

absolute, 6-134
initialization, 3-1
largest available region, 6.138
maximum par process, 6-181

message
length, 5-10, 6-169
maximum number, 6-169
zero-length, 1-8

MFL
SYSDAT field, 6-182

MFPB--M_FREE Parameter Block
(Figure 6-9), 6-132

Mhhhh parameter, 4-7
MIN length, 6-131
MIN

MPB, 6.130
TOD field, 6-185

minimum memory value, 4-8
minimum memory requirement, 4-7
minute of hour, 6-183, 6-185
MMP

SYSDAT field, 6-181
modes

file open, 2-26
MP/M Compatible Memory

All~ttio~ System Calla, 6-9
MP/M-86 memory allocation scheme,

6-128
MPB--Memory Parameter Block

(Figure 6-8), 6-129
MSGLEN

QD field. 6-169
multi-user, I-I
multiple programs, I-2
Multisectorcount, 2-3, 2-34, 2-35,

2-36, 6-12, 6-13, 6-73, 6-76, 6-82.
6-93, 6-I17, 6.118

Multisector I/O, 2-34
mutual exclusion queues, I-7, 1-8

MX queue, 1-8
MXdisk. 1-8
M_ALLOC system call, 6-131
M_FREE system call, 6-131, 6-132

N

NAME field, 5-8
directory label, 2-19
APB field, 6-140
CPB field, 6-160
C_ATYACH, 6-23
DP field, 6-149
PD, 5-3
QD f'ufld, 6-169
QPB field, 6-163
queue, 6-169
RSP PD, 5-8

NCCB
SYSDAT field, 6-181

NCHAR
C-READSTR, 6-34

NCIODEV
SYSDAT field, 6-183

NCONDEV
SYSDAT field, 6-183

NCP byte
field, 5-3
RSP header, 5-3

networking interfaces, 1-5
NFLAGS

SYSDAT field, 6.181
NLCB

SYSDAT field, 6-181
NLSTDEV

SYSDAT field, 6-183
NMSGS

QD field, 6-169
no data, 6-94

il~ DiC2TAL RESEARCHe

Index-14

No Room In System Lock List error,
2-46

non-80go model, 3-7
noninterrupt-driven devices, 6-41
Nonremovable Media Drives, 6-50
null character, 6-90
NVCNS

SYSDAT field, 6-181
NVCNS field, 5-3

O

OFF, 6--50
OFF_8087

SYSDAT, 6-184
OI-I86 utility, 4-9
one second flag

Flag 2, !-8
open disk files

maximum number, 6-183
open file, 2-2
Open File Drive Vector, 6-183
Open File Limit Exceeded error, 2-46
open mode, 2-2, 2-26
open verification, 2-29
OPEN_FILE

SYSDAT field, 6-183
OPEN_MAX

SYSDAT field, 6-183
Operating System Version Number

Format (Figure 6-19), 6-I76
OS type, 6-174, 6-176
os version, 6-176
Output Delimiter. 6-25
owner
queue message, I-8

OWNER__8087
SYSDAT, 6-183

P

PI ~n , 3-7
P2 Len, 3-7
PARAM field

CPB, 6-160
PARAM

CPB field, 6-160
parameter passing, 6-140
PARENT

PD field, 6-149
parent/child relationship, 3-8
parentheses, 2,-6
parse file specification, 2-3
Parse Filename Control Block, 6-86
partial close, 2-30, 2-33, 6.-68
password, 2-1, 2-2, 3-7, 6.-61, 6-65,

6-78, 6-98
default, 2-3, 2-23
length, 3-7
mode, 6-79, 6-105

password error, 2-45
password field, 2-5, 6-89

directory label, 2-19
Password field

XFCB, 2-21
password protection, I-lO, 2-3, 2-22,

6-80
password support, 2-18
PD, I-5, 5-I
PD--Process Descriptor

(Figure 6-12), 6-146
PD address, 6-157
PD table, 6-145, 6-149, 6-161
PD

APB field, 6-140
C-ASSIGN, 6-22

PDADDRESS
RSP Command Queue Message,

5-5

~DIGFI'~tJ,. ~L~m@,CJ.Io
Index-15

PDISP
SYSDAT field, 6-180

permanent drive, 2-39, 2..40, 2-~2
PFCB--Parse Filename Control

Block (Figure 6-6), 6-86
Physical and Extended Errors, 2-49
physical error, 2-43, 2-49. 2-50
Physical Input Process, I-I0, 6-31
physical interrupt, I-2
Physical Record Mask, 6-50
Physical Record Shift Factor, 6-50
physical records, 2-38
PIN, 1-10, 1-11, 6-31
PIP utility, 2.15, 2-34
PLR

