
DIGITAL
R E S E A R C H °

Concurrent CP/M TM

Operating System

System Guide

COPYRZGHT

Copy~ightOlgO4 by Digital Research Inc. All
rights reserved. No part of this publication may be
r e p r o d u c e d , t r a n s m i t t e d , t r a n s c r i b e d , s t o r e d in a
r e t r i e v a l s y s t e m , o r t r a n s l a t e d i n t o any l a n g u a g e or
c o m p u t e r l a n g u a g e , i n any f e r n or by any means ,
electronic, mechsnlcal, magnetic, opticalr chemical,
manual or otherwise, without the prior written
permission of Digital Research Zno,, POSt Office Box
579, Pacific Grove, California, g3950.

DISCLAIMER

Digital Research Inc. makes no representations or
warranties with r e s p e c t to the contents hereo f and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research Inc. reserves
the right to revise this publication and to make
changes from tlme to time In the oontent hereof
without obligation of Digital Research Inc. to
notify any person of such revision o: ohen~e8.

TRADEMARK8

CP/N, CP/M-86, and Digital Research and Its logo are
registered trademarks of Digital Researoh Inc. ASH-
86, Concurrent OF/K, DDT-86, MP/M-86, UID-86, and
GSX a : e tradeuarke of Digital Research InD. Intel
is a registered trademark of Intel Corporation. IBM
is a r~ietmre~ t r a d e ~ n r k of ~nternatlcnel Business
Hachinee. CompuFro is a registered trademark of
CompuPro, a Godbout Company. MS-DOS is a trademark
of Microsoft Corporation.

The Concurrent CP/H" Operating System System
Guide was prepared using the Digital Research
TEx TM Text Formatter and printed in the United States
of America.

* First Edition: January 1984 *

Foreword

Concurrent CP/M '= can be configured as a single or multiple user,
multitasking, real-time operating system. It is designed for use
with any disk-based microcomputer using an Intele 8086, 8088, or
compatible microprocessor with a real-time clock. Concurrent CP/M
is modular in design, and can be modified to suit the needs of a
particular installation.

Concurrent CP/M also can support many IBMe Personal Computer Disk
Operating System (PC DOS) and MS" -DOS programs. In addition, you
can read and write to PC DOS and MS-DOS disks. In this manual, the
te~m DOS refers to both PC DOS and MS-DOS.

The information in this manual is arranged in the order needed for
use by the system designer. Section 1 provides an overview of the
Concurrent CP/M system. Section 2 describes how to build a
Concurrent CP/M system using the GENCCPM utility. Section 3
contains an overview of the Concurrent CP/M Extended Input~Output
System (XIOS). XIOS Character Devices are covered in Section 4, and
Disk Devices in Section 5. Section 6 describes special character
I/O functions needed to support DOS programs.

A detailed description of the XIOS Timer Interrupt routine is found
in Section 7. Section 8 deals with debugging the XIOS. Section 9
discusses the bootstrap loader program necessary for loading the
operating system from disk. Section i0 treats the utilities that
the OEM must write in order to have a commercially distributable
system. Section ii covers changes to end-user documentation which
the OEM must make if certain modifications to Concurrent CP/M are
performed. Appendix Adiscusses removable media considerations, and
Appendix B covers graphics implementation.

Many sections of this manual refer to the example XIOS. There are
two examples provided. One is a single user system to run on the
IBM Personal Computer. The other is a multi-user system running on
a CompuPro® 86/87 with serial terminals. The single user example
includes source code for windowing support for a video mapped
display. However windowing is not required foe the system. The
source code for both examples appears on the Concurrent CP/M
distribution diskl we strongly suggest assembling the source files
following the instructions in Section 2, and referring often to the
assembly listing while reading this manual. Example listings of the
Concurrent CP/M Loader BIOS and Boot Sector can also be found on the
release disk.

iii

DigitalResearch e supports the user interface and8oftware interface
to Concurrent CP/M, as described in the Concurrent CP~M Operatinq
System User's Guide and the Concurrent CP~ O~ratln~ System
Programmer'8 Reference Guide, respectively. Digital Research does
not support any additions or modifications made to Concurrent CP/M
by the OEM or distributor. The GEM or Concurrent CP/M distributor
must also support the hardware interface (XIOS) for a particular
hardware environment°

The C o n c u r r e n t CP/M Sys t em Guide i s i n t e n d e d f o r u se by s y s t e m
designers who want to modify either the user or hardware interface
to Concurrent CP/M. It aesumee you have already implemented a CP/M-
86 • 1.0 Basic Input/Output System (BIOS), preferably on the target
Concurrent CP/M machine. It also assumes you are familiar wlt%
these four manuals, which document and support Concurrent CP/Mt

The Concurrent CP/MOperating S~stem User's Guide documents t h e
user's interface to Concurrent CP/M, explaining the various
features used to execute applications programs and Digital
Research utility programs.

The Concurrent CP/M Operating System Programmer's Reference
Guide documents the applications programmer's interface to
Concurrent CP/M, explaining the internal file structure and
system entry points--information essent£11 to create
applications programs that run in the Concurrent CP/M
envlron•ent0

The Concurrent CP/M OPeratinq S~stem Proqrammer's Dtillties
Guide documents the Digital Research utillty programs
programmers use to write, debug, and verify applications
programs written for the Concurrent CP/M environment.

• The Concurrent CP/M Operating System System Guide documents the
internal, hardware-dependent structures of Concurrent CP/M.

Standard terminology is used throughout these manuals to refer to
Concurrent CP/R features. ~or example, the names of all XIOS
function calls and their associated code routines begin with 10 .
Concurrent CP/M system functions available through the logioalTy
invariant software interface are called system calls. The names of
all data structures internal to the operating system or XIOS are
capitalized: for example, XIOS Header and Disk Parameter Block.
The Concurrent CP/M system data segment is referred to as the SYSDAT
area or simply SYSDAT. The fixed structure at the beginning of the
SYSDAT area, documented in Section l.lO of this manual, is called
the SYSDAT DATA.

Iv

Table of Contents

I Syetea Overview

i.i Concurrent CP/M Organization 1-3

I. 2 Memory ~.ayout 1-4

1.3 Supervisor . 1-4

I. 4 Real-tlme Monitor 1-6

1.5 Memory Management Module 1-8

1.6 Character I/O Manager i-ii

1.7 Basic Disk Operating System 1-11

1.8 Extended I/O System 1-13

1.9 Reentrancy in the XIOS 1-13

i.i0 SYSDAT Segment 1-14

I.ii Resident System Processes 1-20

2 Buildlng the XIOS

2.1 GENCCPM Operation 2-1

2.2 GENCCPM Main Menu 2-2

2.3 System Parameters Menu 2-5

2.4 Memory Allocation Menu 2-10

2.5 GENCCPM RSP List Menu 2-12

2.6 GENCCPM OSLABEL Menu 2-13

2.7 GENCCPM Disk Buffering Menu 2-13

2.8 GENCCPM GENSYS Option 2-15

2.9 GENCCPM Input Files 2-16

3 IXOS Overview

3.1 XIOS Header and Parameter Table 3-1

3.2 INIT Entry Point 3-8

v

Table of Contents
(continued)

3.3 XIOS ENTRY . 3-9

3.4 Converting the CP/M-S6 BIOS 3-13

3.5 Polled Devices 3-!5

3,6 Interrupt Devices 3-15

3.7 8087 Exception Handler 3-17

3,8 XIOS System Calls 3-20

Chattier Dev£cea

4.1 Console Control Block 4-2

4.2 Console I/O Functions 4-7

4.3 List Device Functions 4-13

4.4 Auxiliary Device Functions 4-15

4.5 XO_POLL Function 4-17

Disk Devices

5.1 Disk I/O Functions 5-1

5.2 lOPE Data Structure 5-9

5.3 Multisector Operations on Skewed Disks 5-16

5.4 Disk Parameter Header 5-21

5.5 Disk Parameter Block 5-27

5.5.1 Disk Parameter Block Worksheet 5-35
5.5.2 Disk Parameter List Worksheet 5-40

5.6 Buffer Control Block Data Area 5-41

5.7 Memory Disk Application 5-47

5.8 Multiple Media Support 5-50

vi

Table of Contents
(continued)

6 PC-4K)DE Character l/O

6.1 Screen I/O Functions 6-i

6.2 Keyboard Functions 6-9

6.3 Equipment Check 6-11

6.4 PC-MODE IO_CONIN 6-11

XI~ TICK Interrupt Routine 7-1

Debugging the XI~

8.1 Running Under CP/M-86

Bootstrap 9

8-1

9.1 Components of Track 0 on the IBM PC 9-1

9.2 The Bootstrap Process 9-2

9.3 The Loader BDOS and Loader BIOS Function Sets . . . 9-4

9.4 Track 0 Construction 9-5

9.5 Other Bootstrap Methods 9-7

9.6 Organization of CCPM.SYS 9-8

1 0 O N (U t i l i t i e s

I0.i Bypassing the BDOS 10-1

10.2 Directory Initialization in the FORMAT Utility . . 10-11

11 E n d - u s e r i k ~ u a e a t a t i o n l l - I

v i i

Appendixes

A R m m o v a b l e l 4 m d i a . A - 1

B G r a p h i c s I ~ l ~ t a t i ~ B - 1

Tables, Figures, and Ustings

Tables

I-1. Supervisor System Calls 1-4
1-2. Real-time Monitor System Calls I-7
1-3. Definitions for Figure 1-3 i-I0
1-4. Memory Management System Calls 1-10
1-5. Character I/O System Calls 1-11
1-6. BDOS System Calls 1-12
1-7. SYSDAT DATA Data Fields 1-15

2-1. OENCCPM Main Mznu Options 2-4
2-2. System Parameters Menu Options 2-6

3-1. XZOS Haadmr Data Fields 3-2
3-2. XIOS RmM~llter Ulage 3-i0
3-3. XIOS Functions 3-11

4-1. Console Control Block Data Fields 4-4
4-2. Llst Control Block Data Fields 4-14

5--1.
5-2.
5-3.
5-4.
5-5.
5-5.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.

Extmnd~ Error Codes 5-4
IOPB Data Fields 5-11
DOS IOPB Data Fields 5-15
Disk Parameter Header Data Fields 5-21
Disk Parameter Block Data Fields 5-28
Extended Disk Parameter Block Data Fields . . 5-32
BSH and BLM Values 5-35
EXM Values 5-36
Directory Entries per Block Size 5-37
ALe, ALI Values 5-38
PSH and PRM Values 5-39
Buffer Control Block Header Data Fields 5-42
DZRBCB Data Fields 5-43
DATBCB Data Fields 5-45

viii

Tables, Figures, and Listings
(continued)

6-1. Alphanumeric Modes 6-3
6-2. Graphics Modes 6-3
6-3. Keyboard Shift Status 6-10
6-4. DOS Equipment Status Bit Map 6-11
6-5. Keyboard Scan Codes 6-12
6-6. Extended Keyboard Codes 6-13

i0-i. Directory Label Data Fields 10-14

Figures

1-1.
1-2.
i-3.
1-4.
1-5.

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.

3-1.

4-1.
4-2.
4-3.
4-4.
4-5.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.

Concurrent CP/M Interfacing 1-2
Memory Layout and File Structure 1-5
Finding a Process's Memory 1-9
SYSDAT . 1-14
SYSDAT DATA 1-15

GENCCPM Main Menu 2-2
GENCCPM Help Function Screen 1 2-3
GENCCPM Help Function Screen 2 2-4
GENCCPM System Parameters Menu 2-6
GENCCPM Memory Allocation Sample Session 2-10
GENCCPM RSP List Menu Sample Session 2-12
GENCCPM Operating System Label Menu 2-1~
GENCCPM Disk Buffe~ing Sample Session 2-14
GENCCPM System Generation Messages 2-16
Typical GEHCCPM Command File 2-17

XIOS Header 3-2

The CCB Table 4-2
CCB's For Two Physical Consoles 4-3
Console Control Block Format 4-4
The LCB Table 4-13
List Control Block (LCB) 4-14

Input~Output Parameter Block (IOPB) 5-10
DOS Input/Output Parameter Block (IOPB) 5-15
DMA Address Table for Multisector Operations . . 5-16
Disk Parameter Header (DPH) 5-21
DPH Table 5-26
Disk Parameter Block Format 5-28
Extended Disk Parameter Block Format 5-31
Buffer Control Block Header 5-41
Directory Buffer Control Block (DIRBCB) 5-42
Data Buffer Control Block (DATBCB) 5-45

ix

Tables, Rsures and Ustlngs
(continued)

8-1. Debugging Menory Layout 8-2
8-2. Debugging CCP/M Under DDT-86 and CP/M-86 8-3
8-3. Debugging the XIO8 Under SID-86 and CP/M-85 . . 8-4

9 - 1 . T r a q k 0 on t h e I B) [PC 9 - 1
9 - 2 . L o a d e r O r g a n i z a t i o n 9 - 2
9-3. Disk Parameter Field Initialization 9-5
9 - 4 . GrOup Deeurlptoca - CCYM.SYS H e a d e r Re~ocd . . . 9 - 8
9-5. CCPM System Inage and the CCPM.aY8 File 9-9

1 0 - 1 .
1 0 - 2 .
1 0 - 3 .
10 -4 .

Limti~e

3-1.
3-2.
3-3,

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5 - 1 0 .
5 - 1 1 .

1 0 - 1 .

Conourcent CP/)I Disk Layout 10-12
Direotor¥ Initialization Without Tiae Stamps . . 10-13
Directory Label Initialization 10-13
Directory Inltialisatlon With Time Stamps . . . 10-15

XIOE Header Definition 3-7
XZOB Function Table 3-12
8087 E x o e p t / o n H a n d l e r 3 - 1 9

M u l t i a e o t o r O p e r m t i o n a 5 - 5
IOPB D e f i n i t i o n 5 - 1 3
M u l t i e e o t o r Unmkew ing 5 - 1 8
DPH D e f i n i t i o n 5 - 2 5
8ELDaK X IOS F u n o t i o n 5 - 2 6
DPB D e f i n i t i o n 5 - 3 0
3 x t e n d e d DPB D e f i n i t i o n 5 - 3 4
BCB H e a d e r D e f i n i t i o n 5 - 4 2
DIP.BC3 D e f i n i t i o n 5 - 4 4
DATBCB D e f i n i t i o n 5 - 4 6
Example H DIBK Inplementatlon 5-48

Disk Utility Programming Example 10-3

Section 1
System Overview

Concurrent CP/M is a multitasking, real-time operating system. It
can be configured for one or more user terminals. Each user
terminal can run multiple tasks simultaneously on one or more
virtual consoles. Concurrent CP/M supports extended features, such
as intercommunication and synchronization of independently running
processes. It is designed for implementation in a large variety of
hardware environments and as such, you can easily customize it to
fit a particular hardware environment and/or user's needs.

Concurrent CP/M also supports DOS (PC DOS and MS-DOS) programs and
media. The XIOS support for DOS media is described in Section 5 of
this manual. DOS character I/O is described in Section 6.

Concurrent CP/M consists of three levels of interface: the user
interface, the logically invariant software interface, and the
hardware interface. The user interface, which Digital Research
distributes, is the Resident System Process (RSP) called the
Terminal Message Process (TMP). It accepts commands from the user
and either performs those commands that are built into the TMP, or
passes the command to the operating system via the Command Line
Interpreter (P_CLI). The Command Line Interpreter in the operating
system kernel either invokes an RSP or loads a disk file in order to
perform the command.

The logically invariant interface to the operating system consists
of the system calls as described in the Concurrent CP/M Operating
System Programmer's Reference Guide. The loglcally invariant
interface also connects transient and resident processes with the
hardware interface.

The physical interface, or XIOS (extended I/O system), communicates
directly with the particular hardware environment. It is composed
of a set of functions that are called by processes needing physical
I/O. Sections 3 through 6 describe these functions. Figure i-i
shows the relationships among the three interfaces.

Digital Research distributes Concurrent CP/M with machine-readable
source code for both the user and example hardware interfaces. You
can write a custom user and/or hardware interface, and incorporate
them by using the system generation utility, GENCCPM. There are two
example XIOSs supplied with the system. One is written for the IBM
Personal Computer, as a single user system with multiple virtual
consoles. The other XIOS is written for the CompuPro 86/87 with
multiple serial terminals. The example XIOSs are designed to be
examples and not commercially distributable systems. Wherever a
choice between clarity and efficiency is necessary, the examples are
written for clarity.

i-i

Concurrent CP/M System Guide 1 Sys tem O v e r v i e w

Th i s s e c t i o n d e s c r i b e s t h e modules c o m p r i s i n g a t y p i c a l C o n c u r r e n t
CP/M operating system. It is important that you understand this
material beEore you try to customize the operating system for a
partlculer appllcatlon.

User

User (TMp)Interface I

Invariant I Interface

(SUP RTM ME~4 CIO BDOS)

Hardware I Interface
(XIOS)

Hardware Environment

F i g u r e 1 - 1 . C o n c u r r e n t CP/M I n t e r f a c i n g

1-2

Concurrent CP/M System Guide i.i Organization

1 . 1 Concur ren t C P ~ O r g a n i z a t i a n

Concurrent CP/M is composed of six basic code modules. The Real-
time Monitor (RTM) handles process-related functions, including
dispatching, creation, and termination, as well as the Input/Output
system state logic. The Memory module (MEM) manages memory and
handles the Memory Allocate (M_ALLOC) and Memory Free (M FREE)
system calls. The Character I/0 module (CIO) handles all console
and list device functions, and the Basic Disk Operating System
(BDOS) manages the file system. These four modules communicate with
the Supervisor (SUP) and the Extended Input~Output System (XIOS).

The SUP module manages the interaction between transient processes,
such as user programs, and the system modules. All function calls
go through a common table-driven interface in SUP. The SUP module
also contains the Program Load (P_LOAD) and Command Line Interpreter
(P CLI) system calls.

The XIOS module handles the physical interface to a particular
hardware environment. Any of the Concurrent CP/M logical code
modules can call the XIOS to perform specific hardware-dependent
functions. The names used in this manual for the XIOS functions
always begin with 10 in order to easily distinguish them from
Concurrent CP/M operat-ing system calls.

All operating system code modules, including the SUP and XIOS, share
a data segment called the System Data Area (SYSDAT). The beginning
of SYSDAT is the SYSDAT DATA, a well-deflned structure containing
public data used by all system code modules. Following this fixed
portion are local data areas belonging to specific code modules.
The XIOS area is the last of these code module areas. Following the
XIOS Area are Table Areas, used for the Process Descriptors, Oueue
Descriptors, System Flag Tables, and other operating system tables.
These tables vary in size depending on options chosen during system
generation. See Section 2, "System Generation."

The Resident System Processes (RSPs) occupy the area in memory
immediately following the SYSDAT module. The RSPs you select at
system generation time become an integral part of the Concurrent
CP/M operating system. For more information on RSPs, see Section
i.ii of this manual, and the Concurrent CP/M Operatin~ System
Pro~ranlmer ' s Reference Gulde.

Concurrent CP/M loads all transient programs into the Transient
Program Area (TPA). The TPA for a given implementation of
Concurrent CP/M is determined at system generation time.

1-3

Concur ren t CP/M System Guide 1.2 Meaory Layout

1.2 ~zy Layout

The Concurrent CP/~(operating system area san exist anywhere in
memory except over the interrupt vector area. You define the exact
lo~atlon of Concurrent CP/M during system generation. The GENCCPM
program determines the memory locations of the system modules that
make u p Concurrent CP/M baaed upon system generation parameters and
the size of the modules.

The XIOS must reelde within BYSDAT, You must write the XIOS as a n
8080 model program, with both the code and data segment registers
set to the beginning of SYSDAT.

Figure 1-2 shows the relationship of the Concurrent CP/M system
image to the CCPM.SYS disk file structure.

1.3 SuperviMor

The Concurrent CP/M Supervisor (SUP) manages the interface between
system and transient processes and the invariant operating system.
All system calla go through a co~mon table-drlven interface in SUP.

The SUP module also contains system calla that invoke other system
calls, llke P LOAD (Program Load) and P CLI (Command Line
Interpreter).

Table i-i. Oupervlao= System Calls

System Cal l l Number I Hex

F PARSE 152 98
P--CHAIN 47 2F
P_CLI 150 96
P LOAD 59 3B
P--RPL 151 97
S--BDOSV~R 12 0C
S BIOS 50 32
B--OBVER 163 0A3
S--SYSDAT 154 9A
S SERIAL 107 6B
T--SEC0NDS 155 9B

1-4

Concurrent CP/MSyatem Guide 1.3 Supervisor

(top of memory)

TPA

Disk Buffers

RSPs

Table Area

XIOS

SYSDAT DATA

BDOSCode

CIO Code

MEM Code

RTM Code

SUP Code

TPA

End of file--~

4 End of
O.S. Area

~--End of O.S,

within
64k

~XIOS
Code & Data

Segment

beginning
of O.S. area

0:0400H

0:0000H

CCPM.SYS
Extra Group
(Used to hold
GENCCPM options)

CCPM.SYS
Data Group

CCPM.SYS
Code Group

CCPM.SYS
CMD Format
File Header

(Start of File)

Figu re 1 -2 . Memory Layout and File Structure

1-5

Concurrent CP/)(System Guide 1.4 Real-tlme M o n i t o r

i . 4 R m a l - t i m e ~ n l t o r

The Real-tlme Monitor (RTM) is the multitasking kernel of Concurrent
CP/M. It handles process dlspatohlng, queue and flag management,
device polling, and system timing tasks. It also manages the
logical interrupt system of Concurrent CP/M. The prlmsry function
of the RTM is transferring the CPU raeourcs from one process to
another, a task accomplished by the RTM dispatcher. At every
dispatch operation, the dispatcher stops the currently running
p r o c e s s from execution and stores its state in the Process
Daacrlptor (PD) and User Data Area (UDA) associated with that
process. The dispatcher then selects the hlgheat-prlority process
in the ready state and restores it to execution, using the data in
its PD and UDA. A process is in the ready state if it i s waiting
for the CPU resource only. The new process continues to execute
until it needs an unavailable resource, a resource needed by another
process becomes available, or an external event, such as an
interrupt, occurs. At this time the RTNperforme another dispatch
operation, allowing another p~ocess to run.

The Concurrent CP/MRTM dispatcher else performs device polling. A
process waits for a polled device through the RTM DEV_POLL system
call.

When s process needs to wait for an interrupt, it issues a
DEVWAZTFLAG system cell on a loglosl interrupt device. When the
app~oprlata interrupt actually occurs, the XIOS calls the
DEV SETFLAG system call, whloh wakes up the waiting process. The
interrupt routine then performs a Far Jump to the RTM dlspatoher,
which rasohedulea the In~err~pta~ process, as well as all othe¢
ready processes that are not yet on the Ready List. At thls point,
the dlapatcher places the process with the highest priority into
execution. Processes that are handling interrupts should ~un at s
better priority than nonlnterrupt-dapsndent processes (the lower the
priority number, the better the priority) in order to respond
quickly to incoming interrupts.

The aynteu clock generates interrupts, clock ticks, typlcally 60
times per second. This allows Concurrent CP/M to effect process
time slicing. Since the ope~atlng system waits for the tick flag,
the XIO8 TICK Interrupt routine must execute a Concurrent CP/M
DEV 53TFLAG system call at each tick (see Section 7, "XIOS TICK
Int~ruptRoutlne"), then perform s Far Jump to the SUP antrypolnt.
At thl8 point, processes wlth equal priority are scheduled for the
CPUresource in round-robln fashion unless a better-priorlty process
is on the Ready List. If no process 18 ready to use the CPU,
Concurrent CP/Mremslns in the dispatcher until an interrupt occurs,
or a polling process i8 ready to run.

1-6

Concurrent CP/M System Guide 1.4 Real-time Monitor

The RTM also handles queue management. System queues are composed
of two parts: the Queue Descriptor, which contains the queue name
and other parameters, and the Queue Buffer, which can contain a
specified number of fixed-length messages. Processes read these
messages from the queue on a first-in, first-out basis. A process
can write to or read from a queue either conditionally or
unconditionally. If a process attempts a conditional read from an
empty queue, or a condltional write to a full one, the RTM returns
an error code to the calling process. However, an unconditional
read or write attempt in these situations causes the suspension of
the process until the ooeration can be accomplished. The kernel
uses this feature to implement mutual exclusion of processes from
serially reusable system resources, such as the disk hardware.

Other functions of the Real-time Monitor are covered in the
Concurrent CP/M Operating System Programmer's Reference Guide under
their individual descriptions.

Table 1-2. Real-time Monitor System Calls

System Call 1 Number 1 Hex

DEV_SETFLAG 133 85
DEV_WAITFLAG 132 84
DEV POLL 131 83
P ABORT 157 9D
P--CREATE 144 90
P--DELAY 141 8D
P--DI S PATCH 142 8E
P--PDADR 156 9C
P--PRIORITY 145 91
P--TERM 143 8F
P"TERMCPM 0 00
Q~CREAT 138 8A
0_CWRITE 140 8C
Q_.DELETE 136 88
Q_MAKE 134 86
Q_OPEN 135 87
Q_READ 137 89
Q_WRITE 139 8B

1-7

C o n c u r r e n t C P / q 4 S y s t e m Guide 1.5 Memory Management Module

1 .5 I~mor lv ManagementS, Nodule

The Memory Management module (M~l) h a n d l e s e l l memory f u n c t i o n s .
C o n c u r r e n t CP/J4 s u p p o r t s an e x t e n d e d mode l o f memory managemen t .
F u t u r e r e l e a s e s o f C o n c u r r e n t C P / M m i g h t s u p p o r t d i f f e r e n t v e r s i o n s
o f t h e Memory module d e p e n d i n g on c l a s s e s o f memory management
hardware that become available.

The HEM module describes memory partitions internally by Memory
Descriptors (MDa). Concurrent CF/M initially places all available
partitions on the Memory Free List (MFL). 0nee MEM allocates a
partition (or se~ of contiguous partitions), it takes that partition
off the MFL and places it on the Memory A11ocaticn List (MAL). The
Memory Allocation List contains descriptions of contlgucus areas of
mercury known ae Memory Allo~atlon Units (MAUs). MAUo always contain
one or more partitions. The KEMmodule manages the space within an
KAU in the following way: when a process r e q u e s t s extra memory, MEM
first determines if the MAU has enough unused space. ~f it does,
the extra memory recfumated comes from the procees'e own partition
first.

A process can only all,cats memory from a MAU in which it already
owns ~emory, or from a new MAU crested from the MFL. if one process
shares memory with another, either can allocate memory from the MAU
that contains the shared memory segment. The MEM module keeps a
count of how many processes "own" a particular memory segment to
ensure that it becomes available within the HAU only when nc
proceeHs own it. When all of the memory within an MAU is free, the
KEM module frees the MAU and returns its memory partltlone to the
MFL.