SYSDAT field, 6-182
PM field

XFCB, 2-21
Poll List, 6-147
POLL

Activity code, 6-147
List Root, 6-182

printer, l-I l,
echo, 6-29

priority
hishest, 6-158
lowest, 6-158
transient process, 5-4. 6-158

PRIORITY field, 5-8
PRM, 6-49, 6-51
process, 1-2, 2-28, 2.35
Process Descriptor, 1-5, 5-1, 6-144,

6..145, 6-146, 6-161, 6-178
address, I-8, 6-140, 6-157

Process Descriptor
initialization, 3-I
unused, 6-182

Process ID
C..ASSIGN, 6-22

Process Keep flag, l-ll

process name, 6-149
aborted, I-8
priority, 6-154
privileged, 5-10
register values, 6-I 52
resources, 6-161
scheduling, 6-148

Process/Program System Calls, 6-3,
6-II

program, I-2
Program Flag
CMD header record, 3-2

PSI-I, 6-49, 6-51
PUL

SYSDAT field, 6-182
P_ABORT, I- I I
P_ABORT system call, 6-140
P_CHAIN system ca11, 2-17, 6-141
P_CLI system fail, I-5, 2-6,2-7, 2-17,

2-32, 3-I, 4-2, 4-3, 4-4, 4-5, 5-4,
5-5, 5-6, 6-32, 6-73, 6-82, 6-143,
6-144

P_CREATE, 6-145
P-CREATE system call, 3-1, 5-1, 5-4,

5-8, 5-10, 6-146, 6-149, 6-157
P_DELAY system call, 1-9, 6-154
P_DISPATCH system call. 6-155
P_LOAD system call, 1-5, 3-5, 4-2,

4-6, 6-143, 6-156
P_PDADR system call, 5-5, 6-157
P_PRIORITY system call, 5-8, 6-158
P_RPL system call, 6-160
P_TERM, 3-1.4-2, 6-162
P_TERM system call, 6-32, 6-140,

6-141, 6-161
P_TERMCPM, 4-2
P_TERMCPM system call, 6-162
P_TERMCPM

CP/M-86, 6-162

Index-16

Q

QD-Queue Descriptor (Figure 6-16),
6.168

QLR
SYSDAT field, 6-182

QMAU
SYSDAT field, 6-182

QPB, 6-171
QpB-Queue parameter Block

(Figure 6-15), 6-163
qualified reset, 2-40
question mark, 2-6
queue buffer, 1-7, 6-145, 6-169
queue descriptor, 1-7, 1-8; 6-147,

6-168
unused, 6-182

queue flags, 6.169
ID Field, 6-171
List Root, 6.182
Management, i-7
Management System CaUs, 6-3
message, 1-6, 1-7
Message Buffer, 6.163
name, 1-7, 6.163, 6-169
Parameter Block, 5-10, 6-163
System Calls, 6-12, 6.163

QUEUID
QPB field, 6.163

QUL
SYSDAT field, 6.182

Q_CREAD system call, 5-5, 6-165
Q_CWRITE system call, 5-5, 6.166
Q_DELETE system call, 5-9, 6-167
Q_MAKE system call, i-7, 5-10, 6-168
Q_OPEN, 5-5, 6-163
Q_OPEN call, 6.172, 6.173
Q_OPEN system call, 6-160, 6-170,