If the system for which Concurrent CP/M i s being implemented
contains memory management hardware, the XIOS can protect a
proceee's memory when it is not in context. When the process Is
entering the operating system, all memory in the system should be
made Read-Wrlte. When a process is exiting the operating system,
the p r o c e n e ' s msnory should be made Reed-Wrlte, the operating system
memory (from CCPHSEG to ENDSEG) made Read-Only, and all other memory
made nonexistent. Memory pzotection can be implemented within the
XZOS by a rcutlne that intercepts the ZNT 224 entry point fcr
Concurrent CP/M system calls, and interrupt routines that handle
attempted memory protection violations.

Figure 1-3 shows how to find a process's memory.

1-8

Concurrent CP/M System Gulde 1.5 Memory Management Module

SYSDAT • 68H

' I It~R o

PD

MSD

MAU

I

I

00H ~ 02H 0{~H

Next MSD
(0 if none)

00H I 02H
I t

I l START
I I

02H lbH 18H 30H

I l l l ~,~-,) o' l l ~
I

08H 0AH
I t

)o 1 , I

(All MSD's polntlng to a common
MAU are grouped together)

U4H ObH OAH.

I LEN~TH

Figure I-3. Finding a Process's Melory

1-9

Concur ren t CP/M System Guide 1.5 MeMory Management Module

Table 1-3.

Data Field I

PD

MEM

MSD

MAU

D e f i n i t i o n s for F i g u r e 1-3.

E~lanatlon

Ready List Roctl points to currently
running process.

Process Descrlptorl describes s process.

MEM field of Process Descrlptcr.

Memory Segment Descrlptor~ describes a
single memory allocation. A process may
have many of these in s linked list. The
MSD llst pointed to by the MEM field
describes all the successful memory
allocations made by the pzocess. Also,
many MBDI lay point to the same MAr. All
MBDspolntlng tc the same MAU are grouped
together.

Memory Allocation Unltl describes a
ccntiguous area cf allocated memory. A
MAU is built from one or more contiguous
memory partitions. The START and LENGTH
fields are the starting paragraph and
number of paragraphs, respectively.

Table 1-4. l(emozy Management System Calls

System Cel l [.umber 1 He~

M ALLOC 128, 129 80, 81
M--FREE 130 82
M~ABS 54 3E
MC ALLFREE 58 3A
MC--ALLOC 55 37
MC~ALLOCABB 56 38
MCFREE 57 39
MC_MAX 53 35

lb~.,es T h e N CABS, MCALLOC, MCALLOCABS, NC_FREE, MC ALLFREE, and
NC MAX system c a l l s i n t e r n a l l y execu te the M ALLOCand M FREE system
caTl8. They are supported for compatibility with the-CP/M-86 and
MP/M-86 TM operating systems.

i-i0

Concurrent CP/M System Guide 1.6 Character I/O Manager

1.6 Character I/O Manager

The Character Input~Output (CIO) module of Concurrent CP/M handles
all console and list device I/O, and interfaces to the XIOS, the PIN
(Physical Input Process) and the VOUT (Virtual OUTput process).
There is one PIN for each user terminal, and one VOUT for each
virtual console in the system. An overview of the CIO is presented
in the Concurrent CP/M Operatin~ System Programmer's Reference
Guid____ee, and XIOS Character Devices are described in Section 4 of this
manual. For details of the Console Control Block (CCB) and List
Control Block (LCB) data structures, see Sections 4.1 and 4.3
respectively.

Table 1-5. Character I/O System Calls

System Call I Number I Hex

C_ASSIGN 149 95
C ATTACH 146 92
C--CAT~ACH 162 0A2
C DELIMIT Ii0 6E
C_DETACH 147 93
C GET 153 99
C MODE 109 6D
C--RAWI0 6 06
C--READ 1 01
C--READSTR i0 0A
C--SET 148 94
C--STAT Ii 0B
C--WRITE 2 02
C WRITEBLK iii 6F
C~WRITESTR 9 09
L ATTACH 158 9E
L CATTACH 161 0A1
L--DETACH 159 9F
L GET 164 0A4
L SET 160 0A0
L--WRITE 5 05
L--WRITEBLK 112 70

1.7 Basic Disk Operating System

The Basic Disk Operating System (BDOS) handles all file system
functions. It is described in detail in the Concurrent CP/M
Operating System Programmer's Reference Guide. Table 1-6 lists the
Concurrent CP/M BDOS system calls.

i-II

Concurrent CP/M SFstem Guide 1.7 Basic Disk Operating System

Table I-6. BDO8 Syatll Calll

System Call J Number 1 Hex

DRV ACCESS 38 26
DRV--ALLOCVEC 27 IB
DRV-DPB 31 IF
DRY--FLUSH 4 B 30
DRV G~T 25 19
DRV-GETLABEL 101 65
DRV--LOG:[NVEC 24 18
DRV--RESET 37 25
DRV--ROVEC 29 ID
DRV BET 14 0B
DRV--B]!ITLABEL i00 64
DRV_--B~F2RO 28 IE
DRV GPACE 46 2B
F ~ I B 30 iz
F--CLOSE 16 i0
F--DELETE 19 13
F-DNAEEG 51 33
F--DMAGET 52 34
F DMAOFF 26 1A
F--]~RRMODE 45 2D
~"~cK 42 2x
F MAKE 22 16
F--MULTIBEC 44 2C
Y_--OPEN 15 OF
F PASSWD i06 6A
7 " - l A D 20 14
F_--READRAHD 33 21
F RANDREC 36 24
F--RENAME 23 17
F--EFZRST 17 11
F--GIZE 35 23
F--SHEXT 18 12
F--TIMEDATE i02 6 6
F--TRUNCATE 99 63
F-UNLOCK 43 2B
F-UEBRNUM 32 20
F-WRITE 21 15
F--WRITERAND 34 22
F--WRITEXFCB 103 67
F--WRITEZF 40 28
~'-_Gm' 105 69
T SET 104 68

1-12

Concurrent CP/M System Guide 1.8 Extended I/O System

1.8 Extended I/O System

The Extended Input~Output System (XIOS) handles the physical
interface to Concurrent CP/M. It is similar to the CP/M-86 BIOS
module, but it is extended in several ways. By modifying the XIOS,
you can run Concurrent CP/M in a large variety of different hardware
environments. The XIOS recognizes two basic types of I/O devices:
character devices and disk drives. Character devices are devices
that handle one character at a time, while disk devices handle
random blocked T/O using data blocks sized from one physical disk
sector to the number of physical sectors in 16K bytes. Use of
devices that vary from these two models must be implemented within
the XIOS. In this way, they appear to be standard Concurrent CP/M
I/O devices to other operating system modules through the XIOS
interface. Sections 4 through 6 contain detailed descriptions of
the XIOS functions, and the source code for two sample
implementations can he found in machlne-readable format on the
Concurrent CP/M OEM release disk.

1.9 Reentrancy in the XIOS

Concurrent CP/M allows multiple processes to use certain XIOS
functions simultaneously. The system guarantees that only one
process uses a particular phymical device at any given time.
However, some XIOS functions handle more than one physical device,
and thus their interfaces must be reentrant. An example of this is
the IO CONOUT Function. The calling process passes the virtual
console number to this function. There can be several processes
using the function, each writing a character to a different virtual
console or character device. However, only one process is actually
outputting a character to a given device at any time.

IO STATLINE can be called more than once. The CLOCK process calls
the IO STATLINE function once per second, and the PIN process will
also call it on screen switches, CTRL-S, CTRL-P, and CTRL-O.

Since the XIOS file functions, IO_SELDSK, IO READ, IO WRITE, and
IO_FLUSH are protected by the ~Xdisk mutual ~clusionqueue, only
one process may access them at a time. None of these XIOS
functions, therefore, need to be reentrant.

1-13

Concurrent CP/M System Guide 1.10 SYSDAT Segment

i.i0 SYSDAT B~ment

The System Data Area (SYSDAT) is the data aagmsnt for 811 modules of
Concurrent CP/M. The SYSDAT segment is composed of three main
areas, as shown in Figure 1-4. The first part is the fixed-format
portion, containing global data used by all modules. This is the
SYSDAT DATA. It =ontalns system variables, including values set by
GENCCPM and pointers to the various system tablas. The internal
Data portion contains field0 of data belonging to individual
operating system modules. The,XIOS begins at the end of this seoond
area of SYSDAT. The third portion of SYSDAT is the System Table
Area, which is generated and initialized by the GENCCPM system
generation utility, t !

Figure 1-4 shows the relati~nshlps among the ~arlous parts of
SYSDAT.

C00H:

0BOHs

000Hz

Figure 1-4.

Table Area

XIOS

Internal Data

(SYSDAT DATA)

STSDAT

Figure I-5 gives the format of the SYSDAT DATA and describes its
data fields.

~-14

Concurrent CP/M System Guide i.i0 SYSDAT Segment

00S

08It

10B

18H

20H

28H

30H

38H

40H

4 8 H

50H

58H

60R

68H

70H

78H

80H

8 8 H

90H

98E

A0H

SUP ENTRY
I I

I I

I I I

I I I

I t I
XIOS ENTRY

I I I

I I I
DISPATCHER

I
CCPMSEG

NLCB NCCB

TEMP TICKS
DISK /SEC

MDUL
I

I
RLR
i

RESERVED
I

VERSION

TOD TOD
HR MIN

OPENFILE

l

I

I
OFF 8087

I
RESERVED

I t
RESERVED

I
RESERVED

I
RESERVED

RESERVED

I
RSPSEG

[

N SYS
FLAGS DISK

I

I
ENDSEG

I
MMP

I

RESERVED
I i I

I I I

I I I

I I I
XIOS INIT

I i I

i l
PDISP

RESER NVCNS
-VED

RESER DAY
-VED FILE

LUL CCB

l I
MFL PUL

l I
~AU

I
DLR
I

THRDRT
I

VERNUM
I

TOD NCON
_SEC DEV

LOCK-- OPEN_
MAX MAX

I
RESERVED

I i I t
RESERVED

I I
SEG 8087 SYS 87 OF

I
DRL

I
QLR

I
CCPMVERNUN

NLST NCI0
DEV DEV

OWNER 8087

FLAGS

i
QUL
Z

[
PLR
I

MAL
I

TOD DAY
7

LCB

I
RESERVED

I IxpoNs
SYS 87 SG

Figure I-5o STSDAT DATA

1-15

C o n c u r r e n t CP/](S y e ~ Guide i.i0 SYBDAT Se~paenb

Table 1-7.

D a t a F i e l d J

SUP ENTRY

XIOB ENTRY

XIOS INIT

DISPATCHER

PDISP

BI~D&TDATADat~aFIoldm

E x p l a n a t i o n

D o u b l e - w o r d a d d r e s s o f t h e S u p e r v i s o r
e n t r y p o i n t f o r i n t e r m o d u l a c o u u n i c a t i o n .
All internal system calls go through this
entry point.

D o u b l e - w o r d a d d r e s s o f t h e E x t e n d e d X/O
S y s t e m entry point for intermodula
colaunlcatlon. All XZOB function calls go
through thla entry point.

Double-word a d d r e s s of the Extended I/0
Byatem Initialization entry point. System
h a r d w a r e initialization t a k e n place by a
call through thle entry Point.

Double-word address of the Dispatcher
entry point that handles interrupt
returns. Executing a JMPF instructi~ to
t h i s a d d r e s s i s e q u i v a l e n t t o e x e c u t i n g an
IRET (I n t e r r u p t R e t u r n) i n s t r u c t i o n . The
Dispatcher routine causes a dispatch to
occur and then executes an Interrupt
R e t u r n . A l l r e g i s t e r s a r e p r e s e r v e d and
one level of s t a c k is u s e d . The add~eme
i n t h i s l o c a t i o n c a n be u s e d by XlOS
i n ~ e r c u p t h a n d l e r s fo~ ~ e r n i n a t l Q n i n s t e a d
of executing an IRET Inetructlon. The
TICK interrupt handler (I TICK in the
example XIOS'e) ends wlt~" a Jump Far
(JMPF) to the address in thls location.
Usually, interrupt handlers that sake
D3~ SETtLAG calls end with a Jump fat to
the- a d d E a s e ntOCOd in t h e DISPATCHER
field. Refer to the example XZOB
interrupt routines and Sections 3.5 and
3.6 for more detailed information.

D o u b l e - w o r d a d d r e s s of the Diapatche~
entry Point that causes a dispatch to
occur with all regletere preserved. Once
the dispatch In done, a RETF instruction
is executed. ~xecutlng a JMPF PDISP is
equivalent to executing a RETF
instruction. This location should be used
as an exit point whenever the XIOS
r e l e a s e s a resource that might be wanted
by a waiting p ~ o c e z e .

1-16

Concurrent CP/M System Guide i.i0 SYSDAT Segment

Data Field J

CCPMSEG

RSPSEG

ENDSEG

NVCNS

NLCB

NCCB

NFLAGS

SYSDISK

MMP

DAY FILE

Table 1-7. (continued)

Explanation

Starting paragraph of the operating system
area. This is also the Code Segment of
the Supervisor Module.

Paragraph Address of the first RSP in a
linked llst of RSP Data Segments. The
first word of the data segment points to
the next RSP in the list. Once the system
has been initialized, this field is zero.
See the Concurrent CP/M Operating System
Programmer's Reference Guide section on
debugging RSPs for more information.

First paragraph beyond the end of the
operating system area, including any
buffers consisting of unlnltlallzed RAM
allocated to the operating system by
GENCCPM. These include the Directory
Hashing, Disk Data, and XIOS ALLOC
buffers. These buffer areas, however, are
not part of the CCPM.SYS file.

Number of virtual consoles, copied from
the XIOS Header by GENCCPM.

Number of List Control Blocks, copied from
the XIOS Header by GENCCPM.

Number of Character Control Blocks, copied
from the XlOS Header by GENCCPM.

Number of system flags as specified by
GENCCPM.

Default system disk. The CLI (Command
Line Interpreter) looks on this disk if it
cannot open the command file on the user's
current default disk. Set by GENCCPM.

Maximum memory allowed per process. Set
during GENCCPM.

Day File option. If this field 18 0FFH,
the operating system displays date and
time information when an RSP or CMD file
is invoked. Set by GENCCPM.

1-17

~oncurrent CP/M System Guide I.i0 SYSDAT Segment

Data Field

TEMP DISK

TICKS/SEC

LUL

CCB

FLAGS

MDUL

MFL

PUL

QUL

QHAU

RLR

DLR

DRL

PLR

THRDRT

Table 1-7. (oontlnued)

Explanation

Default temporary disk. Programs that
create temporary files should use this
disk. Set by GENCCPM.

The number of system ticks per second.

Locked Unused List. Link llst root of
unused Lock list items.

Address of the Character Control Block
Table, copied from the XIOS Header by
GENCCPM.

Address o~ the Flag Table.

Memory Descriptor Unused List. Link llst
Eoct oE unused Memory Descriptors.

Memory Free List. Link llat root of fees
memory partitions.

Process Unused List. Link list root of
unused Process Descriptors.

Queue Unused List, Link list root Of
unume4 Queue Uma0EiptoEs.

(~ueue buffer Merry Allocation Unit.

Ready List Root. Linked llgt of PUs that
are ready to run.

Delay List Root. Linked llst of PUs that
are delaying for a specified number o~
system ticks.

Dispatcher Ready List. Temporary holding
place for PD8 that have Just been made
ready to run.

Poll List Root. Linked list of PUs that
are polling on devices.

Thread List Root. Linked llst of all
current PDe on the system. The llst Is
threaded though the THREAD field of the PD
instead of the LIHK fie~d.

1-18

Concurrent CP/M System Guide i.i0 SYSDAT Segment

Data Field

QLR

MAL

VERSION

VERNUM

CCPMVERNUM

TOD DAY

TOD_yH

TOD MIN

TOD_SEC

NCONDEV

NLSTDEV

NCIODEV

LCB

OPEN FILE

Table 1-7. (oontlnued)

I Explanation

Queue List Root. Linked list of all
System ODs.

V.emory Allocation Listl link list of
active memory allocation units. A MAU is
created from one or more memory
partitions.

Address, relative to CCPMSEG, of ASCII
version string.

Concurrent CP/M version number (returned
by the S_BDOSVER system call).

Concurrent CP/M version number (system
call 163, S_OSVER).

Time of Day.
1978.

Time of Day.

Time of Day.

Time of Day.

Number of days since 1 Jan,

Hour of the day.

Minute of the hour.

Second of the minute.

Number of XIOS consoles, copied from the
XIOS Header by GENCCPM.

Number of XIOS list devices, copied from
the XIOS Header by GENCCPM.

Total number of character devices (NCONDEV
+ NLSTDEV).

Offset of the List Control Block Table,
copied from the XIOS Header by GENCCPM.

Open File Drive Vector. Designates drives
that have open files on them. Each bit of
the word value represents a disk drive;
the least significant bit represents Drive
A, and so on through the most significant
bit, Drive P. Bits which are set indicate
drives containing open files.

1-19

Conourcent CP/M System Guide i.i0 8YEDAT Segment

Table 1-7. (oontlnued)

Data Field Explanation

LOCX_MAX

0P~_Nax

OK~IR_8087

XPClI8

OFF 8087

8EG 8087

8Y8_87 0F

8¥8_878G

Maximum number of locked records per
process. Set during GENCCPM.

Maximum number of open disk files per
process. Sat during GENCCPM.

Process currently owning the 8087. Set to
0 if 8087 is not owned. Set to 0FFFFH if
no 8087 present.

~umber o f p h y s i c a l c o n s o l e s .

Offset of the 8087 interrupt vector in low
me~oryo

Segment of the 8087 interrupt vector in
low memory.

Offset of the default 8087 exception
handler.

Segment of the default 8087 exception
handler.

I.ii Res iden t S y e t m t P r o c e s s e e

Resident System Processes (REPs) are an integral part of the
Concurrent CP/Moperating system. At system generation, the G3NCCPM
RSP List menu lets you select which RaPs to include in the operating
my|tam. GENCCPM then places all selaoted RBPe in a contiguous area
of RNqsta=tlng at the end of SYSDAT. The main advantage of an REP
is that it Impermanently resident within the Operatlng System Area,
end deem n o t have t o be loaded f rom d i s k whenever i t Is needed.

Concurrent CP/M automatlcally allocates • Process Descriptor (PD)
and User Data Area (UDA) for a transient program, but each RBP is
responsible for the allc~atlon and inltlalisatlon of its own PD and
UDA. Concurrent CP/M uses the PD and QD structures declared within
an RSP directly if they fall within 64K of the 5YBDAT segment
address. If outside 64K, the RSPea PD and QD are copied to a PD or
QO allocated from the Process Unused List or the Queue Unused List.
In either case the PD and QD of the RSP lle within 84K of the
beginning of the SYSDAT Segment. This allows RSP8 to occupy nora
area than remains in the 64K SYSDAT segment.

1-20

Concurrent CP/M System Guide i.ii Resident System Processes

Further details on the creation and use of RSPs can be four~ In the
Concurrent CP/M Operating System Programmer's Reference Guide.

End of Section I

1-21

Secdon Z
System Generation

The Concurrent CP/M XiOS should be written as an 8080 model (mixed
code and data) program and orlglned at location 0C00H using the
ASM86 ORG assembler directive. Once you have written or modified
the XIOS source for a particular hardware configuration, use the
Digital Research assembler ASM-86'= or RASM-86 '= to generate an
XIOS.CON file for use with GENCCPM:

A>ASM86 XXO6

A>GE]R:~ID XIO8 8080

A>REM XIOS.C(JJ=XIO6.CMD

; Assemble the XIOS

; Create XIOS.CMD from XIOS.H86

; Rename XIOS.CMD to XIOS.CON

Then invoke the GENCCPM program to produce a system image in the
CCPM.SYS file by typing the command:

A>GEMCCPM ; generate system image

2.1 GEMCCPMOperatlon

You can generate a Concurrent CP/M system by running the GENCCPM
program under an existing CP/M or Concurrent CP/M system. GENCCPM
builds the CCPM.SYS file, which is an image of the Concurrent CP/M
operating system. Then you can use DDT-86" or SID-86" to place the
CCPM.SYS file in memory for debugging under CP/M-86.

GENCCPM allows the user to define certain hardware-dependent
variables, the amount of memory to reserve for system data
structures, the selection and inclusion of Resident System Processes
in the CCPM.SYS file, and other system parameters. The first action
GENCCPM performs is to check the current default drive for the files
necessary to construct the operating system image:

• SUP.CON
• RTM.CON
• MEM.CON
• CIO.CON
• BDOS.CON
• XIOS.CON
• SYSDAT.CON

Supervisor Code Module
Real Time Monitor Code Module
Memory Manager Code Module
Character Input~Output Code Module
Basic Disk Operating System Code Module
Extended Input~Output System Module
SYSDAT DATA and Internal Data modules of
SYSDAT segment

2-1

Concurrent CP/M System Guide 2.1 GENCCPM Operation

• VOUT. RSP
• PIN. RSP
• TMP. RSP
• CLOCK. RSP
• DIR.RSP
• ABORT. RSP

Virtual console OUTput process
Physical keyboard input process
Te~mlnal Message PrOcess
CLOCK process
DIRectory process
ABORT p r o c e s s

Motel *.RSP = Resident SyStem Process file. The VOUT, PIN, TMP,
and CLOCK RSPs are required for Concurrent CP/M to run. The RSPe
listed ere all distributed with Concurrent CP/M.

If GENCCPM does not find the preceding .CON files on the default
drive, it prints an error message on the consoles

Can't find these modules~ ,FILESPEC~...{cFILESPEC,}

where FILESPEC is the name of the missing file.

2 .2 GSMCCPMMain Menu

All of the GENCCPM Main Menu options have default values. When
generating s system, GENCCPM assumes the value shown in square
brackets, unless you specify another value. Any menu item that
requires a yea or no response represents a Boolean value, and can be
toggled simply by entering the variable. For example, entering
VERBOSE in response to the GENCCPM prompt will change the state of
the VERB08K variable fzoR the default state, [Y], to the opposite
state.

In the GENCCPM Main Menu illustrated in Figure 2-i, all numeric
values are in hexadecimal notation.

*** Concurrent CP/M 3.1 GENCCPM Main Menu ***

help
verbose [Y]

destdrive [As]
deleteeya [N]

GENCCPM Help
More Verbose GEMCCPM Messages
CCPM.SYS Output To (Destination) Drive
Delete (instead of rename) old CCPM.SYS file

syeparame
memory

diskbuffere
oalabel

raps

Display/Change System Parameters
Display/change Memory Allocation Partitions
Display/Change Disk Surfer Allocation
Display/Change Operating System Label
Display/Change RSP List

gensys I'm finished changing things, go GEN a SYStem

C h a n g e s ?

F i g u r e 2 -1 . GEECCI:'NMain Menu

2-2

Concurrent CP/M System Guide 2.2 GENCCPM Main Menu

If you type HELP in response to the GENCCPM Main Menu prompt
Changes?, as shown in this example:

Changes? HELP <cr>

the program prints the following message on the Help Function
Screen:

*** GENCCPM Help Function ***
=

GENCCPM lets you edlt and generate a system image from
operating system modules on the default ~isk drive. A
detailed explanation of each GENCCPM parameter may be
found in the Concurrent CP/M System Gulde, Section 2.

GENCCPM assumes the default values shown within square
brackets. All numbers are in Hexadecimal. To change a
parameter, enter the parameter name ~ollowed by "=" and
the new value. Type <cr> (carriage return) to enter the
assignment. You can make multiple assignments if you
separate them by a space. NO spaces are allowed wlthin
an assignment. Example:

Changes? verbose=N sysdrive=A: openmax=iA <cr>

Parameter names may be sh)rtened to the minimum
combination of letters unique to the currently displaye,|
menu. Example:

Changes? v=N des=A: del=Y <cr>

Press RETURN to continue...

Figure 2-2. GENCCPM Help Function Screen i

2-]

C o n c u r r e n t CP/M Sys tem Guide 2,2 GENCCPM Main Menu

Sub-menus (the last few ¢ptlone) are accessed by typing
the sub-menu name followed by <or>. You may enter
multiple sub- menus, In which case each sub-menu will be
d i s p l a y e d in o r d e r , Example :

Changes7 h e l p eyeparams rsp8 <or>

Enter ¢cr> alone to exit a menu, or 8 parameter name, "="
and the new value to assign a parameter. Multiple
assignments may be entered, as in response to the Main
Menu prompt.

P r e s s RETURN to continue.

F i g u r e 2 - 3 . ~ H s l p F u r ~ t i o u S c r e e n 2

Table 2-1 describes the remaining GENCCPM Main Menu options.

Table 2-1. GID|CCPHl4alnl4onuOptlone

Option I Explanation

V~RBOfE

DEBTDRIVE

DELET~SYB

8YSPARAMS

The GENCCI~ program messages are normally
verbose. However, sxperlenoed operators
might want to limit the in thl interest
of efficiency. Betting VIRBOSE to N
(no) limits the length of GENCCPM
messages to the absolute minimum.

The d r i v e u p o n w h i c h t h e g e n e r a t e d
CCPM.SY8 f i l e i s t o r e s i d e . I f no
destination drive ie specified, 01NCCPM
a s s u m e s t h e c u r r e n t l y l o g g e d d r i v e a s
the default.

Delete, instead of rename, old CCPM.SYS
file. Normally, G~NCCPM renanee the
previous s y s t e m file to CCPM.OLD before
building the new system image. By
specifying DELETESY8=¥, you c a u s e
GENCCPM tO delete the old file instead.
This Is useful when disk space is
limited.

Typing SYSPARAMS <or> displays the
GENCCPM System Parameter Menu. See
Figure 2-4 and accompanying text.

2-4

Concurrent CP/M System Guide 2.2 GENCCPM Main Menu

Option

MEMORY

DISKBUFFERS

OSLABEL

RSPS

GENSYS

Table 2-1. (continued)

l Explanation

Typing MEMORY <or> displays the GENCCPM
Memory Partition Menu. See Figure 2-5
and accompanying text.

Typing DISKSUFFERS <or> displays the
GENCCPM Disk Buffer Allocation Menu.
See Figure 2-7 and accompanying text.

Typing OSLABEL <or> displays the GENCCPM
Operating System Label Menu. See Figure
2-8 and accompanying text.

Typing RSPS ,or> displays the GENCCPM RSP
List Menu. See Figure 2-6 and
accompanying text.

Typing GENSYS <or> initiates the
GENeration of the SYStem file. When
using an input file to specify system
parameters, and the GENSYS command is
not the last llne in the input file,
GENCCPM goes into interactive mode and
prompts you for any additional changes.
See Section 2.9, "GENCCPM Input Files,"
for more information.

Note: To create the CCPM.SYS file you must type in the GENSYS
command, or include it in the GENCCPM input file.

2.3 System Parameters Menu

The GENCMD System Parameters Menu is shown in Figure 2-3. You
access this menu by typing SYSPARAMS in response to the Main Menu.

Note: All GENCCPM parameter values are in hexadecimal.

2-5

g o n c u r r e n t CP/M Sys t em G u i d e 2 . 3 Sys tem P a r a m e t e r s Menu

Display/Change System Parameters Menu

e y s d r i v e [B:]
t m p d r i v e [B:]

c m d l o g g i n g [N]
compa tn~de [Y]

menmax [4000]
openmex [20]
lockmax [20]

System Drive
Temporary File Drive
COmmand Day/File Logging at Console
CP/M FOB Compatibility Mode
Maximum Memory per P r o c e s s (paragraphs)
Open F i l e s p e r P r o c e s s Maximum
Looked Records p e r P r o c e s s Maximum

osstart [1008]
nopenfilea [40]

npdescs [14]
n q c b s [20]

qbufslze [400]
nflags [20]

C h a n g e s ?