6.171
Q_READ, 1-6

Q-READ system call, 5-5, 6-165,
6-172

unconditional, I-8
Q-WRITE, I-6 I
Q-WRITE system call, 5-5, 6-166,

6-173

R

R/O drive test, 242
R/O Vector. 6-58
R0

RI field, File ID, 6-80
RI,R2 field, 6-18
RI,R2 field. FCB, 2-12
RI,R2 fields. 6.92

random, 2-2
read, 2-9, 6-12

'Random Record Field, 2-36
FCB, 2-35

Random Record Number, 2-9, 2-37,
3-8, 6-76, 6.92, 6.96, 6-102, 6-109,
6-III, 6-117

FCB, 2-12
raw console output, 6.29

mode, 6-31
RC field

FCB, 2-I I
XFCB, 2-21

read message, 6.172
read mode, 2-22, 6-80, 6-I05
Read Queue List, 6-147
read record, 2-2, 6.93

[] ~ITAL I~R~e
Index-17

Read-Only, 2-2, 2-40, 6.65
mode, 2-26
attribute, 2-15, 2-26
attribute Tr, 6.84
attribute Tr, 2-15
drive, 6-62
tile, 2-I I, 6-76
mode, 2-35. 6-83
Vector, 6-44

Read-Write, 2-40
Read-Write, 6-47
Read-Write state, 6-62
Read/Only Disk error, 2-44

Hie error, 2-44
Ready List, 1-5, 1-6, 1-7, 1-9, 6.147
Ready List Root, 6.182
ready process, 1-5
Real-time Monitor, 1-4, 1-5
real.time proceu control, 1-2

window, 1-13
Rec Len, 4-11
Rec Mark, 4-11
I ~ Tyl~, 4-11
record blocking, 2-38, 6-82
record count

tile, 2-9
tint, 2-9
locking, 2-28, 2-36
physical, 2-38
siz=, 2-2, 2-37
unlocking, 2-36

REDRAW, 6.35
reentmnt, 6.149, 6.160
reentmnt RSP, 5-4
register AL, 2-47
register contents preserved, 1-13
register initialization. 5-8, 5-9
removable drive, 2-40, 2-42
reset

drive. 2-39
Resident Procedure Library. 6.160

resident system process, I-2, 3-I , 5-1,
6-143

r~$oure{Hl
process, 6-161

RESTRICTED flag, 5-10
RETF instruction, 4-2, 6.180
RETURN, 6.35
Return and Display Error mode, 2-43
Return and Display mode

BDOS Error mode, 6-75
return codes, 2-47
Return Error mode, 2-43, 2-49

BDOS Error mode, 6.75
Revision Level, 6.176
RLR

SYSDAT field, 6:182
roots of system lists, 6.178
round-robin scheduling, 6-155
RPL, 6.160
RS field

FeB, 2-I I
RSP, I-2, 6.143

bit,, 5-9
CMD Header Record, 5-2
ECHO, 5.1
first, 6.181
multiple copies, 5-3
shared code,
8080 Model, 5.2, 5-3
Small Model, 5-2, 5-4

RSP Command Queue. 5-4, 5.5. 5-6.
5-9

ms lYACi3"AL Kl~4tf.He
Index-18

RSP Command Queue Message
(Figure 5-3), 5-5

Data Segment (Figure 5-4), 5-7,
6-180

Flag, 5-5
header, 5-2, 5-3, 5-6, 5-7
Header Format (Figure 5-2), 5-3
memory models, 5-1
Process Descriptor, 5-4, 5-8
queue, 6-143
stack, 5-9
type, 3-1
UDA, 5-6, 5-7

RSPSEG field, 5-11
RSPSEG

SYSDAT field, 6-I80
RTM, I-4, 1-5, 1-8
RUB/DEL, 6-34
RUN state, 6-41
RUN

Activity code, 6-147
running process, l-i, 1-5

S

S!
$2 fields, directory label, 2-19
$2 fields, XFCB, 2-21

screen switch, !-10, I-1 !
SDATVAR field

RSP header, 5-3
SEC

TOD field, 6-186
second flag, I-8
second of minute, 6-183, 6-186
seconds, 6-187
Sectors Per Track, 6-49
security