Starting Paragraph of Operating System
Number of Open File and Locked Record Entries
Number of Process Descriptors
Number of Queue Control Blocks
Queue Buffer Total Size in bytes
Number of System Flags

F i g u r e 2 - 4 . ~gCkT.~q 6 y s t a Parzmeters Menu.

T a b l e 2-2. S y a t e n P a r ~ t m r s M e n u O p t i o n m

O p t i o n J E x p l a n a t i o n

SYSDRIVE The system drive where Concurrent CP/M
looks foe a tranale~t p r og r am wI~n it i s
not found on the current default drive.
All the commonly used transient
processes can thus be placed on one disk
under User Number 0 and are not needed
on every drive and user number. See the
Concurrent CP/M Operatln~ System User's
Guide for information on how the
ope~atlng system performs ~ils s e a r c h e s .

The d r i v e e n t e r e d h e r o i s u sed ae t h e
drive for temporary disk files. This
entry can be accessed in the System Data
Segment by application programs a s the
drive on which to create temporary
files. The temporary drive should be
the fastest drive in the system, for
example, the Memory Disk, if
implemented.

TMPDRIVE

2-6

Concurrent CP/M System Guide 2.3 System Parameters Menu

Table 2-2. (continued)

Option I Explanation

CMDLOGGING

COMPATMODE

~LEMMAX

OPENMAX

LOCI(MAX

Entering the response [Y] causes the
generated Concurrent CP/M Command Line
Interpreter (CLI) to display the current
time and how the command will be
executed.

CP/Me FCB Compatibility Mode [Y]. When
the default value [Y] is set, the
operating system recognizes the
compatibility attributes. Setting this
parameter to IN] makes the generated
system ignore the compatibility
attributes. See the Concurrent CP/M
Operating System Programmer's Reference
Guide, Section 2.1~, "Compatibility
Attributes," for more information on
this feature.

Maximum Paragraphs Per Process [4000]. A
process may make Concurrent CP/~ memory
allocations. This parameter puts an
upper limit on how much memory any one
process can obtain. The default shown
here is 256K (40000S) bytes.

Maximum Open Files per Process [20].
This parameter specifies the maximum
number of files that a single process,
usually one program, can open at any
given time. This number can range from
0 to 255 (0FFH) and must be less than or
equal to the total open files and locked
records for the system. See the
explanation of the NOPENFILES parameter
below.

Maximum Locked Records per Process [20].
This parameter specifies the maximum
number of records that a single process,
usually one program, can lock at any
given time. This number can range from
0 to 255 (0FFH) and must be less than or
equal to the total open files and locked
records for the system. See the
explanation of the NOPENFILES parameter
in the SYSPARAMS Menu.

2-7

Concurrent CP/M System Guide 23 System Parameters Menu

Table 2-2. (c~ntlnuod)

Option I Explanation

OSSTART

NOPENFILES

Starting Paragraph of the operating
system [1008]. The starting paragraph
is where the CCPMLDR is to put the
operating system Code execution starts
here, with the CS register set to this
value and the ZP register set to O. The
Data Segment Register is set to the
S¥SDAT segment address When first
bringing up and debugging Concurrent
CP/M u n d e r CP/M-85, the answer to thl8
cZuaetlon should be 8 plus where DOT-86
running under CP/M-86 reads in the file
using the R comland. The DOT86 R
oomaand a l s o c a n be u s e d t o read the
CCPM.STS file to a specific memory
location After debugging the system,
you might want to relocate it to an
address more appropriate to your
hardware oonflguratlon. Thln location
naturally depends on where the Boot
Sector and Loader are placed, and how
xuch RAM is used by ROM monitor or
memory-mapped I/O devices

Total Open Files in S~atem [40]. Thls
thsGy,~e'a=amet'r .peclfl.. 4:.he ~otal , 1 . , of

Lock List, vhich includes the
tc~cal nulber of o p e n dlsk files plus the
total number of locked records for all
the processes executing under Concurrent
CP/M at any given time Thln number
must be greater than or equal to the
maximum open files per p]:ocess (the
O~IOK%K parmaeter abw=ve) aria the uexluum
locked records per process (the LOCI~AX
parauete~ above)It is possible either
to allow each pro~es8 to use up the
total System Lock List epece, o r to
allow each process to only open a
fraction of the system total. The first
technique implies a eltuetlon where one
p r o c e s s can forcibly block o t h e r s
because i t has consumed all the
available Lock list items.

2-8

Concurrent CP/M System Guide 2.3 System Parameters Menu

Option

NPDESCS

NQCBS

OBUFSIZE

NFLAGS

Table 2-2. (continued)

Explanation

Number Of Process Descriptors [14]. For
each memory partition, at least one
transient program can be loaded and run.
If transient programs create child
processes, or if RSPs extend past 64K
from the beginning of SYSDAT, extra
Process Descriptors are needed. When
first brlnglnq up and debugging
Concurrent CP/M, the default for this
parameter suffices. After the debug
phase, during system tuning, you can use
the Concurrent CP/M SYSTAT Utility to
monitor the number of processes and
queues in use by the system at any time.

Number Of Queue Control Blocks [20]. The
number of queue Control Blocks should be
the maximum number of queues that may be
created by transient programs or RSPs
outside of 64k from SYSDAT. The default
value suffices during initial system
debugging.

Size Of Queue Buffer Area in Bytes [4001.
The Queue Buffer Area is space reserved
for Queue Buffers. The size of the
buffer area required for a particular
queue is the message length times the
number of messages. The Queue Buffer
Area should be the anticipated maximum
that transient programs will need.
Again, the default value will be
adequate for initial system debugging.
Note that the Queue Buffer Area can be
large enough (up to 0FFFFH) to extend
past the SYSDAT 64K boundary.

Size of the flag table [20]. Flags are
three-byte semaphores used by interrupt
routines. The number of flags needed
depends on the design of the XIOS. More
information on using flags for interrupt
devices can be found in Section 3 under
"Interrupt Devices". See also the
Concurrent CP/M Operating System
Programmer's Guide on Dev_flagset,
Dev_flagwt.

2-9

C o n c u r r e n t CP/M System Guide 2.4 MeBory Allocation Menu

2 ,4 ~ r y i t t l~.at lm~ menu

The Memory Allocation Partitlone Menu, shown in Figure 2-5, ie an
Interaotive menu. When the menu is first dleplayad, it lists the
ourrent meRory partitions. If none have been specified, the list
field is blank. Following the list is the menu of options
available. You may choose either to ADD to the list of partitlons,
or to DELETE one or more partitions. Partition assignments must be
made by specifying either ADD or DELETE, followed by an equal sign,
the starting address and last address of the memory region to be
partitioned, and the else, in paragraphs, of eaoh partition. All
values must be in hexadeolmsl notation and separated by commas. An
asterisk can be used to delete all memory partitions. The Start and
Last values are paragraph addresses1 multiply them by 15 (10E) to
obtain absolute addresses. Similarly, partition sizes are in
paragraphs! multiply by 16 (10E) to obtain size in bytes.

Xn the sx~utplo below, all deZaul~ memory partitions are first
deleted (DILETJ=*). Then two kinds of iemory partitions are added
to the lists 16K (4000h~ partitions fred address 2400:0 to 4000:0,
and 32K (8000h) partitions from 4000s0 to 6000:0.

Addresses Partitions (in paragraphs)
Start Last SiZe Qty
i. 400h 6000h 400h 17h

D i s p l a y / C h a n g e Mise ry Allo~a~Lon P a r t i t i o n s
add ADD memory p a r t l t l o n (e)

de le te DELETE memory partltlon(s)

Changes? delete-* add=2400,4000,400 add=4000,600Q,800

Addresses Partitions
Start Last Size Qty
1. 2400h 4000h 400h 7h
2. 4000h 6000h 800h 4h

Display/Change Memory Allocation Partitions
add ADD memory partition(s)

delete DELETE memory partitlon(s)

Changes? <or>

F igure 2-5. EgaK~PUMemory Allocation Eauple Eesalon

2-10

Concurrent CP/MSyetem Guide 2.4 Memory Allocation Menu

Memory partitions are highly dependent on the particular hardware
environment. Therefore, you should carefully examine the defaults
that are given, and change them if they are inappropriate. The
memory partitions cannot overlap, nor can they overlap the operating
system area. GENCCPM checks and trims memory partitions that
overlap the operating system but does not check for partitions that
refer to nonexistent system memory. GENCCPM does not size existing
memory because the hardware on which it is running might be
different from the target Concurrent CP/M machine (this might he
done by the XIOS at initialization time). Error messages are
displayed in case of overlapplng or incorrectly sized partitions,
but GE~CCPM does not automatically trim overlapping memory
partitions. GENCCPM does not allow you to exit the Main Menu or the
Memory Allocatlon Menu if the memory partition llst is not valid.

The nature of your application dictates how you should specify the
partition boundaries in your system. The system never divides a
single partition among unrelated programs. If any given memory
request requires a memory segment that is larger than the available
partitions, the system concatenates adjoining partitions to form a
single contiguous area of memory. The MEM module algorithm that
determines the best fit for a given memory allocation request takes
into account the number of partitions that will be used and the
amount of unused space that will be left in the memory region. This
allows you to evaluate the tradeoffs between memory allocation
boundary conditions causing internal versus external memory
fragmentation, as described below.

External memory fragmentation occurs when memory is allocated in
small amounts. This can lead to a situation where there is plenty
of memory but no contiguous area large enough to load a large
program. Internal fragmentation occurs when memory is divided into
large partitions, and loadlng a small program leaves large amounts
of unused memory in the partition. In this case, a large program
can always load if a partition is available, but the unused areas
within the large partitions cannot be used to load small programs if
all partitions are allocated.

When running GENCCPM you can specify a few large partitions, many
small partitions, or any combination of the two. If a particular
environment requires running many small programs frequently and
large programs only occaslonally, memory should be divided into
small partitions. This simulates dynamic memory management as the
partitions become smaller. Large programs are able to load as long
as memory has not become too fragmented. If the environment
consists of running mostly large programs or if the programs are run
serially, the large-partltion model should be used. The choice is
not trivlal and might require some experimentation before a
satisfactory compromise is attained. Typical solutions divide
memory into 4K to 16K partitions.

2-11

Concurrent CP/M Sys tem Guide 2.5 GEHCCPM RSP List Menu

2 .5 (;BNCCI~RSP Llet Menu

The GENCCPM RSP (Resident System Process) List Menu is shown in
Figure 2-6. The example session illustrates excluding ABORT.RaP and
MY.RSP from the list of RSPS to be included in the system.

RaPs to be i n c l u d e d a r e :

PIN.RSP DIR.RSP
VOUT.RSP CLOCK.RaP

Display/Change RaP List

include Include RSPs
exclude Exolude RSPs

Changes?exclude-abort.=|p,my.rsp

RaPs t o he i n c l u d e d i r e ;

PIN.RSP DZR.RSP
TMP.qSP

Chan~es? <or>

F i g u r e 2 - 5 .

ABORT.RSP TMP.P~P
MY.RSP

VOUT.RSP CLOCK.RSP

C~NCc.Rq RSP L i n t Menu a a I p l e S e s s i o n

The GENCCPM RSP List Menu first reads the directory of the current
default dlsk and lists all .RSP files present. Responding to the
GEHCCPM prompt Changes? with either an include or exclude command
edits the llst of RaPs to be made part of the operating system at
system generation time. The wildcs=d (*l) file specification can be
used with the include command to aut~aticslly include all .RaP
files on the disk.

101:11= The P~N, VOUT, and CLOCK RSPa saust be included for Concurrent
CP/M to run.

2 - 1 2

Concurrent CP/M System Guide 2.6 GENCCPM OSLABEL Menu

2.6 GEICCPM OSLABEL Menu

If you type 0SLABEL in response to the main menu prompt, as shown in
this example:

Changes? OBLABEL

the following screen menu appears on your screen:

Display/Change Operating System Label
Current message is:
<nulls

Add lines to message. Terminate by entering only RETURNz

Figure 2-7. GEKCCPMOperatlng System Label Menu

You can type any message at this point. This message is printed on
each virtual console when the system boots up. Note that if the
message contains a $, GENCCPM accepts it, but it causes the
operating system to terminate the message when it is being printed.
This is because the operating system uses the C WRITESTR function to
print the message, and $ is the default message terminator.

The XIOS might also print its own sign-on message daring the INIT
routine. In this case, the XIOS message appears before the message
specified in the GENCCPM OSLABEL Menu.

2.7 GEMCCPM Disk Buffering Menu

Typing DISKBUFFERS in response to the main menu prompt displays the
GENCCPM Disk Buffering Menu. Figure 2-8 shows a sample session:

2-13

ConcL]rcent CP/H S y s t e m Guide 2.7 GEHCCPM Buffering Menu

*** Dlsk Buffering Information ***
Dir qax/PEOC Data Max/PrOc Hash Spe¢ifled

Dry Burs Dir Bufs Bulb Dat Burs -leg Buf Pgpha
m = = = = m = t ~ = ~ = = = = = = = ~ m = = m m = = ~ m ~ = = = m ~ = = m u =

A: ?? 0 ?? 0 yes ??
B: ?? 0 ?? 0 yes ??
C: ?? 0 ?? 0 y e s ??
D: ?? 0 ?? 0 y e s ??
E: 77 0 ?? O yes 77
M: ?? 0 f i x e d f i x e d ??

Total paragraphs allocated to buffers: 0
Drive (<or> to exit) 7 az
Number of directory buffers, or drive to share with? 8
Maximum directory buffers per process [8] ? 4
Number of data buffers, or drive ~o share with? 4
Maximum data buffers per process [4]? 2
Hashing [yes] ? <or>

*** Disk Buffering Inforaatlon ***
Dir Max/Proc

Dry Bufs Dir Burs

A: 8 4
B: 77 0
C: 77 0
D: ?? 0
E: ?? 0
Mz 77 0

Data Mex/Proc Hash Specified
Bufs Dat Burs -ing Bur Pgph8

4 2 yes 200
?? 0 yes ??
?? 0 yes ??
?? 0 yes ??
?? 0 yes ??

fixed fixed ??
Total paragraphs allocated to bufEerm8 200

Drive (<or> to exit) ? *t
Number of directory buffers, or drive to share with? a:
Number of data buffers, or drive to share with? a:
Hashing [yes] 7 <or>

*** Disk Buffering Information ***
Dir Max/Proc Data Max/Poor Hash 8peoifled

Dry Bufs DiE Burs Bufs Dat Burs -leg Bur Pgphs

Az 8 4 4 2 yes 200
B: shares Ax shares A: yes 80
C: shares As shares A: yes 20
D: shares A: shares A: yes 18
E: shares As shares As yes i0
M: shares As fixed fixed 0

Total paragraphs allocated to buffersz 2(:8

Drive (<or> to exit) ? <rE>

Figure 2-8. GIICCPN DLmk Buffering 8aIple Session

2-14

Concurrent CP/M System Guide 2.7 GENCCPM Suffering Menu

In the sample session shown in Figure 2-8, GENCCPM is reading the
DPH addresses from the XIOS Header, and calculatlng the buffer
parameters based upon the data in the DPHs and the answers to its
questions. GENCCPM only asks questions for the relevant fields in
the DPH that you have marked with OFFFFh values. See Section 5.4,
"Disk Parameter Header," for a detailed explanation of DPH fields
and GENCCPM table generation. An asterisk can be used to specify
all drives, in which case GENCCPM applles your answers to the
following questions to all unconflgured drives.

Note that GENCCPM prints out how many bytes of memory must be
allocated to implement your disk buffering requests. You should be
aware that disk buffering decisions can significantly impact the
performance and efficiency of the system being generated. If
minimizing the amount of memory occupied by the system is an
important consideration, you can use the Disk Buffering Menu to
specify a minimal disk buffer space. We have found, however, that
the amount of Directory Hashing space allocated has the most impact
on system performance, followed by the amount of Directory Buffer
space allocated. As with the trade-offs in memory partition
allocation discussed above, deciding on the proper ratio of
operating system space to performance requires some experimentation.

Note also that if DOS media is supported, directory hashing space
must be allocated for the DOS file allocation table (FAT). See
Section 5.5.1 for information on allocating enough space for the FAT
and the hash table.

GENCCPM checks to see that the relevant fields in the DPHs are no
longer set to 0FFFFH. GENCCPM does not allow you to exit from the
Main Menu until these fields have been set using the Disk Buffering
Menu.

2.8 GER{~ZPM ~S~"~ Optio~

Finally, specifying the GENSYS option in answer to the main menu
prompt causes GENCCPM to generate the system image on the specified
destination disk drive. During the actual system generation, the
following messages print out on the screen:

2-15

Concurrent CP/M System Gulde 2.8 GENCCPHGENEYS Option

Generating new SYS file
Generating tables
Appending REPa to system file
Doing Fixups
SYS image load map~

Code starts at GGGGh
Data starts at Hl~Bh

Tables start at llilh
RSPs start at JJJJh

XIOS Buffers start at KKKKh
End of OB at LLLLh

Trlming memory partitions. Hew Lists

Addresses Partitions
(in Paragraphs) Slze How

Start Last (Paras.) Many
i. AAAAh BBBBh XXXXh Yh
2. ~ h RNNNh QOOQh Vh

I
(only if
necessary)

I
V

Wrapping up

A>

Flguzm 2 -9 . GNK:(:PM glm~Llm ~ a t i o n ~ u

2.9 ~ Input F i l e s

~NCCPM allows you to input all system generation commands frou an
input file. You can also redirect the oonmole output to a dlgk
file. You UH theae GENCCPNfeaturssh¥ invoking it wlthoommand of
t h e forms

GXNCCPM <fllsln >fileout

where fileln is the name of the GBNCCPM input file. Note that no
spaces can intervene between the greater-then or less-than sign and
the file specification. If this condition is not mat, GENCCPM
responds with the massager

REDIRECTION ERROR

The f o r m a t o f t h e i n p u t f i l e i s s i m i l a r t o a SUBMIT f i l e ! each
command i s e n t e r e d on a s e p a r a t e l i n e , f o l l o w e d by a c a r r i a g e
r e t u r n , e x a c t l y i n t h e o r d e r r e q u i r e d d u r i n g a m a n u a l l y o p e r a t e d
GENCCPM session. The last command can be followed by a carriage
return and the cowhand:

A>GmmT8

2-16

Concurrent CP/M System Guide 2.9 GENCCPM Input Files

to end the command sequence and generate the system. If the GENSYS
command is not present, GENCCPM queries the console for changes.

The following example illustrates the use of the GENCCPM input file.
Assuming that the input file file specification is GENCCPM.IN, use
the following command to invoke GENCCPMz

A>GENCCPM <GENCCPK. IN

Figure 2-10 shows a typical GENCCPM command file:

VERBOSE=N DESTDRIVE=D:
SYSPARAMS
OSSTART=4000 NPDESCS=20 QBUFSIZE=4FF TMPDRIVE=A: CHDLOGGING=Y
<or>
MEMORY
DELETE=* ADD=2400,4000,400 ADD=4000,6000,800
<or>
DISKBUFFERS
A:
8
4
4
2
hashing
*: ; for all remaining drive questions
A: ; share directory buffers with A:
A: ; share data buffers with A:
hashing ; hashing on all drives
<cr>
OSLABEL
Concurrent CP/M Version 1.21 04/15/83
Hardware Configuration:

A: I0 ME Hard Disk
B: 5 ME Hard Disk
C: Single-density Floppy
D: Double-density Floppy
M: Memory Disk

<cr>
GENSYS <or> • Only if you do not want to be able

to specify additional changes

Figure 2-10. Typical GE]ICCPMComaand F i l e

After reading in the command file and optionally accepting any
additional changes you want to make, GENCCPH builds a system image
in the CCPM.SYS file in the manner described in Section 2.1.

End of Section 2

2-17

Section 3
XIOS Overview

Concurrent CP/M Version 3.1, as implemented with one of the example
XlOb's discussed in Section 3.1, is configured for operation with
the Compu-Pro with at least two 8-inch floppy disk drives and at
least 128K of RAM. All hardware dependencies are concentrated in
subroutines collectlvely referred to as the Extended Input/Output
System, or XIOS. You can modlfy these subroutines to tailor the
system to almost any 8086 or 8088 dlsk-based operating environment.
This section provldes an overview of the XIOS, and variables and
tables referenced within the XIOS.

The following material assumes that you are familiar with the CP/M-
86 BIOS. To use this material fully, refer frequently to the
example XlOS's found in source code form on the Concurrent CP/M
dlstrlbution disk.

Note: Programs that depend upon the interface to the XIOS must
check the version number of the operating system before trying
direct access to the XIO8. Future versions of Concurrent CP/M can
have different XIOS interfaces, including changes to XIOS function
numbers and/or parameters passed to XIOS routines.

The XIOS must fit within the 64K System Data Segment along with
the SYSDAT and Table Area. Concurrent CP/M accesses the XIOS
through the two entry points INIT and ENTRY at offset 0C00H and
OC03H, respectively, in the System Data Segment. The ~NIT entry
point is for system hardware initialization only. The ENTRY entry
point is for all other XIO8 functions. Because all operating system
routines use a Call Far instruction to access the XIOS through these
two entry points, the XIOS function routines must end with a Return
Far instruction. Subsequent sections describe the XIOS entry points
and other fixed data fields.

3 . 1 XIOS H e a d e r

The XIOS Header contains variables that GENCCPM uses when
constructing the CCPM. SYS file and that the operating system uses
when executing. Figure 3-1 illustrates the XIOS header.

3-1

Concurrent CP/M System Guide 3.1 XIOS Header

C00H

C08H

ClGH

C18H

C20H

C28H

C30H

C38H

JMP INIT
l !

SUPERVISOR

NPCNS I NVCNS

DPH(A)
J

DPH(E)
I

DPH(I)
I

DPH(M)
I

ALLOC

JMP ENTRY
!

I SCCB NLCB

DPH(B)
I

DPH(F)
I

DPH(J)
I

DPH(N)

TICK TICKS
SEC

CCB
I

DPH(C)
I

DPH(G)
I

DPH(K)
J

DPH(O)

SYSDAT

DOOR RESER-
VED

LCB
I

DPH(D)
I

DPH(H)
I

DPH(,)
I

DPH(P)

Figure 3-1. XIOB Header

Data Field

JMP INIT

JMP ENTRY

Table 3-I. XZO8 Header Data Fields

Explanation

XIOS Inltiali~atlon Point. At system boot, the
Supervisor moduls ozecutsa s CALL FAR
Ir,mtructlon to this location in the XIOE {XZOE
Code Segments OC00H). Thim call trannfar|
control to the XIOS ZNIT routine, which
initializes the XTOS end hardware, then
exeouten a RETURN FAR instruction. The JMP
INZT instruction must be present in the
XTOS.A86 file. For details of the ZNZT routine
ale Section 3.~, "INIT Kntry Point."

XTOS Entry Point. All access to the XZOS
funotlons goes through ths XIOB Entry Point.
The operating lyltel executes a far call
(CALLF) to this lo~ation in the XZOS (XIOS Code
Se~mentt 0C03H) whenever I/O is needed. Thim
instruction transfers control to the XIO8 ENTRY
routine which calls the appropriate function
within the XIOS. Once the function Is
complete, the ENTRY routine executes a return
far (RETF) to the operating system. The RETF
instruction must be present in the XIOS.A86
file. For details of the ENTRY routine, see
Section 3.3, "XIOS ENTRY."

3-2

Concurrent CP/M System Guide

Table 3-I. (continued)

3.1 XIOS Header

I
Data Field I Explanation

SYSDAT

SUPERVISOR

The segment address of SYSDAT. It is in the
Code Segment of the XIOS to allow access to
data in SYSDAT while in interrupt routines and
other areas of code where the Data Segment is
unknown. For example, the following routine

current process's Process accesses the
Descriptor •

DSEG

RLR

ORG 68H ~ point to RLR field
of SYSDAT

RW 1 ~ does not generate
; a hex value

CSEG ~ of XIOS

PUSH DS ~ Save XIOS Data
; Segment

MOV DS,CSzSYSDAT ; Move the SYSDAT
; segment address
; into DS

MOV BX, RLR ; Move the current
; process's PD
; Address into BX

and perform
T operation. (See
; Fig 1-5 for expla-

nation of RLR)
POP DS ; Restore the XIOS

Data Segment

This variable is initialized by GE~CCPM.

EAR Address (double-word pointer) of the
Supervisor Module entry point. Whenever the
XIOS makes a system call, it must access the
operating system through this entry point.
GENCCPM initializes this field. Section 3.8,
"XIOS System Calls", describes XIOS register
usage and restrictions.

3-3

Concurrent CP/M System Guide

Table 3-1. (contlnumd)

3.1 XIOS Header

I
Data Field I Explanation

TICK

TICKS SEC

DOOR

NPCN5

NVCN 5

Set Tick Flag Boolean. The Timer Interrupt
routine uses this variable to determine whether
the DEV SETFLAG system call should be called to
set the--TICK FLAG. Snitlallze this variable to
zero (00H) -In the XIOS.CON file. Concurrent
CP/M sets this field to 0FFH whenever a
process is delaying. The field is reset to
zero (0OH) when all processes finish delaying.
See the Concurrent CP/M Operating System
Programmer ' s Reference Guide for details on the
DEV SETFLAG 'and P DELAY system calls. See
Se~on 7 of this manual, "XIOS TICK Interrupt
Routine," for more information on the XIOS
usage of TICK.

Number of Ticks per Second. This field must be
initialized in the XIGS.CON file to be the
number of ticks that make up one second as
implemented by this X1OS. GENCCPM copies this
field into the SYSDAT DATA. Application
programmers can use TICKS SEC to determine how
many ticks to delay in--order to delay one
second. See Section 7, "XIO5 TICK Interrupt
Routine," for more information.

Global Door Open Interrupt Flag. This field
must be set to OFFH by the drive door open
interrupt handler routine if the XIOS detects
that any drive door has been opened. The BDOS
checks this field before every disk operation
to verify that the media is unchanged. If e
door has been opened, the XIO$ must also set
the Madla Flag in the DPH assoclatsd with the
d r i v e .

Number of Physical Consoles. Initialize this
field to the number of physical consoles, or
user terminals connected to the system. This
number does not include extra I/O devices.
GENCCPM uses this value, and creates a PIN
process for each physical console. It also
copies NPCNS into the XPCNS field of the SYSDAT
DATA.

Number of Virtual Consoles. Initialize this
field to the number of virtual consoles
supported by the XIOS in the XXOS.CON file.
GENCCPM creates a TMP and a VOUT process for
each virtual console. GENCCPM copies NVCNS
into the NVCNS field of the SYSDAT DATA.

3-4

Concurrent CF/M System Guide

Table 3-1. (continued)

3.1 XIOS Header

I
Data Field I Explanatlon

NCCB

NLCB

CCB

LCB

Number of Logical Consoles. Initiallze thls
field to the number of vlrtual consoles plus
the number of character I/O devices supported
by the XIOS. Character I/O devlces are devices
accessed through the console system calls of
Concurrent CP/M (functlons whose mnemonlc
begins wlth C_) but whose console numbers are
beyond the range of the virtual consoles.
Appllcatlon programs access the character I/0
devlces by sehting their default console number
to the character I/O device's console number
and uslng the regular console system calls of
Concurrent CP/M. See the C SET system call as
described £n the Concurrent CP/M Operatln~
System Proqrammer's Reference Guide. GENCCPM
copies this field into the NCCB field of the
SYSDAT DATA.

Number of List Control Blocks. Initiallze this
field in the XZOS.CON file to equal the number
of List devices supported by the XIOS. A llst
device is an output-only device, typically a
printer. GENCCPM copies this field into the
NLCB f~eld of the SYSDAT DATA.

Offset of the Console Control Block Table.
Initlalize this field in the XIOS.CON file to
be the address of the CCB Table in the XIOS. A
CCB Entry in the Table must exlst for each of
the consoles indzcated in NCCB. Each entry in
the CCB Table must be initialized as described
in Section 4.1, "Console Control Block".
GENCCPM copies this fleld into the CCB field of
the SYSDAT DATA.

Offset of the List Control Block. This field is
initiallzed in the XIOS.CON file to be the
address of the LCB Table in the XIOS. There
must be an LCB Entry for each of the list
devices indicated in NLST. Each entry must be
initlalized as described in Section 4.3, "List
Device Functions." GENCCPM copies this field
into the LCB field of the SYSDAT DATA.

3-5

Concurrent CF/M Systel Guide

Table 3-1. (c~ntlnued)

3.1 XIOE Header

!
Data Field J Explanation

DPH(A)-DFH(P)

ALLOC

Offset of initial Disk Parameter Header (DPH)
for drives A through F, respactlvely. If the
value of this field is 0000H, the drive is not
supported by the XIOS. GZNCCPM uses the DPH
Table to initialize specific fields in the DPHs
when it autonatlcally ¢reates BCBm and buffers.
If the relevant DPH fields are not initialized
to0FFFfH, GESCCPH ansu.mes the BCBm and buffers
are defined by data already initialized in the
XIOS.

This value is initialized in the XIOS to the
size, in paragraphs, of an unlnitlalizod RAM
buffer area to be r e s e ~ v e d for the XIOS by
GENCCPM. When GENCCPM creates the CCPM.BYS
imago, it sets this field in the CCPM.SYS file
to the starting paragraph (megment value) of
the XIOS unlnitlallmedbuffer area. This value
may then be used by the XIOS for based or
indexed addressing into the buffer area.
Tlrpioally, the XIOB uses thl8 buffer area for
the virtual uoneole screen laps, programumable
fun=tlon key buffers, and nondisk-rolatad I/O
buffering. GESCCPM allocates this
uninltialized RAM Iuediately following the
system imago and any system disk data or
directory hashing buffers. Because the XZOS
buffer area is not included in the CCPM.SYS
file, it can be of any desired size without
affecting system load tine performance. If the
ALLOC field is inltialized to zero in the
XIOS.CON file, GENCCPM allocates no buffer RAM
and leaves ALLOC set to z e r o in the eystea
i~age.

3-6

Concurrent CP/M System Guide 3.1 XIOS Header

Listing 3-1 illustrates the XIOS Header definitionz

;* XIOS Header Definition
;*

CSEG
org OCOOh

Jnp init
imp entry

sysdat dw 0
supervisor rw 2

DSEG
org 0C0Ch

tlck db false
ticks sec db 60
door db 0

rsvd db 0

;system initialization
;xios entry point

npcns db 4
nvcns db 8
nccb db 8
nlst db 1

ccb dw offset ccb0
icb dw offset Icb0

;disk parameter

dph__tbl dw offset dph0
dw offset dphl
dw 0,0,0
dw 0,0,0
dw 0,0,0
dw 0
dw offset dph2
dw 0,0,0

alloc dw 0

;Sysdat Segment

;tick enable flag
;# of ticks per second
;global drive door open
; interrupt flag
;reserved for operating
;system use

;number of physical consoles
;number of virtual consoles
;total number of ccbs
;number of list devices

~offset of the first ccb
;offset of first Icb

header offset table

;drive A:
;B:
;C:,D:,Ez
;F:,G:,H:
;I:,J:,K:
;L:
;H:
;N:,Oz,P:

; ...

L i s t i n g 3 - 1 . XIOS H e a d e r D e f i n i t i o n

3-7

Concurrent CP/M System Guide 3.@ IN£T Entry Point

3 . 2 INZT E n t r y P o i n t

The XIOS initialization routine entry point, IN,T, ~m at offset
OC00H from the beginning of the XIOS code module. The INIT process
calla the XIOS Initialization routine during system initialization.
The sequence of events from the time CCPM. SYB is loaded into memory
untll the RSPe are created is important for understanding and
debugging the XIO5.

The loader loads CCPM.BYS into memory at the absolute Code Segment
location contained in the CCPM. BYS file Header, and initializes the
CS and DS registers to the Supervisor code segment and the SYSDAT,
respectively. At this point, the loader executes a JMPF to offset 0
of the CCPM.SYS code and begins the inltialization code of the
Concurrent CP/M SUP module as describ~ below. When loading
CCPM.SYS under DDT-86 or BID-86, use the R command and set the code
and data segments manually before beginning execution. You cannot
use the E co,mend because it initializes t~e data nascent base page
to incorrect values. See Section 8, "Debugging the XIO5."

i. The first step of initialization in the SUP is to set up the
INIT p r o c e s s . The ZNIT p r o c e s s p e r f o r m s t h e r e s t o f s y s t e m
initialization at a priority equal to I.

2. The INIT proGess calla the initlallzation routines of each of
the other modules with m Far Call instruction. The first
instruction of each code module is assumed to be a JMP
instruction to its initialization routine. The XIOS
initialieatlon routine is the last of r h e i m modules celled.
Once this call i s made, the XIOB initialization code is never
used again. Thus, it can be located in a directory buffer or
other uninitialized data area.

3. As shown in the example XZOS listing, the initialization
routine must initialize all hardware and interrupt vectors.
Interrupt 224 is saved by the SUP module and restored upon
return from the XIO5. Because DDT-86 uses interrupts 1, 3, and
225, do not initialize them when debugging the XIOS with DDT-86
running under CP/M-86. On each context switch, ~nterrupt
vectors 0, 1, 3, 4, 224, and 225 are saved and restored as part
of a process's environment.

4. The XIOS initialization routine can optionally print a message
to the console before it executes a Far Return (RETF)
ir~tructlon upon completion. Note that each TMPprints out the
string addressed by the VERSION variable in the SYSDAT DATA.
This string can be changed using the OSLABEL Menu in GENCCPM.

5. Upon return from the XIOS, the SUP initialization routine,
runnlr~ under the INIT process, creates some queues and starts
up the RBPe. Once this is done, the INIT process terminates.

3-8

Concurrent CP/M System Guide 3.2 INIT Entry Point

The XIOS INIT routine should initialize all unused interrupts to
vector to an interrupt trap routine that prevents spurious
intezrupts from vectoring to an unknown location. The example XIOS
handles unlnitialized interrupts by printing the name of the process
that caused the interrupt followed by an uninitialized interrupt
error message. Then the interrupting process is unconditionally
terminated.

Concurrent CP/M saves Interrupt Vector 224 prior to system
initialization and restores it following execution of the XIOS INIT
routine. However, it does not store or alter the Non-Maskable
Interrupt (NMI) vector, INT 2. Setting NMI is also the
responsibility of the XIOS. The example XIOS first initializes all
the Interrupt Vectors to the uninitlalized interrupt trap, then
initializes specifically used interrupts.

Note: When debugging the XIOS with DDT-86 running under CP/M-86,
do not initialize Interrupt Vectors 1, 3, and 225. The example
XIOS'ehave a debug flag that is tested by the INIT routine for this
purpose.

3.3 XIO8 E~TRY

All accesses to the XIOS after initialization go through the ENTRY
routine. The entry point for this routine is at offset 0C03H from
the beginning of the XIOS code module. The operating system
accesses the ENTRY routine with a Far Call to the location offset
OC03H bytes from the beginning of the SYSDAT Segment. When the XIOS
function is complete, the ENTRY routine returns by executing a Far
Return instruction, as in the example XIOS's. On entry, the AL
register contains the function number of the routine being accessed,
and registers CX and DX contain arguments passed to that routine.
The XIOS must maintain all segment registers through the call. This
means that the CS, DS, ES, SS, and SP registers are maintained by
the functions being called.

3-9

Concurrent CP/M System Guide 3.3 XZOE E~TRY

T~Ia 3-2. XZO8 RegLeter Umage

R e g i s t e r s on Entry

AL - function number
BX = PC-HODS parameter
CX = ~rst parameter
DX m second parameter
DS = SYSDAT segment
ES - User Data Area
AH, el, DI, BP, DX, CX are undefined

Registers on Return

AX - return or XIOS error code
~=AX
DS = SYSDAT segment
ES = User Data Area
SZ, DI, BP, DX, CX are undefined

All XIOS functions, with the exception of disk functions, use the
register conventions shown above.

The segment registers (DS and ES) must be pceeerved through the
E~TRY routine. However, when calling the SUP f:om within the XIOS,
the ES Register must equal the UDA of the running process and D8
mtlst eqiAal the Syetel Data Segment. Thus, if the XZGS is going to
perform a etrlng move or other code using the mE'Reglster, it must
preserve EE using the stack as in the following exanple~

push o n
may as,segment_address

. e ,

r a p movsw
. . m

pop e s

In the example XIOS'8, the XZOS function routines are accessed
through a function table with the function number being the actual
table entry. Table 3-3 lists the XIOS function numbers and the
corresponding XZOS routines; detailed explanations of the functions
appear in the referenced sections of this document. Listing 3-2 is
an example XIOS ENTRY Jump Table.

3 - 1 0

Concurrent CP/M System Guide

Table 3-3. XlOS Functions

Function Number [XIOS Routine

Console Functions -- Section 4.2

3.3 XIOS ENTRY

Function 0 IO_CONST CONSOLE STATUS
Function 1 IO_CONIN CONSOLE INPUT
Function 2 IO_CONOUT CONSOLE OUTPUT
Function 7 IO_SWITCH SWITCH SCREEN
Function 8 IO_STATLINE DISPLAY STATUS LINE

List Device Functions -- Section 4.3

Function 3 IO_LSTST LIST STATUS
Function 4 IO_LSTOUT LIST OUTPUT

Other Character Devices -- Section 4.4

Function 5 IO__AUXIN AUXILIARY INPUT
Function 6 IO_AUXOUT AUXILIARY OUTPUT

Poll Device Function -- Section 4.5

Function 13 IO_POLL POLL DEVICE

Disk Functions -- Section 5.1

Function 9 IO_SELDSK SELECT DISK
Function i0 IO_READ READ DISK
Function ii IO_WRITE WRITE DISK
Function 12 IO FLUSH FLUSH BUFFERS
Function 35 IO--INTI3 READ READ DOS DISK
Function 36 IOZINTI3--_WRITE WRITE DOS DISK

PC Mode Character Functions -- Section 6

Function 30 IO_SCREEN GET/SET SCREEN
Function 31 IO_VIDEO VIDEO IO
Function 32 IO_KEYBD KEYBOKRD MODE
Function 33 IO_SHFT SHIFT STATUS
Function 34 IOEQCK EQUIPMENT CHECK

3-11

Concurrent CP/M S y e t e n Guide 3 . 3 XZOS ENTRY

; XIOS FUNCTION TABLE

functab dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

io_const
io conin
io--conout
io-- l ietst
io-- l iat
io auxin
io--auxout
is--switch
io--etatline
io--eeldsk
is--read
is--write
io--flushbuf
i:'-..~oZl
io ret
io--ret
is--rat
io--ret
io--ret
io--ret
io--ret
io--ret
is--rot
io-'ret
io--ret
io--ret
1o--ret
1o--ret
1o--ret
1o--ret
1o screen
is-video
1o--ksybd
1o ehft
1o~eqck
1o intl3 read
io--intl3--write

; 0 - console status
; 1 - console input
; 2 - consols output
; 3 - llst statue
; 4 - llst output
; 5 - au.~ i n
; 6 - aux out
; 7 - switch screen
; 8 - display status line
; 9 - uelect disk
;I0 - read sector
;ii - write sector
;12 - flush buffer
;13 - poll devlas
;14 - dummy return
;15 - dtu~my return
;15 - dbxmy return
; 1 7 - dtumLy return
;18 - dummy return
;19 - du]uny return
;20 - dum~y return
;21 du~y retur~
;~2 - dummy return
;23 - d u x m y return
;24 - du~nny return
; 2 5 - d u ~ y r e t u r n
126 - d u ~ y r e t u r n
;27 - duzuny return
;28 - dummy return
;29 - dumly return
~30 get/set screen m o d e
;31 - video i/o
; 3 2 - keyboard info
;33 - shift status
;34 - equipment check
;35 - read DOS disk
136 - write DOS disk

; ...

Listing 3 - 2 . YTO8 Function T a b l e

3 - 1 2

Concurrent CP/M System Guide 3.4 Converting CP/M-86 BIOS

3.4 Converting the CP/M-86 BI06

The implementation of Concurrent CP/M described below assumes that
you have written and fully debugged a CP/M-86 BIOS on the target
Concurrent CP/M machine. This is desirable for the following
reasons:

@ The implementation of CP/M-86 on the target Concurrent CP/M
machine greatly simplifies debugging the XIOS using DDT-86 or
SID-88.

@ A CP/M-86 or a running Concurrent CP/M system is required for
the initial generation of the Concurrent CP/Msystem when using
GENCCPM.

@ You can use the CP/M-86 BIOS as a basis for construction of the
target Concurrent CP/M XIOS.

To transform the CP/M-86 BIOS to the Concurrent CP/M XIOS, you must
make the following principal changes. Details of the changes given
in the following llst can be found in the referenced sections of
this manual, and in the example XIOS's found on the Concurrent CP/M
distribution disk. Often it is easier to start with the example
Concurrent CP/M XIOS and replace the hardware-dependent code with
the corresponding drivers from the existing CP/M-86 BIOS. However,
there are several important changes, also outlined below, that you
must make to the CP/M-86 drivers before they work in the Concurrent
CP/M XIOS.

I. Change the BIOS Jump Table to use only the two XIOS entry
points, INIT and ENTRY. Concurrent CP/M assumes these entry
points to be unconditlonal jump instructions to the
corresponding routines. The INIT routine takes the place of
the CP/M-86 cold start entry point and is only invoked once, at
system initialization time. The ENTRY routine is the single
entry point indexing into all XIOS functions and replaces the
BIOS Jump Table. Concurrent CP/M accesses the ENTRY routine
with the XIOS function number in the AL register. The example
XIOS then uses the value in the AL register as an index into a
function table to obtain the address of the corresponding
function routine.

2. Add a SUP module interface routine to enable the XIOS to
execute Concurrent CP/M system calls. The XIOS is within the
operating system area and already uses the User Data Area
stack; therefore, the XIOS cannot make system calls in the
conventional manner. See Section 3.8, "XIOS System Calls."

3. Modify the console routines to reflect the IO CONST, IO_CONIN,
IO C0NOUT, 10 LSTST, and IO LISTOUT speclficatlons. Note that
the register conventions for-Concurrent CP/M are different from
CP/M-86 and MP/M-86.

3 -13

Concurrent CP/M System Guide 3.4 Converting CP/M-86 SlOB

4. Rewrite the CP/M-86 disk routines to confers to the I0_EELDEK,
IS READ, XO_WI~TE, and XO FLUSH specifications.

5. Change all I~3110~ devices to use the Concurrent CP/M DaY POLL
nysten call. See Sections 4.5, "IS POLL Functlon"~--3.5,
"Polled Devlces"~ and Seotlon 6 OF the Concurrent CP/M
Operating System Prograamer's Reference Guide.

6. Change all interrupt-driven device drivers to use the
Cur~ur2:ent CP/M DEV WAITFLAG a~d DEV SETFLAG system callm. Sea
S e c t i o n s 3.6, "Xnt'arrupt Devlces";" 7, "XIOS Tick ~nterrupt
Routine" ; and Section 6 of the Concurrent CP/M Operating System
Programr's Reference Guide.

7. Change the structure of the Disk Parameter Header (DPH) and
Disk Parameter Block (DPB) data structures referenced by the
XIOE disk driver routines. See Sections 5.4, "Disk Paraeeter
Header" and 5.5, "Disk Parameter Bleak."

8. Remove the Blc~klng/Deblc~klng algorlthms from the XIOS disk
drivers. The Con0urrent CP/M BDOS now handles the
blocking/deblocklng funotlon. The XIO6 still handles sector
translation.

9. Change the disk routines to reference the Input/Output
Paraamtor Blc~k (~OPS) on the stack. Sos Section 5.2, "ZOPB
Data Structure." Modify the disk driver =outlne to handle
nultlsoctcr reads and writem.

I0. Rewrite the oonmola and llst driver c~a to handle virtual
ucxmoles and, possibly, multiple physical consoles. Details of
the virtual a~sole system are given in Section 4, "Character
Devices."

11. Implement the TICK interrupt routine (see I TICK in the example
XIOS's). This routine is used for pr--ocsss dispatching,
maintaining the P DELAY s call, and ystem waking up th& CLOCK
pro~ess RSP. See-Sectlon 7, "XIOS Tick Xnterrupt Routine."

3-14

Concurrent CP/M System Guide 3.5 Polled Devices

3.5 Polled Devices

Polled I/O device drlvers in the CP/M-86 B~OS typlcally execute a
small compute-bound ~netruction loop waiting for a ready status from
the X/O device. This causes the driver routine to spend a
significant portion of CPU execution time looping. To allow other
processes use of the CPU.resource during hardware wait perlods, the
Ccmcurrent CP/M XIOS must use a system call, DEV POLL, to place the
polling process on the Poll List. After the DEV POLL cat1, the
dispatcher stops the process and calls the XIOS IO POLL functlon
every dispatch until IO POLL indicates the hardwareqs ready. The
dispatcher then restore8 the polling process to execution and the
process returns from the DEV POLL call. Since the process calllng
the DEV POLL function does--not remain in ready state, the CPU
resource-becomes available to other processes untll the I/O hardware
is ready.

To do polling, a process executing an XIOS function calls the
Concurrent CP/M DEV POLL system call with a poll device number. The
dispatcher then oaf-is the XIOS IO POLL function with the same poll
device number. The example XIOS'uses the poll device number to
index into a table of poll routine entry points, calls the
appropriate poll function and returns the I/O device status to the
dispatcher.

3 . 6 Interrupt Devices

As in the case of polled I/O devices, an XIOS driver handllng an
interrupt-driven I/O devlce should not execute a walt loop or halt
instruction while waiting for an interrupt to occur.

The Concurrent CP/M XIOS handles interrupt-driven devices by using
D~V WAITFLAG and DEV SETFLAG system calls. A process that needs to
~i~ for an interrup~ to occur makes a DEV WAITFLAG system call wlth
a flag number. The system stops this process until the deslred XIOS
interrupt handler routine makes a DEV SETFLAG system call with the
same flag number. The waiting process then continues execution.
The interrupt handler follows the steps outlined below, executing a
far jump (JMPF) to the Dispatcher entry point. The interrupt
handler can also perform an IRET instruction when it is done.
However, jumping directly to the Dispatcher gives a little faster
response to the process waiting on the flag, and is logically
equivalent to the IRET instruction.

If interrupts are enabled within an interrupt routine, a TICK
interrupt can cause the interrupt handler to be dispatched. This
dispatch could make interrupt response time unacceptable. To avoid
this situation, do not re-enable interrupts within the interrupt
handlers or only Jump to the dispatcher when not in another
interrupt handler routine.

3 - 1 5

Concurrent CP/M ~stee's Guide 3.6 Interrupt Devices

Interrupt handlers under Concurrent CP/M differ from t h o s e in an
8080 environment duo to machine architecture differences. Study the
TZCK interrupt handler in the example XIOS's carefully. Durlng
initial debugging, it is not recommended that interrupts be
implemented until after the system works in a polled environment.
An XIOS interrupt handler routine must perform the following basic
stepel

I. Do a stack switch to a local stack. The interrupted process
might not have enough stack apace for a context save.

2. Savs ths r~Ister envlronment of the interrupted process, or at
least the rsglsters that will be used by the interrupt routine.
Usually the r~istsra are saved on the local stack established
in step (I) above.

3. Satisfy the interrupting condition. This can include resetting
the hardware and p0rforming a DEV SETFLAGsystem call to notify
a process that the interrupt ~r which it was waiting has
oncurrsd.

4. Restore the register envlronnent of the interrupted process.

5. Switch back to the original stack.

6. Either a Jump Far (JMPF) to the dispatcher or an Interrupt
Return (IRET) instruction must be executed to return from the
in~rrupt routine. Note the above discuaslon on which return
Hethod to use for dlfferant situatlons. Usually, When
interrupts are not re-enabled within the interrupt handler, a
Jump Far (JMPF) to the dlspatQher Is executed on each system
tick and after a DEV SETFLAG call is made. Otherwise, if
interrupts are re-ensb-lad an IRET instruction is executed.

Notes DEV SETFLAG is the only Concurrent CP/M eystea call an
Interrupt routlns may call. This is because the DEV SETFLAG call is
the only system call the operating system assumes--has no process
context associated with it. DEV 8ETYL~ must enter the operating
system through the SUP entry point at SYSDAT:0000H and cannot use
INT 224.

3 - 1 6

Concurrent CP/M System Guide 3.7 8087 Exception Handler

3 . 7 8 0 8 7 Exception Handler

The default for the Concurrent CP/M system Is to provide no support
for the 8087 co processor. Thls section explains what must be done
to provide support for the 8087 chip. To support the 8087 the XIOS
initialization code must initialize some fields in the SYSDAT area.
The XIOS must also contain a default exception handler to handle any
interrupts from the 8087. The system Is structured so that a
programmer can write an individual exception handler for the 8087.

The XIOS initialization code must first check for the presence of
the 8087 chip by using the FNINIT instruction. If it is present,
the following fields in SYSDAT must be set up:

Must be set to the segment and offset of
the 8087 Interrupt vector.

SEG8087,OFF_8087

SYS 87 $6,
SYS 87 OF

OWNER 8087

Must be set to the segment and offset of
the XIOS default exception handler.

Must be set to 0 to indicate that there
is an 8087 present in the system. The
Default value is FFFFH which indicates
no 8087. FFFFH is put in this field by
the SUP inltialization code.

The 8087 interrupt vector must also be set to the segment and offset
of the XIOS default exception handler.

Any exception handler for the 8087 must perform its functions in a
certain order to guarantee program integrity in a multitasking
environment. The following is an outline of the example default
8087 exception handler. See Listlng 3-3 for the code of the
example.

3-17

C o n c u r r e n t CP/M S y s t e m G u i d e 3.7 8087 Exception Handler

i. Save the 8086 environnsnt.

2. Save the 8087 environnsnt.

3. Clear the 8087 IR (status word).

4. Disable 8087 interrupts.

5. Acknowledge the interrupt (hardware dependent).

6 Look at the owner 8087 field, and perform the desired action.
Note that 8086 in-terrupta are currently off. Do not perform
a~y action that would turn them back on yet. The default
exception handler uses the OWNER8087 field to terminate the
p r o c e s s on a s e v e r e e r r o r .

7 . R e s t o r e t h e 8086 e n v i r o n u e n t .

8. Restore the 8087 envlronmenh with clear status. This re-
enables the 8087 interrupts.

9. Execute an IRET instruction to return and re-enable the 8086
interrupts.

If the 8087 environment is not restored before 8086 interrupts are
enabled and an interrupt occurs (for example, TZCK), a dlffsrent
8087 p r o c e s s can gain control of the 8087 and swap in its 8087
context. On a second interrupt, or on an ZRET instruction, the
8086-runnlng pr~esn that happened to be ezecuting ~ho ezoaptlon
handler code will be brought back into 8086 context and will write
o v e r t h e new 8087 c o n t e x t .

All 8087 p r ~ a s s e s are initialized by the eystan with the address of
the default exception handler. If a process wants to use its own
exception handler, it lust initially overwrite the 8087 interrupt
vector with the address of its own exoeptlon handler. On each
~text switch, the 8087 interrupt vector is saved and restored a0
part of the 8087 procesa'a environment.

The hardware-dependent address of the 8087 interrupt vector is
provided in the SEG 8087 and O¥F__8087 fields of the system data
area.

An individual exception handler must follow the sane sequence of
events described for the default handler. Failure to do so will
have unpredictable results on the system. If possible, make this
default interrupt handler re-entrant.

3-18

Concurrent CP/M System Guide 3 . 7 8 0 8 7 Exception Handler

ndpint:

~I=====~====I=I==:I=II===I~IIII=II

; 8087 Default Exception Handler

; This is the example default exception handler.
It is assumed that if the 8087 programmer has enabled

; 8087 interrupts and has specified exception flags in
; the control word, then the programmer has also included
; an exception handler to take speciflc actions in
; response to these conditions.
; This handler ignores non-severe errors (overflow, etc.)
r and terminates processes with severe errors (divide by
; zero, stack violation).

push ds ~ Save current data segment
mov ds,sysdat ~ Get XIOS data segment
mov ndp_ssreg,ss ; Stack switch for 8086 env
mov ndp_spreg,sp
mOV ss,sysdat
mov sp,offset ndp tos ~ Save 8086 registers
push ax
push bx
push cx
push dx
push di
push si
push bp
push es
mov es,sysdat ; Now save 8087 env
FNSTENV env 8087 ; Save 8087 Process Info
FWAIT
FNCLEX ; Clear 8087 interrupt reque~
xor ax,ax
FNDISI ; Disable 8087 interrupts

mov al,020h ; Send int ack's - 1 for sla,
out 080h,al
mov al,020h ; - i for master PIC
out 058h,al

call In 8087 ; Check 8087 error condition
I if error is severe,
; process will abort

mov bx,offeet env 8087 ; clear 8087 status word
mov byte ptr 2[bx~,0 ; for env restore

Listing 3 - 3 . 8087 Exception Handler

3-19

Concurrent CP/M S y s t e m G u i d e 3.7 8087 Exception Handler

pop es
pop bp
pop si
pop di
pop dx
pop cx
pop bx
pop ax
mov ss,ndp_esreg
mov sp,ndp sp~eg
FLDENV env 8087
FWAIT
pop d s
Iret

in8087:

mov bx,owner_8087
test bx,bx
jz end 87
mov el,offset env BOB7
mov ax,statosw[si~
test ax,03ah
jnz end 87
or p_f~ag[bx],080h

e n d 87:
ret

; Restore 8 0 8 6 e n v .