file, 2-27
segment addresses, 6-153

u DiG/IN. R.ESEARCHe

Segment Base Address, 4-9
segment register initialization, 4-2
SEG_8087

SYSDAT, 6-184
sequential, 2-2

access, 6-12
I/O processing, 2-34
read, 2-9
write, 6-79

serial number, 6-177
SERIAL Number Format

(Figure 6-20), 6-177
SET command, 2-23
SET utility, 2-32, 2-33
SFCB, 2-18, 2-24, 6-17
SFCB Subfields (Figure 2-5), 2-24
SFCBs, 6-61
shared code, I-2, 3-2

file access, I-I0
file system. I-2
List, 3-2
RSPs, 6-149
locks, 2-35, 6-77

SI
UDA field, 6-152

single-user, 1-1
size

physical records, 2-38
record, 2-2, 2-37

Small Memory Model, 3-5, 4-4
Small Model, 1-12, 4-2
source files, 2-9
SP field

UDA, 5-9, 6-152
sparse file, 2-9
SPT, 6-49
SS and SP registers

Small Model, 4-4
UDA field, 6-153

stack area, 6-144
stack pointer, 6-152

Index-19

Stack Segment, 5-1, 6-152
stack

RSP, 5-9
start address, 4-7, 4-9
START field, 6-131
START paragraph, 6-132

MPB, 6-130
STAT

PD field, 6-147
state

reset, 2-39
Status Word

UDA 8087 extension, 6-153
string delimiter, 6-40
SUP, 1-4, 1-5
SUP ENTRY

SYSDAT field, 6-180
Supervisor, 1-4, 1-5

Code Segment, 6-180
entry point, 6-180

suspended pro~ess, 1-5
SW

UDA g087 extension, 6-153
switch screen, 1-11
synchronization, 1-2
SYS Flag, 5-8
SYS flag, 6-140, 6-148
SYSDAT Table (Figure 6-21), 6-179
SYSDAT, 2-25, 5-I 1

H(elp) option, 1-14
M(emory) option, 1-14, 1-15
SYSDAT field, 6-181

SYSDISK
SYSTAT, 1-14

O(verview) option, 1-15
P(rocess) option, 1-15
Q(ueues) option, 1-15
U(ser Processes) option, 1-15

System, 6-65
system attribute, 2-15
SYSTEM attribute, 6-143

system attribute t2', 6.84
system calls 3, 6-I, 6-18, 6-21

conventions, 1-12
system call register initialization, 1-13
System Call summary, 6-14
System Data Area, 5-7, 5-10
System Data Segment, 5-II, 6-145,

6-170
address, 6-178

system disk, 6-143
default, 6-181

System file. 2-I I
user-zero. 2-15

SYSTEM/'lag. 6-161
system

flags, 6-181
generation, 5-I
lists, 1-5, 1-6
process. 6-148
processes, 1-2
queue, 1-2, 1-13, 6-170
Status, 1-14
System Calls, 6-3, 6-13
ticks, 6-162, 6-155
ticks per second, 6-181
time and date, 6-185
timing, 1-8, 1-9
tracks, 2-8

S_BDOSVER, 6-182
S-BDOSVER system call, 6-174
S._BIOS system call, 6-175
S_OSVER, 6-182
S..OSVER system call, 6-176
S_SERIAL system call, 6-177
S_SYSDAT system call, 5-7, 6-178

M DIC/TAL It~r:AtOIo
Index-20

T

TI', 2-15
TI' attribute, 2-26
TI'-TY, 2-14, 6-65

FCB, 2-11
T2', 2-15, 2-18
TY, 2-15
TAB, 6-35, 6-90

characters, 6-32
expansion, 6-29, 6-38, 6-39

TABLE flag, 6-149
TEMP DISK

SYSDAT field, 6-181
TERM

APB field, 6-139
Terminal Message Processes, 1-11
Terminal Message Processor, 1-4, 3-1
termination