; Switch to previous stack

7 Restore 8087 environment
; with good status
; Restore previous data segment

I Get the Process Descriptor
I Check iE owner has
already terminated

! If severe error, terminate
j If not, return and continue
; 3A = under/overflow, precision,

and denormalized operand
I Must be zero divide or invalid
operation (stack error)
Turn on terminate flag

~===mzmmmN==mmmmmum==m=wmmwm~=~wm

Listing 3-3. (continued}

3 . 8 XIO8 System Calls

Routines in the XIOS cannot make system calls in the conventional
manner of executing an INT 224 instruction. The conventional entry
point to the SUP does a stack switch to the User Data Area (UDA) of
the current process. The XIOS is considered within the operating
system, and a process entering the XIOS is already using the UDA
stack. Therefore, a separate entry point is used ~or internal
system calls.

3 - 2 0

Concurrent CP/M System Guide 3.8 XIOS System Calls

Location 0003H of the SUP code segment is the entry point for
internal system calls. Register usage for system calls through this
entry point is similar to the conventional entry point. They are as
follows:

Entry:

Return:

CX m System call number
DX = Parameter
DS = Segment address if DX is an offset to a

structure
ES m User Data Area
AX ~ BX = Return
CX = Error Code
ES = Segment value if system call returns

an offset and segment. Otherwise
ES is unaltered and equals the UDA
upon return.

DX, SI, DI, BP are not preserved.

The only differenoes between the internal and user entry points are
the CX and ES registers on entry. For the internal call, CH must
always be 0. ES must always point to the User Data Area of the
uurrent process. The UDA segment address can be obtained through
the following code:

org 68H

rlr rw 1

org (X~OS code segment)

mov si,rlr
mov es,10hCsi]

; ready list root
; in SYSDAT

Note: On entry to the XlOS, ES is equal to the UDA segment
address. The ES Register must equal the UDA on return from any XZOS
function called by the XIOS ENTRY routine. Interrupt routines must
restore ES and any other altered registers to their value upon entry
to the routine, before performing an ZRET instruction or a JMPF to
the dispatcher.

End of Section 3

3-21

Section 4
Character Devices

Th is section describes the XIOS functions necessary for Character
I/O. Some additional functions, described in Section 5, are needed
to run DOS programs.

~current CP/M treats all serial Z/O devices as consoles. Serial
2/0 devices axe divided into two categories= virtual consoles and
extra I/O devices. Each virtual console is assigned to a specific
physlcal console or user terminal. Associated with each serial I/O
device (virtual console or extra 1/O device) is a Console Control
Block (CCB). The serial Z/O devices and CCBs are numbered relatlve
to zero. Each process contains, in its Process Descriptor, the
number of its default console. The default console can be either a
virtual console or an extra serial Z/O device.

Concurrent CP/M oan be configured in a number of different ways by
changing the CCB table in the XZOS. £t can be configured for one or
more user terminals (physical consoles), and extra 2/0 devices. The
number of virtual consoles assigned to each user terminal is set in
the CCB table. Up to 256 serlal I/O devices can be implemented,
depending on the specific application.

The XIOS header defines the size and location of the CCS table. In
the header, the CCB field points to the beginning of the CCS table.
The NCCBfield contains the number of entries in the CC5 table. The
NVCNS field tells how many of the CCSs are virtual consoles. See
"X~OS Header" in Section 3 for more information.

The XIOS might or might not maintain a buffer containing the screen
c~tents and cursor position for each virtual console, depending on
how the system is to appear to the user. Keep ~n mind that this
buffer can be over 4K bytes per virtual console. Practlcal
c~slderatlons of memory space might require keeping the number of
virtual consoles reasonably small if buffers are maintained. Also
note that if the user terminals are connected to serlal ports, the
time to update the screen for a screen swltch can be up to 2
escorts. One example XIOS has eight virtual consoles, divided among
multiple serlal terminals.

4-1

Concurrent CP/M System Guide 4.1 Console Control Blo~k

By oonvsntlon, the first NVCN8 ssrlal I/O devices are the virtual
toe, soles. The NVCNBparamotsr is located in the XIOS Header. The
XPCN8 field tells how Deny ussE terminals there are. XPCN8 must be
lass than or equal to blVCNB. XPCNS does not include extra I/0
Dmvlces. Consoles beyond the last virtual consols re~resent other
serial I/O devices. When a process make8 a console X/O call with a
~ole number higher than the last virtual console, it references
the ConsoleControl Bleak for the called device number. Therefore a
CCB for each serial I/O device is absolutely necessary.

L i s t D e v i c e s u n d e r C o n c u r r e n t CP/M a r e o u t p u t - o n l y . The XIOS must
r e s e r v e and initialize a List Control Block for each list output
device. When a procesg~akes s llst dovlcs XIOS call, it references
t he appropriate LCB.

4.1 C o l ~ o l e ~ t ~ o l Block

A Console Control Block Table must ba defined in the XZOB. There
lust be one CCB for each virtual console and Character I/O device
supported by the XZOB, as Indicated by the NCCB variable in the XIOS
Header. The table must begin at the address indicated by the CCB
variable in the XIOS Header.

CCB
(XIOS
Header)

J CCB 0

CCB NVCHS-I

CCBNVCNB

J (virtual console 0)

(last virtual console)

(first extra char-
acter Z/O device)

CCB NCCB-1 J (last extra char-
acter I/O device)

Figure 4-1. The CCB Table

The number of CCBs used for virtual consoles equals the NVCNS field
in the XIOS Header. Any additional CCB entries are used for other
character devices to be supported by the XIOS. The CCB entries are
nulbered starting with zero to match their loglcal console device
numbers. Therefore, the last CCB in the CCB Table is the (NCCB-I)th
CCB.

4-2

Concurrent CP/M System Guide 4.1 Console Control Block

Each CCB corresponding to a virtual console has several fields which
must be initialized, either when the XIOS is assembled or by the
XIOS INIT routine. These fields allow you to choose the
configuration of the virtual consoles. The PC field indicates the
physical console this virtual console is assigned to. The VC field
is the virtual console number. This number must be unique within
the system. The LINK field points to the CCB of the next virtual
uoasole assigned to this physical console. The last virtual console
assigned to each physical console should have the LINK field set to
zero (0000H). Figure 4-2 shows a diagram of the CCBs for a system
with two physical consoles, with three and two virtual consoles
assigned respectivly. For CCBs outside the virtual console range
corresponding to extra I/O devices, these fields must all be
initialized to zero (0OH), except for the PC field. Also,
initialize to zero (OOH) all fields marked RESERVED in Figure 4-3.

~ 0cB01 Pc01 vc0 I LINK

C

O f

l J !CCB 1 PC 0 VC I

LINK

CCB 2 I PC 0 I VC 2

LINK

~ 0cB3 i Pol i vc3 LINK

Oft LINK

Figure 4-2. CCBm for Two Physical Consoles

4-3

Concurrent CP/M System Guide 4.1 Console Control Block

00

08h

10h

18h

20h

28h

OWNER ~SER~D ? [' ~MIC PC VC ~SERVED
I

MAXBUFSIZE RESER~D
I I I I

~SERVED

RESERVED
- I I I

LINK ~SERVED I

I I STATE
l

Figure 4 - 3 . Co~sole (kxatrol Block Format

I 4

I I

T a b l e 4 - 1 . C o n s o l e C o n t r o l B l o c k D a t a F i e l d s

Data Field J Explanation

OWNER

MIMIC

Address of the Process Descriptor of the
process that currently owns the virtual console
or character I/O device. This field is uzed by
the XIOS Statue Line Function (IO_STATLINE) to
find the name of the current owner. Initialize
this field display to zero (0000H). If the
value in this field is sere when Concurrent
CP/M is running, no proaeez owns the device.

This field indicates which llst device receives
the characters typed on the virtual console
when the CTRL-P command is in effect. MIMIC
must be initialized to 0FFH. Note that this
list device is not necessarily the same as the
default list device indicated in the Process
Desariptor whose address is in the OWNER field
of the CCB. Consider the following interaction
at the consols z

4-4

Concurrent CP/M System Guide 4.1 Console Control Block

Table 4-1. (~ontinued)

Data Field I Explanatlon

PC

VC

A~printer

Prlnter Number = 0
A~'P

A~printer 2

Prlnter Number = 2
A~pip lst~=letter.prn

The TMP's PD has a 0 in
• ts LIST fleld.

Printer echo to list
device 0.
The TMP's PD has a 2 in
its LIST fleld.

LETTER.PRN is sent to
list device 2 Printer
echo is still going to
llst device 0, echoing
the last two commands.

The example status line
routine distinguishes
between the default
list device and the
CTRL-P list devlce by
displaylng

Prlnter--2

for the default l~st
device, and

"P=0

after the last command
in the i llustratlon
above.

Physical console number.

Virtual console number. Virtual console
numbezs must be unique within the system.

4-5

Concurrent CP/M System Guide 4.1 Console Control Block

Table 4-I. (~m~tlnuod)

Data Field I Explanation

STATE

MAXBUFSIZE

LINK

The least significant bit of this field
indicates the background mode of the vlrtual
uunsole. The XI08 Status Line Function routine
uses thin infor~atlon to display the background
~e for the current foreground consols. This
bit has the following values:

0 background is dynamic
1 background 18 buffered

The STATE field can be initialized to 0 or 1 on
each virtual console to specify the background
mode at system etartup. The Concurrent CP/M
VCMODE utility allows the user to change the
background node.

The MAXBUFS~ZE field indicates the maximum size
of the buffer file used to store characters
when a background virtual consols is in
buffered mode. When a virtual console is
placed in background mode by the user, •
temporary file is created on the temporary
drlvs, containing consols output sent to the
virtual console. These files are named
VOUTx.$~$, where x equals the number of the
a s s o c i a t e d v i r t u a l ~ o n s o l e . The MAXRUFS~ZE
field is the maxlmum nlze to which this file
can grow. If this maximum is reached, the
drive Is Read-0nly, or there i8 no more free
space on the drive, subsequent console output
causes the background process attached to the
virtual console to be stopped. The MAXBUFSIZE
parameter is in Kilobytes and must be
initialized in the XIOS CCB entries. The
Concurrent CP/M VCMODE utility allows the user
to charge this value. The l~al range for
MAXBUFSIZE is 1 to 8191 decimal (IFFFH).

Address of the next CCB assigned to the same
physical consols. Zero (0000H) if this i8 the
last or only virtual console for this physical
consols.

4-6

Concurrent CP/MSystem Guide 4.2 Console I/O Functions

4.2 Console I/O Functions

A major difference between the Concurrent CP/MXIOS and the CP/M-86
BIO6 drivers is how they walt for an event to occur. In CP/M-86, a
routine typically goes into a hard loop to wait for a change in
status of a device, or executes a Halt (HLT) instruction to wait for
an interrupt. In Concurrent CP/M, this does not work. It can be of
some use, however, during the very early stages of debugging the
XIOS.

Basically, two ways to wait for a hardware event are used in the
XZOS. For nonlnterrupt-drlven devices, use the DEV POLL method.
For Interrupt-drlven devices, use the DEV_SETFLAGTDEV_FLAGWAZT
method. These are both ways in which a process waiting for an
external event can give up the CPU resource, allowing other
processes to run concurrently. For detailed explanations of the
DEV_POLL, DEV FLAGWAIT and DEV SETFLAG system calls, see Section 6
of the Concurrent CP/M Operating System Programmer's Reference
Guide.

IO_CONST CONSOLE INPUT STATUS

Return the Input Status of the specified
Serial I/O Device.

Entry Parameters:
Register AL: OOH (0)

DL: Serial I/O Device Number

Returned Value:
Register AL: 0FFH if character ready

0 if no character ready
BL: Same as AL
ES, DS, SS, SP preserved

The IO CONST routine returns the input status of the specified
charac~r I/O device. This function Is only called by the operating
system for console numbers greater than NVCNS-I, in other words,
only foe devices which are not virtual consoles. If the status
returned is 0FFB, then one or more characters are available for
input from the specified device.

4-7

Concurrent CP/M System Guide 4.2 Connole l/O FUnotlons

IO_CONZR CONSOLE INPUT

Return a character from the console
keyboard or a serial I/0 device.

Entry Parameters:
Register AL:

DLs

Returned Value:
Register AH:

ALl

01H (i)
Serial I/O Devi~e Number

00H if returning
character data

character

AH: 0FFH if returning a
switch screen request

AL: virtual console requested

BX: name as AX in all cases
ES, DS, SS, 8P preserved

Because Concurrent CP/Msupporta the full 8-bLtABCIZ oharaater set,
the parity bit must be masked off frol input devices which use it.
However, it should not be masked off if valid 8-bit ohazacters are
being input.

You choose the key or conbinatlon of keys that represent the virtual
consoles by the implementation of lO CONIN. One of the example
XlO~'s uses the function keys fl throug~ f3 to represent the virtual
consoles assigned to each user terminal.

lO CONZN must chock for PC-MODE. PC-MODE is enabled w~anever DOS
pr--ograM are running. It is enabled or disabled by the ZO KEYBD
(Function 32} call. If PC-MODE Is enabled, all fttnctlon keys are
passed through to the calling process. If it Is disabled, function
keys that do not have an associated XIOS function are usually
ignored on input. Sea Section 6.2 "KeybOard Functions" for
information on the IO KEYBD call.

4-8

Concurrent CP/M System Guide 4.2 Console I/O Functions

IO_CONOUT CONSOLE OUTPUT

Display and/or output a character to the
specified device.

Entry Parameters:
Register ALz 02H (2)

CL: Character to send
DL: Virtual console to send to

Returned Value: NONE

ES, DS, SS, SP preserved

The XIOS might or might not buffer background virtual consoles,
depending on the user interface desired, memory constraints, and
methods of updating the terminals. This section describes how the
example XIOS's handle virtual consoles.

The example XIOS's buffer all virtual consoles. All virtual
consoles have a screen image area in RAM. This image reflects the
current contents of the screen, both characters and attributes.
Each screen image is contained in a separate segment.

Each virtual console also has a Screen Structure associated with it.
This structure contains the segment address of the screen image, the
cursor location (offset in the segment), and any other information
needed for the screen. This structure can be expanded to support
additional hardware requirements, such as color CRTs.

For a screun-bu£f~red ilplementation, when a character is given to
IO_CONOUT, it performs the following operations:

l=

2.

3.

Look up the screen structure for this virtual console and get
the segment address of the screen image.

Update the image, including all changes caused by escape
sequences. This could involve changes to the characters on the
screen (clear screen), the cursor locatlon (home), or the
attributes of the individual characters (inverse video).

If this console is in the foreground and on a serial terminal,
put the character out to the physical terminal. This requires
looking up the true physical console number.

4-9

C o n c u r r e n t CP/M S y s t e m Guide 4 .2 C o n s o l s l / O F u n c t i o n s

When a p r o c e s s c a l l s t h i s f u n c t i o n w i t h a dev lQe number h i g h e r than
t h e l a s t v i r t u a l c o n s o l s number , t h e c h a r a c t e r s h o u l d be s e n t
directly to the serial device that the CCB represents.

Note thnt for screen buffering it is necessary to buffer 25 llnen
when in PC-MODE, but only 24 lines otherwise. The PC-MODE flag is
set by Function 32, which is described in Section 6.2.

IO_SWITCH SWITCH SCREEN

Place the current virtual console into the
background and the specified virtual

console into the foreground.

Entry Parametsrsl
Register AL:

DL:
07H (7)
Virtual Console # to
awltoh to

Return Valuesz NO~

ES, DS, BE, SP preserved

When lO SWITCH is called, the XIOScoples the screen image in memory
to the physlcal screen. It must move the cursor on the physical
screen to the proper position for the new foreground console.

I0 SWITCH is responsible for doing a flagnet to restart a background
pro(:ssn that is waiting to go into graphics mode. if the proceaa'n
screen is to be switched into the foreground, do a flagset on the
flag that was used by IO SCREEN to flngwait the process. See
Section 6.1 for ~ore Infornatlon on IO SCRF-~q.

IO SWITCH will be implemented differently for machines with video
RAM (such as the IBM Personal Computer) and serial terminals. For
IBM Personal Computers, the screen switch can be done by doing a
block Rove from the screen image to the video RAM, and a physlcal
cursor positioning. A serial terminal must be updated by sending a
character at a time, with insertion of escape sequences for the
attribute changes.

4-10

Concurrent CP/M System Guide 4.2 Console I/O Functions

Concurrent CP/M calls IO SWITCH only when there is no process
currently in the XIOS performing console output to either the
foreground virtual console being switched out, or the background
virtual console being switched into the foreground. Therefore, the
XIOSnever has to update a screen while simultaneously switching it
from foreground to background, or vice versa.

One of the example
operations:

IO SWITCH routines performs the following

i. Get the screen structure and image segment for the new virtual
console.

2. Find the physical console number for this virtual console.

3. If this is a video-mapped console, save the current display by
doing a block move. If it is a serial terminal, clear the
physical screen and home the cursor.

4. If this is a video-mapped dlsplay, do a block move of the new
screen image to the video RAM, and re-position the cursor. If
it is a serial terminal, send each character to the physical
screen. Check each character's attribute byte, and send any
escape sequences necessary to display the characters with the
correct attributes.

IO STATLINE DISPLAY STATUS LINE

Display specified text on the status line

Entry Parameters:
Register AL:

CX:

Register DL:

Register DX:

Return Valuesz

08H (8)
if 0000H, continue to
update the normal
status line
if CX = offset, print
string at DX:CX
if 0FFFFH, resume normal
statue line display
physical console to display
statue line on (if CX = 0)
segment address of
optional string (if CX <~ 0)

NONE
ES, DS, SS, SP preserved

4-11

Concurrent CP/M Bystem Guide 4.2 Console I/O Funotlons

When IO STATLIBE Im called with CX = 0, the normal status
information is displayed by IO 8TATLINE on the physical console
qpeclfled in DL. The normal status llne typically consists of the
foreground virtual cousole nul~er, the state of the foregrotlnd
virtual console, the process that owns the foreground virtual
o~rmole, the removable-eedla drives with open files, whether control
P, S, or O are active, and the default printer number. The
IO STATLINE function in the ezlulpla XZOS's display some of the above
information. Usually when ZO ~ATLINE is called, DL is set to the
~hyslcal console to display th-e statue line on. You must translate
this to the current (foreground) virtual console before getting the
informatlon for the status llne (much as the prG~lll owning the
console). The status line can be modifled, expanded to any 81se, or
displayed in a different area than the status else implemented in
the exal~le XZOE's. A common addition to the status llne is a time-
of-day clock.

A status line is strongly raaoluHndod. However, if there are only
24 lines on the display device, you eight chooses or to implement a
status 1lee. In thls case IO_8TATLZNE can Just rsturnwhen called.

The normal status llne is updated once per second b y the CLOCK RBP.
If there is more than one user terminal connected to the system,
this update c~curs once per second on a round-robin bails among the
pi~slcal terminals. Thus, if four terminals are connected each one
is updated every four seconds by the CLOCK.

The operating system also requests normal status llne updates
screen switches are made and when control P, 8 or 0 change S t a t e .
Tne XZOS might call iO ETATLIBE free other routlnea When soma value
displayed by the stamp llne changes.

]R~Jns SO STATLINE's re-entrancy depends In part on having separate
buffers For each physical console.

TnalO 8TATLZNE routine should not display the status llne on a user
termi~l that is in graphics mode. It should check the same
variable as IO SCREEN (Function 30). IO SCREEN is described in
Section 6.1 "S~een I/0 Functions".

IO STATLINEalsc should not display on a console that is in PC-MODE.
Cl11Tck the variable set by Function 32 to see if a console is in PC-
HODE. See Section 6.2 for information on Function 32.

Most callm to IO 8TATLINE to update the status llne have DL set to
the physlcal retinal that is to be updated. When IO STATLINE is
called with CX not equal to 0000H or 0FFFFH, then CX i8 assumed to
be the byte offset and DX the paragraph address of an ASCII string
to print on the status llne. This special status else relmlns on
the screen until another special status line is requested, or
ZD STATLINE is called with CX=0FFFFH. While a special status llne
is--being displayed, calls to IO 8TATLINE with CX-0000H are ignored.
When IO 8TATLZNE function Is--called with CX-0FFFFH, the normal
statue lqne is displayed and subsequent calls with CX=0000H cause

the statue llne to be updated with current information.

4-12

Concurrent CP/M System Guide 4.2 Console I/O Functions

When ~O STATLINE is called to display a special status line, DL does
not co~tain the physical console number. The physical console
number can be obtained by the following method:

i. Get the address of SYSDAT

2. Look at the RLR (Ready List Root). The first process on the
list is the current process.

3. Look at the Process Descriptor (pointed to by RLR). The p_cns
field contains the virtual oonsole number of the current
process. See the Concurrent CP/M O~eratlng System Programmer's
Reference Guide for a description of the Process Descriptor.

4. Look up the CCB for this virtual console and find the physical
console number in it.

A process calling IO STATLINE with a special status llne (DX:CX =
address of the string~must call IO STATLINE before termination with
CX=0FFFFH. Otherwise the normal s-tatus line is never shown again.
There Is no provision for a process to find out which status line is
being displayed.

4.3 List Device Functi~s

A List Control Block (LCB), similar to the CCB, must be defined in
the XIOS for each list output device supported. The number of LCBs
must equal the NLCB variable in the XIOS Header. The LCB Table
begins with LCE zero, and ends with LCB NLCB-I, according to their
logical list device names.

I Ks 0 I (LIST DEVICE
(XIOS
HEADER)

I LCB NLCB-1 I (LAST LIST DEVICE)

Figure 4-4. The LCB Table

4-13

Concurrent CP/M System Guide 4.3 List Device Functions

00H OWNER

08H RESER- [M-
VED [SOURCE

RESERVED

Fi~re 4-5. List Control Elo~k (LCB)

Table 4-2. List Control Block Data Fields

Field [Explanation

OWNER

MSOURCE

Address of the PD of the process that currently
owns the List Device. If no process currently
owns the list device, then OWNER~0. If
OWNER=OFFFFH, thin list device is mimicking a
console device that is in CTRL-P mode.

If OWNERm0FFFFH, MSOURCE contains the number of
the console device this list device i8
mimicking; otherwise MSOURCE = 0FFH.

Horse MSOURCE must be initialized to 0FFH. All
other LCB fields must be initialized to 0.

XO LSTST LIST STATUS

Return List Output Status

Entry Parameters:
Register ALs

DL:
o3~ (3)
List Device nu~er

Returned Values
Register AL:

BL:

OFFH if Device Ready
0 if Device Not Ready
Same as AL

ES, DS, SS, SP preserved

4-14

Concurrent CP/M System Guide 4.3 List Device Functions

The IO LSTST function returns the output ~tatus of the specified
list device.

I0 LSTOUT LIST OUTPUT

Output Character to Specified List Device

Entry Parameters:
Register AL: 04H (4)

CL: Character
DL: List Device number

Returned Value: None

ES, DS, SS, SP preserved

The IO_LSTOUT function sends a character to the specified List
Device. List device numbers start at 0. It is the responsibility
of the XIOS device driver to zero the parity bit for list devices
that require it.

4.4 AuxillaryDevlce Functions

These XIOS functions are accessible only through the Concurrent CP/M
S BIOS system call. Software that uses this call can access the AUX:
devlce by placing the appropriate parameters in the Bios Descriptor.
For further information, see the Concurrent CP/M Operating System
Programmer's Reference Guide under the S_BIOS system call.

If you choose not to implement the AUX: device then the IO AUXOUT
function can simply return, while IO AUXIN should return a character
26 (IAH), CTRL-Z, indicating end of file.

4-15

Concurrent CP/M ayeton Guide 4.4 Auxiliary Dmvlce Functions

IO AUXIN AUXILIARY INPUT

Input a character from the Auxiliary Device

Entry Para~eteres
Rsgl.ter ALz 05H (5)

Returned Valuez
Register ALe Character

F~, I16, SS, SP preserved

IO AUXOUT AUXILIARY OUTPUT

Output a character to the Auzillary Device

Entry Parameters.
Register ALe O6H (5)

CLs Charaoter

Returned Values None

ES, DS, BS, SP preserved

4-16

Concurrent CP/MSystem Guide

4.5 IOPOLLFuection

4.5 IO POLL Function

IO_POLL POLL DEVICE

Poll Specified Device and Return Status

Entry Parameters:
Register AL: 0DH (13)

DL: Poll Device Number

Returned Value:
Register AL: 0FFH if ready

0 if not ready
BLz Same as AL
ES, DS, SS, SP preserved

The IO POLL function interrogates the status of the device indicated
by the--poll device number and returns its current status. It is
called by the dispatcher.

A process polls s device only if the Concurrent CP/MDEV POLL system
call has been made. The poll device number used as an argument for
the DEV POLL system call is the same number that the I0 POLL
functlon-receives as a parameter. Typically only the XIOS--uses
DEV POLL. The mapping of poll device numbers to actual physical
devrces is maintained by the XIOS. Each polling routine must have a
unique poll device number. For instance, if the console is polled,
it must have different poll device numbers for console input and
console output.

The sample XIOS's show the IO POLL function taking the poll device
number as an index to a table-of poll functions. Once the address
of the poll routine is determined, it is called and the return
values are used dlrectly for the return of the IO_POLL function.

End of Section 4

4-17

Section 5
Disk Devices

In Concurrent CP/M, a disk drive is any I/O device that has a
directory and is capable of reading and writing data in 128-byte
logical sectors. The XIOS can therefore treat a wide variety of
peripherals as disk drives if desired. The logical structure of a
Concurrent CP/M disk drive is presented in detail in Section I0,
"O~Utilitles." CP/Mcan also support PC-DOS and MS-DOS disks. The
term DOS refers to both PC-DOS and MS-DOS.

This section discusses the Concurrent CP/M XIOS disk functions,
their input and output parameters, associated data structures, and
calculation of values for the XIOS disk tables.

5 . 1 D i s k l / O F u n c t i o n s

Concurrent CP/M performs Disk I/O with a single XIOS call to the
IO READ or IO WRITE functions. These functions reference disk
parameters contained in an Input~Output Parameter Block (IOPB),
which is located on the stack, to determine which disk drive to
access, the number of physical sectors to transfer, the track and
sector to read or write, and the DMA offset and segment address
involved in the I/O operation. See Section 5.2, "IOPB Data
Structure." Prior to each IO_READ or IO_WRITE call, the BDOS
initializes the IOPB.

If a physical error occurs during an IO READ or IO WRITE operation,
the function routine should perform severa~ retries (i0 is
recommended) to attempt to recover from the error before returning
an error condition to the BDOS.

The Disk I/O routine interfaces in the Concurrent CP/M XIOS are
quite different from those in the CP/M-86 BIOS. The SETTRK, SETSEC,
SETDMA, and SETDMAB XIOS functions no longer exist because IO READ
or IO WRITE have absorbed their functions. WBOOT, HOME, SECTRAN,
GETSEGB, GETIOB, and SETIOB are not used by any routines outside the
I/O system, and so have been dropped. Also, hard loops within the
disk routines must be changed to make either DEV POLL or
DEV WAITFLAG system calls. See Sections 3.5, "Polled Devices"; 4.5,
"IO--POLL Function"~ and 3.6, "Interrupt Devices." For initial
debugging, Concurrent CP/M runs with the CP/M-86 BIOS physical
sector read and write routines, with the addition of an lOPE-
referencing routine, multisector read/wrlte capability, and
modification to handle the new DPH and DPB structures. Once the
system runs well, all hard loops should be changed to either
DEV POLL or DEV WAITFLAG system calls. See also the discussion in
Sections 3.5 and 3.6 of this manual.