character, 6-32, 6-33
code, 6-139, 6-161, 6-162

THRDRT
SYSDAT field, 6-182

THREAD
field, 6-182
list, 6-22, 6-139, 6-147
List Root, 6-182
PD field, 6-147

tick flag, I-9
Tick Interrupt Handler

XIOS, 1-8, 1-9
TICKS/SEC

SYSDAT field, 6-181
time and date, !-2, I-8, 6-105, 6-185,

6-187
time of day, [-g
time stamp

directory label, 2-25
Time System Calls. 6-3, 6-13
timing functions, !-2

TMP, 1-4, 1-11, 2-17, 3-1, 5-5, 5-9,
6-112, 6-161

priority, 6-144
RSP, 5-3

TOD--Time-of-Dey Structure
(Figure 6.22), 6-185

TOD_DAY
SYSDAT field, 6-183

TOD_HR
SYSDAT field, 6-183

TOD_MIN
SYSDAT field, 6-183

TOD_SEC
SYSDAT field, 6-183

TPA, 6-145
Track Offset, 6.51
Transient Execution Models, 4-I

Process Area, 6-145
processes, 1-2, 1-5
program, 1-12, 3-1

truncate file, 2-1, 2-2
TS 1 field

directory label, 2-19
TS2 field

directory label, 2-19
type field

directory label, 2-19
XFCB, 2-21

TYPE utility, 2-9
T-GET system call, 2-25, 6-186
T_SECONDS system call, 6-187
T-SET system call, 6-188

U

UDA, !-5, 1-6, 5-1, 6-135, 6-144,
6-145

UDA--User Data Area (Figure 6-23),
6-151

UDA SEGMENT field, 5-8

• ii DK~I'rAL R£SEARCH~
Index-21

UDA
8087, 3-1, 3-2
initialization, 3-I
PD field, 6-149
RSPs, 3-1

unalloeated data block, 6-121
unconditional read

queue, 1-7
unlock operations, 2-36

records, 6.111
unlocked, 2-2

mode, I-I0, 2-12, 2-26, 2-35, 2-37,
6.79, 6-82

unused Process Descriptors, 6-182
unused Queue Descriptors, 6-182
unused Memory Descriptors, 6.182
unwritten random records, 6-121
update date and time stamp, 6.17,

6-114
update stump. 6-80

field, 2-19
time stamp, 2-24

Upper Segment Base Address, 4-12
USBA, 4-12
User 0, 2-18, 6-83
user attributes, 2-15
User Data Area, 1-5, 3-1, 5-1, 6.135,

6-1~. 6-149. 6-151
RSP, 5-9

user default disk, 6-181
directories, 2-17
number, 1-1 I, 2-1, 2-3, 6-82
number conventions, 2-17
terminal. I-I
zero, 6-82

user processes priorities, 6-148
User System Stack, 6-152
USER SYSTEM STACK

UDA field, 6.153
USER

PD field, 6-149

user-zero system files. 2-15

V

VERNUM
SYSDAT field, 6.182

version number, 6-174, 6--182
version string address, 6-182
version

os, 6-176
VERSION

SYSDAT field, 6--182
VINQ, l-I I
virtual console, I-I, 1-2, 6-175, 6-181
Virtual Console Input Queue, I-I I
Virtual Console Screen Management,

1-10
Virtual Console Screen Manager, 1-4
virtual environments, l-1
virtual file size, 6-18
Virtual OUTput processes, 1-10
VOUT, I-I0

W

wildcard file specifications, 6.'/0
window

real-time, 1-13
write data records, 6-I 13
write, 6.173
write mode, 2-22, 6.80, 6.105

Queue List, 6-147
record, 2-2
sequential. 6.79
zeroes. 6-121

II DIC./TAk tt/.SF:ARG4o
Index-22

X

X value, 4-g
XFCB, 2-1g, 2-20, 6-79, 6-81

Extended File Control Block
(Figure 2-3), 2-20

Create or access time stamp field,
6.105

password mode, 6.119
Update time stamp field, 6.105

Xhhhh parameter, 4-7
XIOS, 1-4, 1-10, 1-11, 6.41, 6-43,

6.175
ALLOC buffers, 6-181
ENTRY, 6-180
Header, 6-181

XIOS INIT, 6-180
XIOS Initialization entry point, 6.180
XPCNS

SYSDAT, 6.184

Z

Zeroes, 4-I I

/,E DIC.~TAL RESEARCHe

Index-23