5-1

Concurrent CP/M Sys tem Guide 5.1 Disk I/O Functions

IO_SELDSK SELECT DISK

Select the specified Disk Drive

Entry ParametorsJ ALl
CL:
DLz

Return Valuess

ogs (9)
Disk Drive Number
(bit 0) l 0 if first select

AX: offset of DPH if no error
AXI 00H if invalid drive
BX: Same ae AX
ES, DS, SS, SP preserved

The I0 SELDSK function checks if the specified disk drive is valid
and re~urne the address of the corresponding Disk Parameter Header
if the drive is valid. The specified disk drive number is 0 for
drive A, i for drive B, up to 15 for drive P. On each disk select,
IO SELDSK must return the offset of the selected drive's Disk
Parameter Header relative to the SYSDAT segment addre0s.

If there is an attempt to select a nonexistent drive, IO SELDSK
return0 00H in AL ms an error indicator. Although lO SILD~K must
return the Disk Parameter Header (DPH) address for t~e specified
drive on each call, poutpone the actual physical d i s k select
operation untll an I/O function, IS READ or IS WRITE, i8 performed.
This i8 due to the fact that disk 8elect operations can take place
without a subsequent disk operation and thus dlsk access might be
substantially slower using some disk controllers.

IO SELDISK must return a DPH oontmlning the address of the Disk
Parameter Slo~k (DPB). The DPB must be properly formatted to
reflect the type of media supported by the selected drive. On a
first time select, thl8 function must determine if this disk is a
CP/M disk, or s DOS disk. For CP/M media, return a regular DPB.
For a DOS disk return an extended DPB. See Section 5.5 "Disk
Parameter Block" for more information on the two DPB formats. See
Section 5.8 "Multiple Media Support" foe more information on
generating a system that supports both types of disks.

5-2

Concurrent CP/M System Guide 5.1 Disk I/O Functions

On entry to IO SELDSK, you can determine whether it is the first
time the spec~fled disk has been selected. Register DL, bit 0
(least significant bit), is a zero if the drive has not been
previously selected. This information is of interest in systems
that read configuration information from the disk to dynamically set
up the associated DPH and DPB. See Section 5.8 "Multiple Media
Support". If Register DL, bit 0, is a one, IO SELDSK must return a
pointer to the same DPH as it returned on the initial select.

IO READ READ SECTOR

Read sector(s) defined by the IOPB

Entry Parameters: IOPB filled in (on stack)
Register AL: 0AH (10)

Return Values: AL: 0 if no error
1 if physical error

0FFH if media density
has changed

AH: Extended error code
(Table 5-1)

BL: Same as AL
BH: Same as AH
ES, DS, SS, SP preserved

The IO READ Function transfers data from disk to memory according to
the parametera specified in the IOPB. The disk Input/Output
Parameter Block (IOPB), located on the stack, contains all required
parameters, including drive, multisector count, track, sector, DMA
offset, and DMA segment, for disk I/0 operations. See Section 5.2,
"IOPB Data Structure." If the multisector count is equal to i, the
XIOS should attempt a single physical sector read based upon the
parameters in the IOPB. If a physlcal error occurs, the read
function should return a 1 in AL and BL, and the appropriate
extended error code in AH and BH. The XIOS should attempt several
retries (I0 recommended) before giving up and returning an error
condition.

For disk drivers with auto density select, IO READ should
immediately return 0FFH if the hardware detects a change in media
density. The BDOS then performs an IO SELDSK system call for that
drive, relnitializing thedrive's parameter tables in order to avoid
writing erroneous data to disk.

5-3

Concurrent CP/M System Guide 5.1 Disk l /O Funct ions

If the multlsector count is greater than I, the IO READ routine is
required to read the specified muter of physica~ sectors before
returning to the BDOS. The iO READ routine should attempt to read
as luLny physical sectors ag the specified drive'a disk controller
can handle in one operation. Additional ca118 to the dlsk
controller are required when the disk controller cannot transfer the
requested number of sectors in a single operation. If a physical
error oucurs during a lultleector read, the read function should
return a 1 in AL and BL and the appropriate extended error code in
AHandBH.

If the dlsk controller hardware can only read one physical sector at
a time, the XIOS disk driver must make the number of single
physical-seater reads defined by the multleector count. In any
case, When more than one call to the controller is made, the XIOS
must increment the sector number and add the number of bytes in each
physical sector to the DMA address for each successive read. If,
during a multlsector read, the sector nuHber exceeds the number of
the last physical sector of the current track, the XlO8 has to
increment the track number and reset the sector number to 0. This
concept is illustrated in Lietlng 5-I, part of e hard disk driver
routine.

In this example, if the nultisoctor count is zero, the routine
returns with an error. Otherwise, it inediately calls the
read/write routine for the present sector and puts the return code
passed from it in AL. If there i8 no error, the multisector count
Is decremented. If the eultisector count now equals zero, the read
ccw~ite is finished and the routine returns. ~f not, the sector to
read or write is incremented. If, however, the sector number now
ezceed8 the nulber of sectors on a track (MAXSEC), the track number
is incremented and the sector number set to zero. The routine then
performs the number of reads or writes remaining to equal the
m~itlaector count, each time adding the sine of a physical sector to
the DMA offset passed to the disk controller hardware.

Table 5-1. Extended Error Codas

Code J Meaning

80H
40H
20H
10H
8H
4H
3H
2H
1H

Attachment failed to respond
Seek operation failed
Controller has failed
Bad CRC
DMA overrun
Sector not found
Write protect dlak error
Address mark not found
Sad colunand

5-4

Concurrent CP/M System Guide 5.1 Disk I/O Functions

Listing 5-1 illustrates multlssctor operatlonss

;*

;* common code for hard disk read and write

hd los

hdlol:

push os
amp mcnt,0
Je hd err

call iohost
mov al,retoode
or al,al
jnz hd err
dec munt
Jz return rw

mov ax,sector
inc ax

same trak:
mov sector,ax
add dmaoff,secsiz
imps hdlol

hd err:
mov al,l

return rw:
p o p es
ret

;save UDA
;if multisector count = 0
;return error

;read/write physical sector
;get return code
;if not 0
;return error
;decrement multisector count
;if mcnt = 0 return

;next sector
cmp ax,maxsecl Jb same trak ;is sector < max sector

inc track ; no - next track
xor ax,ax ; initialize sector to 0

;save sector #
;increment d~a offset by sector size
;read/write next sector

;return with error indicator

;restore UDA
;return with error code in AL

**

;* IOHOST performs the physical reads and writes to *
;* the physical disk. *

iohost:
.a.
Joe
J.e

ret

; ...

Listing 5-1. Multisector Operations

5-5

Concurrent CP/M System Guide 5.1 Disk I/O Functions

IO_INTI3_READ READ DOS SECTOR

Read DOS sector(s) defined by the IOPB

Entry Parametersz DOS IOPB filled in (on stack)
Register AL: 23H (35)

Return Valuesl ALz 0 if no error
1 if physical error

0FFH if media density
h a s c h a n g e d

AEz Extended error ~ode
(Table 5-1)

BLz Same as AL
BHt Same as AH
ES, DS, SS, SP preserved

IO INTI3 READ emulates DOS's interrupt 13 read disk operation. It
reade s DOS disk as specified by the DOS format IOPB. It 18 used on
DOS media only. It operates llke IO_READ except for the different
ZOPS. The DOS IOPB is defined in Section 5.2

5-6

Concurrent CP/M System Guide 5.1 Disk I/O Functions

IO WRITE WRITE SECTOR

Write sector(s) defined by the IOPB

Entry Parametersz IOPB filled in (on stack)
Register ALz 0BH (ii)

Return Valuesz AL: 0 if no error
1 if physical error
2 if Read/Only Disk

0FFH if media density
has changed

AE: Extended error code
(Table 5-1)

BLz Same as AL
BH: Same as AH
ES, DS, SS, SP preserved

The IO WRITE function transfers data from memory to disk according
to the--parameters specified in the IOPS. This function works in
much the same way as the read function, with the addition of a
Read/On17 Disk return code. IO WRITE should return this code
when the specified disk con~roller detects a wrlte-protected
disk.

5-7

/
Concucrsn t CP/M System Guide 5.1 Disk I/O Functions

IOINTI3_WRITE WRITE DOS SECTOR

Write DOS sector(s) defined by the IOPB

Entry Parameters: DOS IOPB filled in (on stack)
Register ALt 24H (36)

Return Values: AL: 0 if no error
1 if physical error
2 if Read/Only Disk

0FFH if media density
has changed

AH; Extended error code
(Table 5-1)

BLI Same as AL
BH: Same as AH
ES, DS, SS, SP preserved

IO INTI3 WRITE is similar to IO WRITE. It uses a DOS IOPB, and
writes To a DOS disk. It e~lates DOe's interrupt 13 write
function. The DOS IOPB is defined in Section 5.2.

5-8

Concurrent CP/M System Guide 5.1 Disk I/O Functions

IO FLUSH FLUSH BUFFERS

Write pending I/O system buffers to disk

Entry Parameters: Register ALl 0CH (12)

Returned Valuel
Register ALl 0 if No Error

1 if Physical Error
2 if Read-Only Disk

AHz Extended error code
(Table 5-1)

BLI Same as AL
BHz Same as AH
ES, DS, SS, SP preserved

The IO FLUSH function indicates that all blocking/deblocking buffers
or disk-cachlng buffers used by the I/O system should be flushed,
written to the disk. This does not include the LRU buffers that are
managed by the BDOS. This function is called whenever a process
terminates, a file is closed or a disk drive is reset. The XIOS
must return the error codes for the IO FLUSH function in register
AX, after i0 recovery attempts as described in the IO_READ function.

5.2 IOPB Data Structure

The purpose of this and the following sections is to present the
organization and construction of tables and data structures within
the XIOS that define the characteristics of the Concurrent CP/M disk
system. Since there is no Concurrent CP/M GENDEF utility, you must
code the XIOS DPHs and DPBs by hand, using values calculated from
the information presented below.

5-9

Concurrent CP/M System Guide 5.2 IOPB Data 8tructuzo

The disk Input/Output Parameter Blo~k (IOPB) contains the neoessary
data roqulred for the IO READ and IO WRITE functions. IO I~13 RF.J~
and IO INTI3 WRITE use a varlation of the IOPB called the DOS~OPB.
It is-~escrirSed at the end of this section. Theme parameters are
lo~atsd on the stack, and appear at the example XIO8 IO READ and
IO NRITE function entry polnts as described below. The IOPBexample
in--thls section assume8 that the ENTRY routine calla the read or
write routines through only one level of indirection; therefore, the
XIOShasplaced only only one weed on the stack. RETADR is reserved
for this local return address to the ENTRY routlne. The XIOG disk
drivers may index or modify IOPB parameters directly on the stack,
since they are removed by the BDOS when the function call returns.
Typically, the IOPB fields are defined relative to the BP and SS
registers. The first instruction of the 1O READ and IO WRITE
routines nets the BP register equal to the SP regleter for in~exlng
into the IOPB. Listing 5-2 illustrates this.

+14

+12

+ l O

+8

+6

+4

+2

8P+O

DRV [MCNT

TRACK
I

SECTOR
I

]~,Jb, SY.,G
I

DMAOFF
I

R~"I'B~.,G
I

RETOFF
I

RETADR

<== BP value at XIOS ENTRY

<== SP value at disk routines

F i g u r e 5 - 1 . I n p u t / O u t p u t P a r a n o t a r Block (IOPB)

5 - 1 0

Concurrent CP/M System Guide 5.2 IOPB Data Structure

Table 5-2. IOPBData Fields

l
Data Field I Explanation

DRV

MCNT

TRACK

Logical Drive Number. The Logical Drive
Number specifies the logical disk drive
on which to perform the IO READ or
IO WRITE function. The drive n~mber may
range from 0 to 15, corresponding to
drives A through P respectively.

Multisector Count. To transfer logically
consecutive disk sectors to or from
contiguous memory locations, the BDOS
issues an 10 READ or IO WRITE function
call with the-multisecto'r count greater
than 1. This allows the XIOS to
transfer multiple sectors in a single
disk operation. The maximum value of
the multizector count depends on the
physical sector size, ranging from 128
with 128-byte sectors to 4 with 4095-
byte sectors. Thus, the XIOS can
transfer up to 16K directly to or from
the DMA address in a single operation.
For a more complete explanation of
multisector operations, along with
example code and suggestions for
implementation within the XIOS, see
Section 5.3, "Multisector Operations on
Skewed Disks."

Logical Track Number. The Track Number
defines the logical track for the
specified drive to seek. The BDOS
defines the Track Number relative to 0,
so for disk hardware which defines track
numbers beginning with a physical track
of 1, the XIOS needs to increment the
track number before passing it to the
disk controller.

5-II

Concurrent CP/M System Guide 5.2 ZOPB Data Structure

Data Field

SECTOR

DMASEG, DMAOFF

RETSEG,RETOFF

RETADR

Table 5 - 2 . (~tinued)

I Explanation

Sector Number. The Sector Number defines
the logical sector for a read or write
operation on the specified drive. The
sector s i z e is determined by the
parameters PSH and PHM defined in the
Disk Parameter Block. See Section 5.5.
The BDOS defines the Sector Number
relative to 0. For disk hardware that
defines sector numbers beginning with a
physical sector of 1, the XIOS will need
to increment the sector number before
passing it to the disk controller. If
t he specified drive uses a skewed-sector
format, the XZOS must translate the
sector number according to the
translation table specified in the Disk
Parameter Header.

DMA Segment and Offset. The DMA offset
and segment define the address of the
data to transfer for the read or write
operation. This DMA address nay reside
anywhere in the 1-megabyte address space
of the 8086-8088 microprocessor. If the
disk controller for the specified drive
can only transfer data to and from a
restricted address area, the IO READ and
IO WRITE fur~tlone must block--move the
data between the DMA address and this
restricted area before a write or
following a read operation.

BDOSReturn Segment and Offset. The BDOS
return segment and offset are the Far
Return address from the XIOS to the
SDOS.

Local Return Address. The local return
address returns to the ENTRY routine in
the example XlOS.

5-12

Concurrent CP/M System Guide 5.2 IOPB Data Structure

Listing 5-2 illustrates the IOPB definition, and how the IOPB is
used in the IO READ and IO WRITE routines:

;* IOPB Definition
;*

Read and Write disk parameter equates

At the disk read and write function entries,
all disk I/O parameters are on the stack
and the stack at these entries appears as
follows:

+14

+12

+10

+8

+6

+4

+2

SP+0

DRV MCNT

TRACK

SECTOR

DMA BEG

DMA OFF

RET BEG

PET OFF

RET ADR

Drive and Multisector count

Track number

9hysical sector number

DHA segment

DMA offset

BDOS return segment

BDOS return offset

Local ENTRY return address
(assumes one level of call
from ENTRY routine)

These parameters can be indexed and modified
direct£y on the stack and will be removed
by the BDOS after the function is complete

drive equ byte ptr 14[bp]
mcnt equ byte ptr 15[bp]
track equ word ptr 12[bp]
sector equ word ptr 10[bpj
dmaseg equ word ptr 8[bp]
dmaoff equ word ptr 6[bp]

L i s t i n g 5 - 2 . IOPB D e £ i n i t i o n

5-13

Concurrent CP/M Systmn Guide 5.2 ZOPB Data Structure

~ ~ m l m a l = a a l m

IO READs ; Function llc Read sector
T~-==

Reade the sector on the current disk, track and
sector into the current IX~Abuffer.

entry: parameters on stack
e x i t s A L - 00 if no error occurred

I AL m Ol if an error occurred

w - i v b p , e p 7set BP for indexing into ZOPB

ret

IO WRITE: t Function 12: Write disk

Write the sector in the current DMA buffer
to the current disk on the current

s track in the current mector.
entryl CL ~ 0 - Deferred Wrltea

1 - non-deferred writes
I 2 - def-wrt let s e c t unalloc blk

exits AL = O0H if n o error occurred
s = 01H if error occurred
l = 02H if read only disk

nov bp,sp

rec

;set BP for indexing into IOPB

T.lJti~ 5 - 2 . (~ t i n u e d)

5 - 1 4

Concurrent CP/M System Guide 5.2 IOPB Data Structure

Figure 5-2 shows the DOS 2OPB used by IO ZHTI3 READ and
IO_INTI3_WRITE. It is similar to the regular IOPB. The DOS IOPB
fields are defined in Table 5-3.

+14

+12

+I0

+8

+6

+4

+2

SP+0

DRV MCNT

TRACK HEAD

SECTOR 00

DMASEG

I
DMAOFF

i
RETSEG

i
RETOFF

I
RETADR

I

<~= SP value at XIOS ENTRY

• == SP value st disk routines

Figure 5-2° DOS Input/Output Parameter Blo~k (IOPB)

Table 5-3. DOS IOPB Data Fields

Data Field J Explanation
l

TRACK

HEAD

SECTOR

Track or cyllnder number. This number
must be in the range 0 - 39.

Head number. This number must be 0 or 1.

Sector number. This number must be in
the range 1 - 8.

All other DOS IOPB data fields are the
same as the regular IOPB defined in
Table 5-2.

5-15

Concurrent CP/M System Guide 5.3 Multissctor Operations

5.3 Multls~tor Operations an S k e ~ Disks
On a any implementations of older Digital Research operating systems,
disk performance is improved through sector skewing. This technique
logically numbers the sectors on a track such that they are not
sequential. An example of this is the standard Digital Research 8-
inch disk format, whore the sectors are skewed by a factor of 6.
The following discussion illustrates how to optimize disk
performance on skewed disks with multisector Z/O requests.

Concurrent CP/M-86 supports multlple-sector read and write
operations at the XIOS level to minimize rotational latency on block
disk transfers. You must implement the multlple-sector I/O facility
in the XIO8 by using the multiseotor count passed in the IOPB.

When the disk format uses a skew table to minimize rotational
latency for single-record transfers, it is more difficult to
optimize transfer time for multisector operations. One method of
doing this is to have the XZOS read/write function routine translate
each logical sector number into a physical sector number. Then it
creates a table of DMA addressas with each sector's DMA address
indexed into the table by the physical sector number.

As a result, the requested sectors are sorted into the order in
which they physically appear on the track. This allows all of the
required sectors on the track to be transferred in as few disk
rotations as possible. The data from each sector must be separately
transferred to or from its proper DMA address. If during a
multisector data transfer the sector number exceeds the number of
the last physical sector of the current track, the XIO5 will have to
increment the track number and reset the sector number to O. It can
then complete the operation for the balance of sectors specified in
the TO READ or TO WRITE function call. See the example accompanying
the IO READ function.

SECTOR
I~DEXES

0O

01

PHYSICAL ASSOCIATED
,DMA ADDRESS

I DMAADDR_0 I
DMA_ADD~_I

Figure 5-3.

I IX~A_ADD R...N 1

DIf& ,R,dk'lrems Table foe ~A~tl.eator OA~Eations

5 - 1 6

Concurrent CP/M System Guide 5.3 Multisector Operations

If an error occurs during a multlsector transfer, the XIOS should
return the error immediately to terminate the read or write BDOS
function call.

In Listing 5-3, common read/write code for an XIOS disk driver, the
routine gets the DPH address by calling the IO SELDSK function. It
checks to verify a nonzero DPH address, and returns if the address
is invalid (zero). Then the disk parameters are taken from the DPH
and DPB and stored in local variables. Once the physical record
size is computed from DPB values, the DMA address table can be
initialized. The INITDMATBL routine fills the DMA address table
with 0FFFFH word values. The size of the DMA table equals one word
greater than the number of sectors per track, in case the sectors
index relative to 1 for that particular drive. If the multlsector
count is zero, the routine returns an error. Otherwise, the sector
number is compared to the number of sectors per track to determine
if the track number should be incremented and the sector number set
to zero. If this is the case, the sectors for the current track are
transferred, and the DMA address table is reinitlalized before the
next tracks are read or written.

The current sector number is moved into AX and a check is made on
the translation table offset address. If this value is zero, no
translation table exists and translation is not performed; The
sector number is translated and used to index into the DMA address
table. The current DMA address, incremented by the physical sector
size if a multieector operation, is stored in the table for use by
the RW SECTS routine. Local values, beginning with i, are
initialized for the various parameters needed by the disk hardware,
and the dlsk driver routine is called.

Listing 5-3 illustrates sultlsector unskewingz

5-17

Concurrent CP/M System Guide 5.3 MultlsectoE Operations

**

1"
I* DESK I/O EQUATES

**

xlt equ 0 ;translation table offset in DPH
dpb equ 8 ~diek parameter block offset in DPH
apt equ 0 ~sectore per track offset in DPB
psh equ 15 ;physical shift factor offset in DPB

**

;* DISK I/O CODE AREA

**

read write: ;unskewe and reads or writes multieectore
I

1 input: SI ~ read or write routine address
I output: AX = return code

mov cl,drlve
mov dl,l
call eeldek
or bx,bxl jnz dsk ok

ret error:
may el,l
rat

dsk ok:
-- may ax,xlt[bx]

may xltbl,ax
may bx,dpb[bx]
mov ax, ept[bx]
mov maxeac, ax
maY cl,pshEbx]
may ax,128
shl ax,cl
mov e e c s i z , a x
call initdmatbl
cmp mcnt,0
je ret error

~get DPH address
;check if valid

; return error if not

;save translation table address

;save maximum sector per track

;compute physical record size
; and save it
;initialize dma offset table

L i s t i n g 5 - 3 . 1 4 u l t i s e ~ t o r Unmkewlng

5-18

Concurrent CP/M System Guide 5.3 Multisector Operations

rw Iz

same trkt

no teens|

rw sects|
w

rw sl .-

mov ax,sector ?is sector < max sector/track
cmp ax,maxsec! Jb same trk

call rw sects ~ no - read/wrlte sectors on track
call inTtdmatbl
inc track
xor ax,ax
mov sector,ax

mov bx,xltbl
or bx,bxl Jz no trans

xlat al

xor bh,bh
bl,al

shl bx,l
mov ax,dnaoff
nov dmatbl[bx],ax
add ax,sscsiz
mov dmaoff,ax
inc sector
dec acnt
ins rw 1

al,1
xor bx,bx

mov di,bx
shl di,1

; reinitialize dma offset table
; next track

; initialize sector to 0

;get translation table address
;if xlt <7 0
; translate sector number

7sector # is used as the index
; into the dma offset table

;save dma offset in table
;increment dma offset by the
; physical sector size
;next sector
;decrement multlsector count
;if mcnt <7 0 store next sector dma

;read/write sectors in dma table

;preset error code
;initialize sector index

;ccapute index into DMA table
cmp word ptr dmatbl[di],Offffh
je no rw

pUS~ bx! push si
~ov ax,track
mov itrack,ax
mov isector,bl
mov ax,dmatbl[di]
mov idmaoff,ax
mov ax,daaseg
mov idmaseg,ax
call si
pop s i l pop bx
or el,all jnz err ret

;nop if Invalid entry
;save index and routine address
;get track # from IOPB

;sector # is index value
7get dna offset from table

;get dma segment from IOPB

;call read/write routine
;restore routine address and index
;if error occurred return

L / a t L n g 5 - 3 . (c o n t i n u e d)

5 - 1 9

Concurrent CP/M Systen Guide 5.3 Multleector Operations

no rw,

inc bx
bx,maxeac

Jbe rw_sl
err rat|

rat
initd~atbl: ;initialize DMA

may dl,offset dmatbl
may cx,~axsec
i n c c x
Roy a x , O f f f f h
p u s h a s
p u s h dsl pop e s
rap stonw
pop am
rat

;next sector index
;if not end of table
; go read/write next sector

;return with error coda in AL
offset table

;length = naxse= + I sectors My
; index relative to 0 or 1

;save UDA

;initialize table to 0ffffh
~raetora UDA

t* DISK I/O DATA AREA

xltbl dw 0 ;translation table address
laxsec dw 0 ;max seaters par track
eeaeiz dw 0 ;seater else
dJeatbl rw 50 7dla address table

L is t ing 5-3. (aamtinued)

5 - 2 0

Concurrent CP/M System Guide 5.4 Disk Parameter Header

5.4 Disk Parameter Header

Each disk drive has an associated Disk Parameter Header (DPH)
that contains information about the drive and provides a scratchpad
area for certain Basic Disk Operating System (BDOS) operations.

OOH

08H

10H

XLT

DPB
{

DATBCB

I
0000 00 1 Mr

m

m

CSV ALV

TBLSEG

0000

DIRBCB

Figure 5-4. Disk Paramter Reader (DPH)

Table 5-4. Dlsk Parameter Header Data Fields

Field I Explanation

XLT Translation Table Address. The Translation
Table Address defines a vector for logical-to-
physical sector translation. Xf there is no
sector translation (the physical and logical
sector numbers are the same), set XLT to
O000h. Disk drives with identical sector skew
factors can share the same translation tables.
This address is not referenced by the BDOS and
is only intended for use by the disk driver
routines. Usually the translation table
contains one byte per physical sector. If the
dlsk has more than 256 sectors per track, the
sector translation must consist of two bytes
per physical sector. It is advisable,
therefore, to keep the number of physical
sectors per logical track to a reasonably
small value to keep the translation table from
becoming too large. In the case of disks with
multiple heads, compute the head number from
the track address rather than the sector
address.

0000 Scratch Area. The 5 bytes of zeros are a
scratch area which the SDOS uses to maintain
various parameters associated with the drive.
They must be initialized to zero by the INIT
routine or the load image.

5-21

Concurrent CP/M System Guide 5.4 Disk Parameter Header

T a b l e 5-4. (oontlnued}

Field I Explanation

MF

DPB

CSV

Media Flag. The BDOS resets ~4F to zero when
the drive is lo~ged in. The XIOS must set
this flag to 0FFH if it detects that the
operator has opened the drive door. It must
also eat the global door open flag in the XIOS
Header at the same time. If the flag is set
to 0FFH, the BDOB checks for a media change
before performing the next BDOS file operation
~that drive. Rote that the BDOS only checks
this flag when first making a system call and
not during an operation. Normally, this flag
is only useful in systems that support door
open interrupts. If the BDOS determines that
the drive contains a new disk, the BDOS logs
out this drive and resets the M F field to 00H.

Rote: If this flag is used, removable disk
performance can be optimized as if it were a
permanent drive. See the description of the
CKS field in the Section 5.5, "Disk Parameter
Block."

Disk Parameter Block Address. The DPB field
c©ntains the address of a Disk Parameter Block
that describes the characteristics of the disk
drive. The Disk Parameter Bl~k itself is
described in Section 5.5. The DPB must
describe the type of disk (CP/M or DOS). See
IO_~ELDSK in Section 5.1, and Section 5.8 for
~ore information.

Checksum V e c t o r A d d r e s s . The Checksum V e c t o r
A d d r e s s d e f i n e s a s o r a t c h p a d a r e a t h e s y s t e m
uses for cheokaumalng the directory to detect
a m e d i a c h a n g e . T h i s a d d r e s s m u s t be
d i f f e r e n t f o r each D i sk Paramete r r e a d e r .
There must be one byte for every 4 directory
entries (or 128 bytes of directory). In other
words, Length(CSV) - (DRM/4)+I. (DRM is a
field in the Disk Parameter Block defined in
Section 5.5.) If CKS in the DPB is 0000H or
8000H, no storage is reserved, and CSV may be
zero. Values for DRM and CKS are calculated
as part of the DPB Workaheet. If this field
is initialized to 0FFFFH, GERCCPM will
automatically create the checksum vector and
initialize the CSV field in the DPH.

5-22

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Table 5-4. (continued)

Field [Explanation

ALV

DIRBCB

DATBCB

Allocation Vector Address. The Allocation
Vector address defines a scratchpad area which
the BDOS uses to keep disk storage allocation
information. This address must be different
for each DPH. The Allocation Vector must
contain two bits for every allocation block
(one byte per 4 allocation blocks) on the
disk. Or, Length(ALV) = ((DSH/8)÷I)*2. The
value of DSH is calculated as part of the DPB
Worksheet. If the CSV field is initialized to
0FFFFH, GENCCPM automatically creates the
Allocation Vector in the SYSDAT Table Area,
and sets the ALV field in the DPH.

Directory Buffer Control Block Header Address.
This field contains the offset address of the
DIRBCB Header. The Directory Buffer Control
Block Header contains the directory buffer
llnk llst root for this drive. See Section
5.6, "Buffer Control Block Data Area." The
BDOS uses directory buffers for all accesses
of the disk directory. Several DPHs can refer
to the same D~RBCB, or each DPH can reference
an independent DIRRCB. If this field is
0FFFFH, GENCCPM automatically creates the
DZRBCB Header, DIRBCBe, and the Directory
Buffer for the drive, in the SYSDAT Table
Area. GENCCPM then sets the DIRBCB field to
point to the DIRBCB Header.

Data Buffer Control Block Header Address.
This field contains the offset address of the
DATBCB Header. The Data Buffer Control Block
Header contains the data buffer link list root
for this drive (see Section 5.6, "Buffer
Control Block Data Area"). The BDOS uses data
buffers to hold physical sectors so that it
can block and deblock logical 128-byte
records. If the physical record size of the
media associated with a DPH is 128 bytes, the
DATBCB field of the DPH can be set to 0000H
and no data buffers are allocated. If this
field is 0FFFFH, GENCCPH automatically creates
the DATBCB Header and DATBCBs and allocates
space for the Data Buffers in the area
following the RSPs.

5 - 2 3

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Table 5-4. (~m~tlnuld)

Field I Explanation

TBLSEG Table Segment. The Table Segment contains the
segment address of a table used for directory
haehlng with CP/M dlmke, and as a File
Allocation Table (FAT) for DOS disks. For
drives that support both media, it must be
large enough to hold either one. If this
field is set to 0FFFFH, GENCCPM will
automatloally create the appropriate data
structures following the RSP area. The size
of the table 18 based on the DRM (Directory
Maxlmum) field in the DPB. For support of
both media the DRM field aust be set to a
dtua~ value when GENCCPM is run to create the
correct size table. See Section 5.5.1 for
information on setting the DRM value. The
BDOS assumes the table offset to be zero.

Hashing is optional for CP/M disks, but the
table segment must be allocated for DOS media.
Thus for any drive that supports DOS disks,
hashing must be specified in GENCCPM. If
dlreotory hashing is not used (CP/M media only
used in this drlvel), set HSTBL to zero.
Including a hash table dra~atioally improves
d~ek performance. Each DPH using hashing must
reference a unique hash table. If a hash
table Is desired, Length(hash table) I
4*(DRM+I) bytes. DRM Is computed as part of
the DPB Workeheat. In other words, each entry
in the hash table suet hold four bytes for
each directory entry of the disk. If this
field is 0FFFFH, GENCCPM will automatically
create the appropriate data structures
following the RSP area.

~e The data areas for the Data Buffers and
Hash Tables are not made part of the CCPM.SYS
file by GENCCPM.

5-24

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Listing 5-4 illustrates the DPH deflnitlonz

;* DPH Definition

xlt equ
m£ equ
dpb equ
oev equ
alv equ
dirbdb equ
datbcb equ
tblseg equ

dpbass equ

dpe0 dw
db
db
db
dw
dw
dw
dw
dw

word ptr 0
byte ptr 5
word ptr 8
word ptr 10
word ptr 12
word ptr 14
word ptr 15
word ptr 18

offset $ ~Base of Disk Parameter Headers

xlt0 tTranelate Table
0,0,0 IScratoh Area
0 ;Media Flag
0,0 ~Scratch Area
dpb0 ;Dsk Parm Block
OFFFFH,0FFFFH ~Check, Allot Veotore
0FPFFH ;Dir Buff Cntrl Blk
0FFFFH ;Data Buff Cntrl Blk
OFFFFH ;Table Segment

r - ... -

Listing 5-4. DPH Definiti~

5-25

Concurrent CP/M System Guide 5.4 Disk Parameter Header

Given n dlsk drives, the DPH8 can be arranged in a tablo Whose first
row of 20 bytes corresponds to drive O, with the last row
corresponding to drive n-1. The DPH Table has the following forearm

For automatic table generation by GENCCPM,
set these fields to OFFFFH:

[J i] i
DPHZ~, y y y y y
so x~0o ioooo~ oooo~ 00oo~ DPs0o coves ~voo DIR00 ~00 HST00

01 XLT01 0000H 0000H 0000H DPB01 CSV01ALV01 DIR00 DAT00 HST01

(and so forth)

Fie/ore 5 - 5 . ~ T a b l e

Where the label DPH TBL defines the offset of the DPH Table in the
XIOS.

The IS SELDSK Function, defined in Section 5.1, returns the offset
of the--DPH from the beglnningof the SYSDAT segment for the sol,ted
drive. The sequence of operations in Listing 5-5 returns the table
offset, with a 0000H returned if the soloutsd drive does not exist.

I* DISK IS CODE AREA *
le *

ZO SELDSK:

: entry:

e x i t :

Function 78 Select Disk

CL = disk to be selected
DL = 00h if disk has not boon previously s e l o c t ~

= 01h if dlsk has been previously selected
AX = 0 if illegal disk

= offset of DPH relatlvo from
XZOS Data Segment

Listing 5 - 5 . 81G.iJK ~ r o E ~ t i ~

5 - 2 6

Concurrent CP/M System Guide 5.4 Disk Parameter Header

xor bx,bx r Get ready for error
cmp c1,15 ~ Is it a valid drive
ja sel rat ; If not just exit

mov El,cl
shl bx,1 t Index into the Dph's
mov bx,dph tbl~bx] ~ get DPH address from table

; in XIOS Header
or dl,dl r First time select?
jnz sel ret ; No, exit

mov c~,0 ~ Yes, set up DPH
I~ov sitcx
shl si,1
call wordptr eel tbl[el]

sel rat:
mov ax,bx
rat

...

Limtlng 5-5. (oo¢Itlnued)

The Translation Vectors, XLT00 through XLTn-I, whose offsets are
contained in the DPH Table as shown in Figure 5-5, are located
elsewhere in the XIOS, and correspond one-for-one with the Ic~ical
sector numbers zero through the sector count-l.

5.5 Disk Parameter Bl~k

The Disk Parameter Block (DPB) contains parameters that define the
characteristics of each disk drive. The Disk Parameter Header (DPH)
points to a DPB thereby giving the BDOS necessary information on how
to access a disk. Several DPHs can address the same DPB if their
drive charaoteristics are identical.

When a drive supports both CP/M and DOS media, the IO SELDSK routine
must determine the type of media currently In the drive and return a
DPH with a p olnter to a DPB with the correct values. The standard
CP/MDPB is shown in Figure 5-6. For DOS media, the standard DPB is
extended as shown in Figure 5-7. Each field of the standard DPB is
descrlbed in Table 5-5. The extended DPB is described in Table 5-6.
A worksheet is included to help you calculate the value for each
field.

5 - 2 7

Concurrent CP/M System Guide

O0H SPT BSH

08H .DRM AL0 ALl

10H ~

5 .5 Disk Parameter Block

I
BI~4 I EXM DSM DRM

I I
CKS OFF PSH

Disk P a z m t a r Blc~k Format

Table 5-5. Disk Parameter Block Data Fields

Field I Explanation

SPT

BSH

BLM

EXM

DSM

Sectors Per Track. The number of Sectors Per
Track equals the total number of physical
sectors per track. Physical sector else Is
defined by PSH and PHM.

Allocatlon Block Shift Factor. Thle value is
used by the BDOS to easily calculate a bloGk
number, given a logical record number, by
shifting the record nultber BSH bits to the
right. BSH is determined by the allocation
block 81me chosen for the dlek drive.

Allocation Block Mask. This value 18 used by
the BDOS to easily calculate a logical record
offset within a given blo~k thot~gh ala|klng it
logical record nulber with BLM. The BLM is
determined by the allocatlon block size.

Extent Mask. The Extent Mask determines the
~aximum number of 16K logical extents contained
in a single directory entry. It is detornlned
by the allocation block s i z e and the number of
blocks.

Disk Storage Maximum. The Disk Storage Maximum
d~flnes the total storage capacity o f the dlsk
drive. This equals the total number of
allocation blocks for the drive, minus i. DSM
must be less than or equal to 7FFFH. If the
disk uses 1024-byte blocks (BSH~3, BLM=7) DSM
must be loss than or equal to 255.

5 - 2 8

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-5. (~tinued}

Field I Explanation

DRM

AL0, ALl

CKS

Directory Maximum. The Directory Maximum
defines the total number of directory entries
on this disk drive. This equals the total
number of directory entries that can be kept in
the allocation blocks reserved for the
directory, minus I. Each directory entry is 32
bytes long. The maximum number of blocks that
can be allocated to the directory is 16, which
determines the maximum number of directory
entries allowed on the disk drive. At system
generation time DRMmust be set to allow enough
space in TSLSEG for both the hash table and the
FAT if both CP/M and DOS media can be used in
the drive. See Section 5.5.1 "Disk Perameter
Block Worksheet" for information on how to
calculate the value for system generation.

Directory Allocation Vector. The Directory
Allocation Vector is a bit map that is used to
quickly initialize the first 16 blts of the
Allocation Vector that 18 built when a disk
drive is logged in. Each bit, starting with
the high-order bit of AL0, represents an
allocation block being used for the directory.
AL0andALI determine the amount of disk space
allocated for the directory.

Checksum Vector Size. The CheckeumVector Size
determines the required length, in bytes, of
the directory checksum vector addressed in the
Disk Parameter Header. Each byte of the
checksum vector is the checksum of 4 directory
entries or 128 bytes. A checksum vector is
required for removable media in order to insure
the integrity of the drive. The hlgh-order bit
in the CKS field indicates a permanent drive
and allows far better performance by delaying
writes. Typically, hard disk systems have the
value 8000H, indicating no checksunmlng end
permanent media. On machines that can detect
the door open for removable media, a special
case occurs where checksunu~ing is only done
when the Media Flag (MF) byte in the DPH is set
to 0FFH. Normally, the disk is treated like a
permanent drive, allowing more optimal use. In
this case, adding 8000H to the CKS value
indicated a permanent drive with checksumming.

5 - 2 9

Concurrent CP/M Systee Guide 5.5 Disk Paraaeter Block

Ta]~la 5-5. { ccntlnued)

Field I Explanation

OFF

PSH

PRM

Track Offset. The Track Offset ia the ntuaber
of reserved tracks at the beginning of the
disk. OFF ie equal to the moro-ralatlvs track
number on which the directory starts° It ia
through thl$ field that more than one logical
disk drive can be mapped onto a single physlcal
drive. Each logical drive has a different
Track Offset and all drives can use the same
p~yslosl disk drivers.

Physical R~ord 8hlft Factor. The Physlual
R e c o r d 8"nlft Factor is used by the BDO8 to
quickly calculate the physical record number
froa the logical record hUmOr. The logical
record nuatbsr is shifted PfH bits to the right
to calculate the physical record.

Nots: In this context, physloal record and
physical sector are equlvalant terms.

R~y0ical Record Mask. The Physlcal Record Mask
is used by tha BIX)8 to quickly calculate the
logical record offset within a physical record
by samklng the logical record nulber with the
PRMvalue°

I* DPBDefinitlon

apt equ word l~r 0
bah equ byte ptr 2
blm equ byte ptr 3
or- equ byte ptr 4
dam equ word ptr 5
drn equ word ptr 7
al0 oqu byte ptr 9
all equ byte ptr I0
cks oqu word p t r 11
off aqu word ptr 13
psh squ byte ptr 15
prm equ byte ptr 16

Listing S-6. DFB D e f i n i t i r m

5 - 3 0

Concurrent CP/M System Guide 5.5 Disk Parameter Block

dpb0 equ offset $;Disk Parameter Block
dw 26 ;Sectors Per Track
db 3 ;Block Shift
db 7 ;Block Mask
db 0 ;Extnt Mask
dw 242 ;Disk Size - 1
dw 63 ;Directory Max
db 192 ;Alloc0
db 0 ;Allocl
dw 15 ;Check Size
dw 2 ;Offset
db O ;Phys Sec Shift
db 0 ;Phys Rec Mask

;

Listing 5 - 6 . (eantlnued)

Figure 5-7 shows the extended DPB; Table 5-6 describes its fields.

00H

O8H

10H J
18H

EXTFLAG NFATS NFATRECS NCLSTRS

CLSXZE FATADD SPT BSH BLM
i [

EXM DSM DRM AL0 ALl CKS...

I ..CKS OFF PSH PHM

Figure 5-7. Extended Disk Parameher Block Format

5-31

ConcuErent CP/H System Guide 5.5 Disk Parameter Block

Table 5-6. Extended Disk Parameter Block Data Fields

Field J Explanation

EXTFLAG

NFATS

NFATRECS

NCLSTRS

CLSIZB

FATADD

SPT

BSH

BLM

EXM

DSM

Extended DPB Flag. The extended DPB flag is
used to determine the media format currently in
the drive. If EXTFLAG is set to 0FFFFH the
drive contains DOS media. For CP/M media, the
first field in the DPB is SPT (Sectors Per
Track) and the DPB is not extended.

Number of File Allocation Tables. This is the
number of file allocation tables contained on
the DOS disk. Multiple copies of the FAT can
be kept on the disk as a backup if a read or
write error occurs.

Number of File Allocation Table Records. The
number of physical sectors in the file
allocation table.

Number of Clusters. The number of clusters on
the DOS disk. Cluster 2 Is the first data
cluster to be allocated followlng the
directory, and cluster NCLSTRS - 1 is the last
available cluster on the disk.

Cluster Size. The number of bytes per data
cluster. This must be a multiple of the
physloal sec to r s i z e .

File Allocation Table Address. The physical
record number of the first file allocation
table on the DOS disk.

Sectors Per Track. Same as CP/M (Table 5-5).

Allocatlon Block Shift Factor. Same as CP/M.
Used with BLM and DSH tO define media capacity
to CP/M. See Table 5-5.

Allocation Block Mask. See BSH.

Extent Mask. Must be zero (00H) for DOS media.

Disk Storage Maximum. See BSH.

5-32

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Table 5-6. (~,m~tlnued)

Field I Explanation

DRM

AL0, ALl

CF~

OFF

PSH

PRM

Directory Maximum. The number of entries - 1
in the root directory. At system generation
time DRM must be eat to allow enough spa~e in
TBLSEG for both the hash table and the FAT if
both CP/M and DOS media can be used in the
drive. Sea Section 5.5.1 "Disk Parameter Block
Workshset" for information on how to calculate
the value for system generation.

Not used for DOS media.

~eckaumVector Size. Same as CP/M (Table 5-5).

Track Offset. Same as CP/M (Table 5-5).

Physical Record Shift Factor. Same as CP/M
(Table 5-5).

Physical Record Mask. Same as CP/M (Table 5-
5).

5 -33

Concurrent CP/M System Guide 5.5 Dimk Parameter BLock

Listing 5-7 illustrates the extsnd~ DPB definition:

I* Extended DPB Definition

extflag equ word per 0
nfats equ word per 2
nfatrsc8 equ word per 4
nclstrs equ word per 6
olsize equ word per 8
fatadd equ word ptr i0
apt equ word per 12
bsh equ byte per 14
blm equ byte per 15
exm equ byte ptr 16
dmm equ word ptr 17
drm equ word per 19
a10 equ byte per 21
all equ byte per 22
cks equ word per 23
off equ word ptr 25
psh equ byte per 27
pre equ byte ptr 28

dpb0 equ offset $
dw 0FFFFh
dw 2
dw 6
dw 500
dw 1024
dw 1
dw 26
db 3
db 7
db 0
dw 499
dw 67
db 0
db 0
dw 17
dw 0
db 0
db 0

;Disk PmraMeter Blo~k
;Dos media - extended DPB
;Nueber of FATS
;Number FAT sectors
;Number of alustere
;Cluster Size
;Seater address of FAT
IS~torm Per Traak
;Blo~k Shift
~Block Mask
IExtnt Mask
tDisk Size - 1
;Directory Max
;Alloa0
;AiLocl
tChsck Size
~Offset
TPhys Sac Shift
IPhys Rec Mask

; ...

L i s t i ng 5 - 7 . Extondod DPB D e f i n i t i o n

5 - 3 4

Concurrent CP/N System Guide 5.5 Disk Parameter Block

5.5.1 Disk Parameter Block Workaheet

This worksheet is intended to help you create a Dlsk Parameter Block
uontainlng the specifications fcr the particular disk hardware you
are implementing. After calculating the disk parameters according
to the directions given below, enter the value into the disk
parameter list following the Workaheet. That way, all the values
you have calculated will be In one place for a convenient reference.
The following steps, which result in values to be placed in the DPB,
are labeled "field in Disk Parameter Block".

In this worksheet, the fields common to both DPBe are calculated
first, then the fields for the extended (DOS) DPB.

<A> I L l l o c a t i o n Block Size

Concurrent CP/M allocates disk apace in a unit known as an
allocation block. Thla is the minimum allocation of dlsk space
glven to a file. This value may be 1024, 2048, 4096, 8192, or
16384 decimal bytes, or 400H, 800H, 1000H, 2000H, or 4000H
bytes, respectively. Values fcr DOS disks might differ from
this range. Choosing a large allocation block size allows more
efficient usage of directory space for large files and allows a
greater number of directory entries. On the other hand, a
large allocation block slze increases the average wasted space
per disk file. This is the allocated disk space beyond the
logical end of a disk file. Also, choosing a smaller block
size increases the size of the allocation vectors because there
is a greater number of smaller blocks on the same size disk.
Several restrictions on the block size exist. If the block
size is 1024 bytes, there cannot be more than 255 blocks
present on a logical drive. In other words, if the disk is
larger than 256K bytes, it is necessary to use at least 2048-
byte blocks.

<C>

BSH
B__rJ~

Block Shift field in Disk Parameter Block
Block Mask field In Disk Parameter Block

Determine the values of BSH and BLM from the following table
given the value <A>.

T a b l e 5 - 7 . BSH and B L M V a l u e a

<A> l BSH l BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

5-35

Concurrent CP/M System Guide 5.5 Disk Parameter Block

Note= Values for DOS disks might extend beyond this range.

<D> Total Allc~ation Blocks

Determine the total number of allocation blocks on the disk
drive. The total available space on the drive, in bytes, is
calculated by multiplying the total number of tracks on the
disk, minus reserved operating system tracks, by the number of
sectors p e r track end the physical sector size. This figure is
then divided by the allocation block size determined in <A>
above. This latter value, rounded down to the neKt lowest
integer value, is the Total Allocation Blocks for the drive.

<E> DSN Disk Size Max field in Disk Parmaeter Block

The value of DSM equals the maximum number of allocation blocks
that this particular drive supports, minus i.

Note: The product (Allocation B l o c k Size)*(DSM+I) is the
total number of bytes the drive holds and must be within the
capacity of the physical disk, not counting the reserved
operating system tracks.

<F> E334 Extent Mask field in Disk Parameter Block

For CP/M, obtain the value of EXM from the following table,
using the values of <A> and <E>. (N/A - not available). For
DOS, EXM must be zero.

<A>

Table 5 - 8 . E~BI Values

I If <E> is
less than 256

If <E> is greater than Or
equal to 256

1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

<G> D i r e c t o r y B l o c k s

D e t e r m i n e t h e number o f A l l o c a t i o n B l o c k s r e s e r v e d f o r t h e
d i r e c t o r y . T h i s v a l u e m u s t be b e t w e e n 1 a n d 1 6 .

5-36

Concurrent CP/M System Guide 5.5 Disk Parameter Block

<E> Directory Entries per Block

From the followlng table, determine the number of directory
entries per Directory Block, given the Allocation Block size,
<A>.

< I>

<J>

<K>

Table 5 - 9 . Directory Entries per Block Size

<A> I # entries
m

1,024 32
2,048 64
4,096 128
8,192 256

16,384 512

Total directory entries

Determine the total number of Directory Entries by multiplying
<G> by <H>.

DRN Directory Max field in Disk Parameter BIoGK

Determine DRM by subtracting 1 from <I>. This is the value
that must be in the DRM field at run time.

The DRM field is also used by GENCCPM to allocate the hash
table for CP/K or the FAT for DOS. If both types of media are
allowed in the drive, DRM must be set to allocate the space
needed for the largest of the hash table or the FAT. The value
(I-l) calculated above will allocate the correct amount of
space for the CP/M hash table. The value to allocate space for
the FAT is calculated by:

DRM :- (NFATRECS * 2 ^ PSH * 128) / 4

The values for this equation can be found in <T>, and <P>
calculated below. Set DRM to the largest of the two values for
system generation. Set it to I - 1 at run time.

AT,O, A L l Direotory AlloGation vector 0, 1
field in Disk Parameter Block

For CP/M disks determine AL0 and ALl from the following table,
given the number of Directory Blocks, <G>. DOS disks do not
use these fields.

5-37

C o n c u r r e n t C P / M S y s t a m G u i d e 5.5 Disk Parameter Bloak

Table 5-10. ALO, ALl Valu~

1 80H 00H 9 0FFH 80H
2 0C0H 00H i0 0FFH 0COE
3 0EOH 00H 11 0FFH 0EOH
4 0FOH 00H 12 0FFE 0FOH
5 0FSH 00H 13 0FFH 0F8H
6 0FCH OOH 14 0FFH 0FCH
7 0FEH 00H 15 0FFH 0FEE
8 0FFH 00H 16 0FFH 0FFE

<L> CEB C h ~ k m m a f i e l d i n D i s k P a r m t e r BloGk

Determine the Size of the Checksum Vector. If the disk drive
media is permanent, then the value should be 8000H. If the
dlsk drive media is removable, the value should be ((<I>-
1)/4)+1. If the d i s k drive media 18 removable and the Media
Flag is implemented (door open can be detected through
interrupt), CKS should equal (((<I>-i)/4)+1)+ 8000H. The
Checksum Vector should be CKS bytes long and addressed in the
DPH.

<N> 0 ~ Offset field in D i s k Pmramote[Block

The OFF fleld determines the number of tracks that are skipped
sit ha beginning of the physical dllk. The BDOfl sutomatlcslly
addn thla to the value of TRACK in the IOPB and can be used as
a mechanlsm for skipping = s e e : r e d operating system tracks, or
for partitioning a large disk into smeller logical drives.

<N> S i z e o f A l l o c a t i o n V e c t o r

In the DPH, the Allocation Vector is addressed by the ALV
field. The size of this vector is determined by the number of
Allocation Blocks. Each byte in the vector represents four
blocks, or Size of Allocation Vector - ((<E>/8)+I)'2.

<0> P h y s i c a l S e = t o r 8 i s e

8peclfy the Physical Sector Size of the Disk Drive. Note that
the Physical Sector Size suet be greater than or equal to 128
and lees than 4096 or the Allocation Block Size, whichever is
smaller. Thla value is typically the smallest unit that can be
read or written to the disk. This field must be filled in for
PC-MODE.

5-38

Concurrent CP/M System Guide 5.5 Disk Parameter Block

<P> PSH
<Q> PSM

PhFslaal reoord SHirt field In Disk Parameter Block
Physlcal Record Mask in Disk Parameter Block

Determine the values of PSH and PRM from t h e following table
given the Phyeical Sector Size. These fields must he filled in
for PC-MODE.

T a b l e 5 - 1 1 . PaW and PRN V a l u e s

<0> J PSH J PRM

128 0 0
256 1 1
512 2 3

1024 3 7
2048 4 15
4096 5 31

DPB Exte~ed Flag

If this is the DPB for a DOS disk, the DPB Is an extended DPE
and thls field must be 0FFFFH°

 NFATS Number of File AllocatioaTablea

This field must be set to the number cf file a11ocatlon tables
on the disk currently in the drive.

<T> N F A T R] ~ Number o f FAT Records
This field is the number of physical sectors in the file
allocation table. Thl8 value can be calculated from the number
of clusters <U> and the physical sector size <0> using the
following formulaz

<T> := (<U>* 1.5 + <0> - i) / <0>

<U> NCLSTRS Number of Clusters

Thls fleld is the number of clusters on the DOS disk.

cV~ CL~IZE Cluster Size

Thla field is the number of bytes per cluster. Cl~sters are
similar to CP/M allocation blocks. See <A> above.

5-39

Concurrent CP/M System Guide 5.5 Disk Paramstmr Block

FATADD F£1oAllooatIGn T~ble Address

This field is the physical sector numbor of the first file
allocation table on the DOS disk.

5.5.2 Disk Parmtar List Worksheet

~A,

cB)

4E)

cH)

cJ)

~L)

cN)

4p)

Allocation Block Size

BSH fleld in Disk Parameter Block

BLM field in Disk Parameter Block

Total Allocation Blocks

DSM field in Disk Parameter Block

EXM field in Disk Parameter Block

Diroctory Blocks

Directory Entries per Block

Total directory entries

DRM field

AL0,ALI fields

CKS field

OFF field

in Disk Parazeter Block

in Disk Parameter Block

in Disk Parazeter Block

in Disk Parameter Block

Size of Allocation Vector

Physical Sector Size

PSH fleld in Disk Parameter Block

5-40

Concurrent CP/M System Guide 5.5 Disk Parameter Block

<O~ PRM field in Disk Parameter Block

~R) EXTFLAG field in Extended Disk Parameter Block

(St NFATS field in Extended Disk Parameter Block

~T) NFATRECS field in Extended Disk Parameter Block

~U) NCLSTRS field in Extended Disk Parameter Block

~V) CLS£ZE field in Extended Disk Parameter Block

cW) FATADD field in Extended Disk Parameter Block

5.6 Buffer Comtrol Bloak Data Area

The Buffer Control Blocks (BCBs) locate physical record buffers for
the EDOS. BCBs are usually generated automatically by GENCCPM. The
BDOS uses the BCB to manage the physical record buffers during
processlng. More than one Disk Parameter Header (DPH) can specify
the same list of BCBs. The BDOS distinguishes between two kinds of
BCBe, directory buffers, referenced by the DIRBCB field of the DPH,
and data buffers, referenced by DATECB field of the DPH.

The DIRBCB and DATBCB fields each contain the offset address of a
Buffer Control Block Header. The BCB Header contains the offset of
the first BCB in a linked list of BCBe. Each BCB has a LINK field
containing the address of the next BCB in the list, or 0O00H if it
is the last BCB. All BCB Headers and BCBs must reside within the
SYSDAT segment.

I BCBLR I MBCBP I

Figure 5-8. Buffer Control Block Header

5-41

Concurrent CP/M System Gulde 5.5 Buffer Control Block

Table 5-12. Buffer Cumtrol BloGk Hma~er Data Fields

Field l Explanation

BCBLR

MBCBP

Buffer Control Bleak List Root. The Buffer
Control Block List Root points to the first
BCB in a linked llst of BCB's.

Maximum BCB's per Prxess. The MBCEP is the
maximum number of BCB's that the BDOS can
allocate to any single process at one time.
If the number of BCS's required by a process
is greater than MBCBP, the BDOE reuses BCB'e
previously allocated to this process on a
least-recently-used (LRU) basis.

Listing 5-8 illustrates the BCB Header deflnltionz

I*
I* BCB Header Definition

bcblr squ word ptr 0
mbcbp equ byte ptr 2

dirbcb dw dlrbab0 ;BCB List Head
db 4 ;Max # BOB'e/Process

;

Listing 5-8. ~ g, solar Definition

Figure 5-9 shows the format of the Directory Buffer Control Blockl

00H- DRV I RECORD WFLG I 8EQ TRACK
' I !

08H: SECTOR BUFOFF LINK PDADR

Figure 5 - 9 . Dire=tory Buffer Cmmtrol B l o c k (DIRIK~}

5-42

Concurrent CP/M System Guide 5.6 Buffer Control Block

Table 5-13. DIRECB Data Fields

Field I Explanation

DRV

RECORD

WFLG

SEQ

TRACK

SECTOR

BUFOFF

LINK

PDADR

Logical Drive Number. The Loglcal Drive Number
identifies the disk drive associated wlth the
physical sector contained in the buffer. The
initial value of the DRV field must be 0FPH. If
DRV = 0FFh then the BDOS considers that the
buffer contains no data and is available for
use.

Record Number. The Record Number identifies the
logical record position of the current buffer
for the specified drive. The record number is
relative to the beginning of the logical disk,
where the first record of the directory is
logical record number zero.

Write Pending Flag. The BDOS sets the Write
Pending Flag to 0FFH to ~ndicate that the buffer
contains unwritten data. When the data are
written to the disk, the BDOS sets the WFLG to
zero to indicate that the buffer is no longer
dirty.

Sequential Access Counter. The BDOS uses the
Sequential Access Counter during blocking and
deblocking to detect whether the buffer ~s being
accessed sequentially or randomly. If
sequential access is used, the BDOS allows reuse
of the buffer to avoid consumption of all
buffers during sequential I/O.

Logical Track Number. The TRACK is the logical
track number for the current buffer.

Physical Sector Number. SECTOR is the logical
sector number for the current buffer.

Buffer Offset. For DIRBCBs, this field equals
the offset address of the buffer within SYSDAT.

Link to next DIRBCB. The Link field contains
the offset address of the next BCB in the linked
list, or 0000H, if this is the last BCB in the
linked list.

Process Descriptor Address. The BDOS uses the
Process Descriptor Address to identify the
process which owns the current buffer.

5-43

Concurrent CP/M System Guzde 5.6 Buffer Control Block

The buffer associated with the BOB must be large enough to
accommodate the Largest physical record (equivalent to physical
sector) associated wlth any DPH referencing the BCBn. The initial
value of the DRV field lust be 0FFH. When the DRV field contains
OFFH, the BDOS considers that the buffer contains no data and is
available for use. When WFLG equals OFFH, the buffer contains data
that the BDOS has to write to the disk before the buffer is
available for other data.

Directory BCBs never have the BCBWFLGparameter set to OFFHbecaume
directory buffers are always written immediately. The BDOS
postpones only data buffer write operations. Thus, only data BCBe
oan have dirty buffers.

The data and directory BCSs must be separate. Thin is to ensure
that a buffer with a clear WFLG is available when the BDOS vorifles
the directory. ~f all the buffers contain new data (WFLG set to
OFFH), the BDO5 has to perform a wrlte before it can verify that the
disk media has changed. This could result in data being written on
the wrong disk inadvertently. The following listing illustrates the
DIRBCB dsfinltionl

;* DIRBCB Definition

dry equ byte ptr 0
reoord aqu byte ptr 1
wflg squ byte ptr 4
meq equ byte ptr 5
track equ word ptr 6
sector equ word ptr 8
bufoff squ word ptr 10
llnk squ word ptr 12
pdadr equ word ptr 14

dirbcb0 db 0ffh TDrive
rb 3 tRscord
rb 2 IPending, Sequence
rw 2 ITrack, Sector
dw dirbufO IBuffer Offset
dw dirbcbl TLink
rw 1 ~PD Address

; ;. ..

Liet:ing 5-9. DIinca ~finiti~

5 - 4 4

Concurrent CP/M System Guide 5.6 Buffer Control Block

Figure 5-10 shows the format of the Data Buffer Control Block
(DATBCB):

00H- DKV J RECORD WFLG I SEQ TRACK

08H: SECTOR BUFSEG LINK PDADR

Figure 5-10. Data Buffer Comtrol Block (I~%TBCB)

The DATBCB is identical to the DIRBCB, except for the BUFSEG Field
described in Table 5-14.

Table 5-14. DAT]F, BDstaFields

Field I Explanation

BUFSEG Buffer Segment. For BCBe describing data
buffers, this field equals the segment address
of the Data Buffer. The offset address of the
buffer is assumed to be zero. The actual
buffer can be anywhere in memory on a paragraph
boundary that is not in the system TPA.

5 - 4 5

Concurrent CP/M System Guide 5.6 Buffer Control Block

Limting 5-10 i11uetretea the DATBCB definitlonz

;* DATBCB Definition
;e

drv
record
wflg
seq
track
sector
bufseg
link
pdadr

datbcbO

equ byte ptr 0
equ byte ptr 1
equ byte ptr 4
equ byte ptr 5
equ word ptr 6
equ word ptr 8
equ word ptr i0
equ word ptr 12
equ word ptr 14

db 0ffh
rb 3
rb 2
rw 2
dw d~Ebuf0
dw dlrbcbl
rw 1

~Drive
;Record
TPending, Sequence
;Track, Sector
;Buffer Segment
7Link
;PD Address

.....................................

L i l t i n g 5 -10 . ~ D e f i n £ t i o n

5 - 4 6

Concurrent CP/M System Guide 5.7 Memory Disk Application

5.7 Memory Dlsk Appllcatlcm

A memory disk or M disk is a prime example of the ability of the
Basic Disk Operating System to interface to a wide variety of disk
drives. A memory disk uses an area of RAM to simulate a small
capacity disk drive, making a very fast temporary disk. The M disk
can be specified by GENCCPM as the temporary drive. The example
XIOS implements an M disk for the IBM PC. This section discusses a
similar M disk implementation as shown in Listing 5-11.

In Listing 5-11, the M disk memory apace begins at the 0C000H
paragraph boundary and extends for 128 Kbytes, through the 0DFFFH
paragraph. It is assumed the XIOS INIT routine calls the
INIT M DSKI code, which initlallzes the directory area of the M
disk, the first 16 Kbytee, to 0ESH.

Both the M disk READ and WRZTE routines first call the MDISK CALC=
routine. This code calculates the paragraph address of the c~rrent
sector in memory, and the number of words of data to read or write.
The number of sectors per track for the M disk is set to 8,
si:plifylng the calculation of the sector address to a simple shift-
and-add operation. The multlsector count is multiplied by the
length of a sector to give the number of words to transfer.

The READ M DISKz routine gets the current DMA address from the IOPB
an the stack, and using the parameters returned by the MDISK CALC:
routine, block-moves the requested data to the DMA buffer~ The
WRITE_M_DISK: routine is similar except for the direction of data
transfer.

A Disk Parameter Block for the M disk, illustrated at the end of the
example, is provided for reference. A hash table is provided in
order to increase performance to the maximum. However, this field
can be set to zero if directory hashing is not desirable due to
space limitations.

5 - 4 7

Concurrent CP/M Systea Guido 5.7 Memory Disk Application

Listing 5-11 illustrates an M disk i~plsmentatlons

I M DISK EQUATES
**

ndiskbase equ OC000h ;base paragraph
;address of mdisk

s M D~SK INiTiALIZATION
**

init m dsk:
-- -- m or cx,mdiskbaee

push ee I mov ss,cx
xor di,di
mov ax,0eSeSh ;check if already initialized
cmp esz[di],ax | je mdisk end

nov cx,2000h ;Tnitialize IGK bytes
rap 8toe ax ;of M disk directory to 0E5h's

mdimk end:
p o p e s
r e t

M DISK CODE

IO READt ; Function llz Read sector
;_---_-=====

; Reads the sector on the current disk, track and
; sector into the current DMA buffer.
; entry: parameters on stack

exits AL ~ 00 if no error o~curred
; AL = 01 if an error occurred

r e a d m d s k z

call mdisk talc ;calculate byte address
push e8 ;save UDA
lee di,dword ptr dmaoff ;load destination DMA address
xor si,si ;setup source DMA address
push de ;save current DS
eov de,bx ;load pointer to sector in memory
rap movsw ;execute nova of 128 bytes
pop de ;then restore user DS register
p o p es ;restore UDA
xor ax,ax ;return with good return code
rot

Listing 5-11. Example M d i s k inplamentatio.

5-48

Concurrent CP/M System Guide 5.7 Memory Disk Application

IO WRITE: ; Function 12~ Write disk
;==_======

; Write the sector in the current Dna buffer
; to the current disk on the curren~
; track in the current sector.

CL = 0 - Deferred Writes
I - nondeferred writes
2 - def-wrt ist sect unalloc blk

AL = 00H if no error occurred
= OIH if error occurred
= 02H if read only disk

; entryl

; exit:

write m dsk:

call ndisk calc
push es
mov es,bx
xor ~i,di
push ds

;calculate byte address
;save UDA
;setup destination DMA address

;save user segment register
ids si,dword ptr dnaoff ;load source DMA address
rep novsw
pop ds
p o p e s
x o r a x a a x
ret

mdisk calcz
.... ~

; entry:
; exlt:

mov
mov

shl
mov
add
mov

shl
add

nov

mov
xor
mul
mov
cld
ret

bx, track
ci,3

bx,cl
cx,sector
bxtcx
ci,3

bx,cl
bx,mdiskbase

cx,64

al,mcnt
ah,ah
cx
cxaax

;move from user to disk in merry
;restore user segment pointer
;restore UDA
;return no error

IOPB variables on the stack
BX = sector paragraph address
CX = length in words to transfer

;pickup track number
;times eight for relative
; sector number

;plus sector
;gives relative sector number
;tines eight for paragraph
; of sector start

;plus base address of disk
; in memory
;length in words for move
; of 1 sector

;length * nultlsector count

Listig 5-II. (~tlnu~)

5-49

Concurrent CP/M System Guide 5.7 Memory Diak Application

M DISK - DISK PARAMETER BLOCK

dpb0 equ offset $;Disk Parameter Block
dw 8 ;Sector8 Par Track
db 3 ;Block Shift
db 7 TBlock Mask
db 0 ;Extnt Mask
dw 126 tDiek Size - 1
dw 31 ;Directory Max
db 128 ;AllocO
db 0 ;Allocl
dw 0 ;Check Size
dw 0 ;Offset
db 0 ;Phy8 Sac Shift
db 0 ;Phyz Sac Mask

xlt5 aqu 0 ;No Translate Table
ale5 equ 16"2 ;Allocation Vector Size
c885 equ 0 ;Check Vector Size
has5 equ (32 ~ 4) ;Hash Table Size

;_. ..

Listlng 5-11o (coutlnuod)

5.8 Muletpla Media Support

Disk access iz controled by a number of data structures, that
describe varioue paraaatere of the disk. Some of thosa paramsterm
are eat in the code of the XlOS, others are filled in by GENCCPM.
~hen a particular disk drive can have more than one type of disk in
it (for exutpla different densities or CP/Mand PC-DaB dlzkz) sore
of these parameters lust be set at run time. This section explains
how these parameters are sot up, and which ones must be changed at
run time.

Each disk drive is described by a disk parameter header (DPH) that
gives addresses for several data structures needed in using the
disk, including the Disk Parameter Block (DPB). The DPB describes
the disk in more detail, such as the s i z e of the directory and the
total storage capacity of the drive. The information in the DPB
will be different if a different density or format dlsk Is used.

5 - 5 0

Concurrent CP/M System Guide 5.8 Multiple Media Support

The DPH is located by the DPH(A) through DPH(P) pointers in the XIOS
header. See Section 3.1 "XlOS Header" for more information on these
pointers. The fields in the DPH can be filled in by hard coding the
values in the XIOS or if they are set to 0FFFFH, GENCCPM will
calculate and fill in the values. GENCCPM also allocates space for
the needed buffers and vectors.

If a drive supports more than one type of media, the buffers
allocated must be large enough to hold the information needed for
any of the possible media. This may require creating a dummy DPH
and DPB for GE~CCPM to use while allocating the buffers. For DOS
and CP/M disks, the same table area (pointed to by TSLSEG in the
DPH) is used for the hash table (CP/M) and the FAT (DOS). The space
GENCCPM allocates for this is based on the DRM value in the DPB.
See Section 5.5.1 for information on setting DRM.

Auto Density Support is the ability to support different types of
media on the same drive. Some floppy disk drives can read many
different disk formats. Auto Density Support enables the XIO8 to
determine the density of the diskette when the IO SELDSK function is
oalled, and to detect a change in density when the IO READ or
IO WRITE functions are called.

To implement Auto Density Support or support for both CP/M and DOS
media, the XIOS disk driver must include a DPB for each disk format
expected, or routines to generate proper DPB values automatically in
real time. It must also be able to determine the type and format of
the disk when the IO SELDSK function is called for the first time,
set the DPH to address the DPB that describes the media, and return
the address of the DPH to the BDOS. If unable to determine the
format, the IO SELDSK function can return a zero, indicating that
the select operation was not successful. On all subsequent
IO SELDSK calls, the XIOS must continue to return the address of the
same DPH~ a return value of zero is only allowed on the initial
IO SELDSK call.

Once the IO SELDSK routine has determined the format of the disk,
the IO READ and IO WRITE routines assume this format is correct
until an error is de~ected. If an XIOS function encounters an error
and determines that the media has been changed to another format, it
must abandon the operation and return 0FFH to the BDOS. This
prompts the BDOS to make another initial XO SELDSK call to
reestablish the media type. XIOS routines must--not modify the
drive's DPH or DPB until the IO SELDSK call is made. This is
because the BDOS can also dstermine that the media has changed, and
can make an inltial IO SELDSK call even though the XIOS routines
have not detected any changeo

End of Section 5

5-51

Section 6
PC-MODE Character I /0

This section describes functions that must be implemented in the
XIOS to support PC-MODE. These functions emulate some of the PC
interrupts, allowing DOS programs to run.

There are seven functions that must be added to the XIOS to support
PC-MODE. These are functions 30 through 36. This chapter describes
functions 30 through 34, that are used for character I/O. Functions
35 and 36 are for disk I/O, and are described in Section 5. Note
that the XIOS function table must be extended for these functions.
See Section 3.3 "XIOS ENTRY" for more information on the function
table.

Implementing these functions requires data structures similar to
those used in screen buffering. See Section 4.2 "Console I/O
Functions" for more information on screen buffering. Screen
buffering is assumed in the descriptions of all the routines in this
chapter.

6.1 ~ r e e n I / O Func t ions

Function 30, IO SCREEN either returns the current screen mode, or
sets the sorcerY-to a certain mode. The mode tells whether the
screen is displaying text or graphics, and the screen size.
Function 31, IO VIDEO, provides functions for getting and setting
the cursor posit-~on and attributes, as well as scrolling the screen
and writing characters. This function emulates 8 of the 16
suhfunctions of DOS's interrupt I0.

6-1

Concurrent CP/M S y s t e e Guide 6.1 Screen I/O Functions

IO SCREEN GET/SET SCREEN

Get or Set the Current Screen

Entry Parameters:
Register ALl

CHJ
CL:
DLt

IEH (30)
0 = Sot, 1 = Get
Mode if CH n 0 (Sot)
Virtual console number

Returned Value:
Register AX: Node if CH = i (Get)

AXm FFFFH if mode not supported
(set)
FFFEH if bad parameters
(set)
0000H if successful (Set)

ES, DS, SS, SP preserved

ZO SCREEN can be called to either re~urn the aurrent mcreen mode
(Got) or to eat the screen to a certain mode (Set). Set is
llld~aated by a zero in CH, Get i8 ir~icated by a 1 in CH. re SCREEN
is called to operate on a virtual oonsole, indicated by DE. The
sample XI,'~S'e keep a record of the mode of each virtual console in
the screen structure. The screen J~ode must be initialized to a
nonzero value When the system is initialized. This function is also
used for GSX support. See Appendix B.

When 10 SCREEN ie called to set the screen mode (CH : 0), CL
contalns" the mode in the £o~lowlng format:

CH CL

I
where y indicates the alphanumeric ~ee and x indicates graphics
modes. Either x or y will have a value, the other will be zero.
The alphanumeric nodes (values for y) are shown in Table 6-I. The
graphics modes (values for x) are shown in Table b-2. The value 1
(general alphanumeric or general graphic mode) comes from the GSX
graphics system's GIOS to indicate a mode switch. The GIOS does its
own hardware initializatlon.

6-2

Concurrent CP/M System guide 6 . 1 S c r e e n I / 0 F u n c t i c ~ a

If the calling process is in the background and wants to set its
mode to graphlae, IO SCREEN must flagwalt the process. The
corresponding flagset takes place in the IO SWITCH routine, when the
proaeee's virtual console is switched to the foreground. For
further information on the Ig SWITCH routine, see Section 4.2
"Console I/g Functlons".

Set should initialize the hardware if necessary.

When IO 8C~ is called with CH : 1 (get) it returns the screen
mode (f~ the screen structure) in the following formatz

CH CL

I # Cols

where # Cole is the nuaber of columns on the screen, x is the
graphlcslu:de (Table 6-2), and y is the alphanumeric mode (Table 6-
1).

Yable 6 -1 . AIphammerlc Modes

Y Value I Meaning

1 General alphanumeric code
2 40 • 25 monochrome
3 40 • 25 color
4 80 x 25 monoQhrome
5 80 x 25 color

6 - 8 Reserved
9 80 x 25 monochrome card

i0 - 15 Reserved

Yable 6 -2 . Graph ics Nodes

X Value I Meaning
I

I general graphics mode
2 320 x 200 color
3 320 x 200 monochrome
4 640 • 200 monochrome

5 - 15 Reserved

6-3

Concurrent CP/M Systam Guide 6 . 1 S c r e e n I / O F u n c t i c n s

IO VIDBO (Function 31) enulates 8 of the 16 8ubfunctions of DOSOs
interrupt i0. It will set and read the cursor poaltion, scroll the
screen, eat and read attributes, and write characters to the screen.

IO_VIDE0 VIDEO INPUT/OUTPUT

Manipulate the Video Screen

Entry Parameters:
Register ALl IFE (31)

BL: Sub Function
CX= Input parameter

(see below)
DX: Input parameter

(see be low)

Returned Value=
Depends on subfunction.

ES, DS, SB, SP
See be low.
preserved

The IO VIDEO function must implement at least 8 cf the 16.
subfun~ion8 of DosaB into=rupt I0. All 16 can be Implemented if
desired, and if the hardware supports them. The 8 required
subfunctions are described below.

S I T CUBSOR POSXTZ~ (BY., - 2)

entryz CH - row
CL = column
DL m Virtual console number

exits none

Thla function sets the cursor position to the specified row and
uolunn. It updates the cursor Poeltion in the screen structure for
the 8peclfledvlrtual console. It also updatem the physical screen
if thl8 virtual console is in the foreground.

6-4

Concurrent CP/M System Guide 6.1 S c r e e n I/0 Functions

READ CURSOR POSITION (BL = 3)

entry: DL = virtual console number
exit: AH = row

AL = column

This function returns the current cursor position for the virtual
console from the screen structure.

SCROLL UP (BL - 6)

entry:

e x i t :

CX = segment of parameter structure
DX = offset of parameter structure
n o n e

This function accesses the parameter structure and scrolls up the
specified window on the virtual console. The window is specified by
giving the row and column of the upper left and lower right corners
of the rectangle. If the number of lines to scroll is 0, the window
should be cleared. The parameter structure is as follows:

01

2:

4 -

6 -

8:

A

B I RSVD

(row) C (col)

(row) D (col)

VC

where - A = number of lines
S = attribute of blank lines
C = row, column of upper left
D ffi row, column of lower right
VC = virtual console number

If screen buffering is implemented, scrolling must take place in the
screen buffer. Tf the virtual console is in the foreground, and the
physical console is a serial terminal, the displa7 must also be
updated. Parameter B contains the attributes desired for the new
blank llnes to be added in the window. The method of displaying the
scrolled window on the physical console depends on the hardware.

6-5

Concurrent CP/M System Guide 6 . 1 S c r e e n I / O F u n c t i o n s

S C . ~ I ~ DOtal (BL - 7)

entry:

e x i t :

CX = segment of parameter structure
DX = offset of parameter structure
n o n e

This function accesses the parameter structure and scrolls down the
specified window on the virtual console, similar to the previous
8ubfunction. The parameter structure is as follcwss

0|

2:

4:

6#

8:

A

B m RSVD

(row) C (col)
I

(row) D (col)

v:]
w h e r e : A = number of lines

B = attribute of blank llnee
C = row, column of upper left
D - row, column of lower right
VC = virtual ounlole nuaber

Refer to scroll up above for more information.

e . n D a_~X.T.eO,~/maaac,e~a (N., = 8)

entry:
exit:

DL = virtual to, sole number
AH = attribute
AL = character

This function accesses the screen structure for the virtual cunmole
and returns the character and the attribute byte for the current
cursor position.

I n t h e e x a m p l e X l O S ' s , t h i s s u b f u n c t i o n i n v o l v e s : 1) U s i n g t h e
v i r t u a l c o n s o l s number t o l o o k up t h e s c r e e n s t r u c t u r e . 2) G e t t h e
s c r e e n b u f f e r a d d r e s s a n d c u r s o r p o s i t i o n f rom t h e s c r e e n s t r u c t u r e .
3) Look up t h e s c r e e n b u f f e r , and u s e t h e c u r s o r p o s i t i o n a s an
offset to get the current character and attribute byte.

6-6

Concurrent CP/M System Guide 6.1 Screen ~/O Functions

WRITE ATTRIBI?I~/CIJARACTER |eL = 9)

entry:

exit:

CX = segment of parameter structure
DX = offset of parameter structure
n o n e

This function writes a character and an attribute byte to a screen
image. The new character and attribute are written at the current
cursor position, and the cursor position moved to the new character.
This may involve handling an end of line or end of screen condition.
Any number of the same character and attributes can be written by
specifying the count in CX. If this virtual console is in the
foreground, and the physlcal console is a serial termlnal, it must
be updated with the new characters and attributes. The parameter
structure is as follows:

0~ RSVD A

2: RSVD B

4: C
I

6: RESERVED

8: VC

where: A = character
B = attributes
C = number of characters to repeat
VC = virtual console number

WRITE CBARACTER (eL = 10)

entry:

exit:

CX = segment oE parameter structure
DX = Offset of parameter structure
n o n e

This function writes a character to the screen buffer at the current
cursor posit~on, with the same attribute(s) as the previous
character. The character can be repeated by specifying a count in
C. If the virtual console is in the foreground, and the physical
console is a serial terminal, it must also be updated. The
parameter structure is as follows:

6-7

Concurrent CP/M System Guide 6 , 1 S c r e e n Z/O F u n c t i o n s

i

I

2: RESERVED
I

4: C
i

6z RESERVED

8: VC 1

where: A - character
C - number of characters to repeat
VC - virtual console number

~TZ SaW~L ~ (mL = 14)

entrys CL = character
DL - virtual console number

exit: none

This function writes a character to the screen image at the current
cursor position, and to the physical screen if the virtual console
is in the foreground. It functions slmilsrly to write character
(above) but does not allow repeated characters. This 18 a teletype
write, and does not allow escape sequences.

4-8

Concurrent CP/M System Guide 6.2 Keyboard Functions

6.2 Keyboard Funati~s

These two functions are used for handling function keys and the
shift status of the keyboard when running in PC-MODE.

IO KEYBD KEYBOARD MODE

Enable/Disable PC-MODE

Entry Parameters:
Register ALl

CL:

DL :

20M (32)
1 = Enable
2 = Disable
Virtual Console Number

Returned Value:
Register AX: 0 if OK

FFFFH if error
ES, DS, SS, SP preserved

IO KEYBD is a signal to tell whether PC-MODE is active or not. When
it--is enabled, the console is running a PC program, and several
functions must behave differently. These differences have to do
with the function keys on the keyboard, and the 25th line on the
screen.

Enabling or disabling IO KEYED tells 70 CONIN (See Section 4.2)
whether to pass functio~ keys to the caller or not. Normally
(disabled) all function keys not used by the XIOS (those that do not
have an associated function, such as screen switch) are ignored on
input. 7f IO KEYED is enabled, TO CONIN must pass all 16 bit
function key co-des to the caller. Se-e Section 6.4.

Many PC applications use the 25th line of the display. Thus when
you are in PC-MODE, IO STATLINE must not display. See section 4.2
for more information on IO STATLINE.

This variable can also be used in the XIOS for any other functions
that need to know if a console is in PC-MODE. For example, it could
be used to indicate if 24 or 25 lines need to be buffered.

6-9

Concurrent CP/N Syitaa Guido 6.2 Keyboard Functions

IO_SRFT SHIFT STATUS

Return Shift Status

Entry Parmmeterst
Register AL:

DLt
215 (33)
Virtual Console Number

Returned Value:
Register AL: Shift Status

Eft, DS, 8S, BP preserved

IO SHFT emulates PC interrupt 16 aubfunction 2. It returns a bit
map showing the status of certain keys on the keyboard. The bit map
is shown in Table 6-3.

Table 6-3 . Keyboard Shift Status

Slt J Meaning

Insert state i| active
Caps lock state ham been toggled
Nun look stats has been toggled
Scroll lock state has been toggled
Alternate shift key depressed
Control shift key depresed
Left shift key depressed
Right shift key depressad

6-10

Concurrent CP/M System Guide

6.3 Equipment Check

6.3 Equipment Check

IO_EOCK EQUIPMENT CHECK

Return Equipment Status

Entry Parameters:
Register AL| 22H (34)

Returned Valuez
Register AX: DOS bit map (Table 6-3)

ES, DS, SS, SP preserved

IO_EQCK emulates DOe's interrupt ii. It returns a subset of DOG's
standard bit map that describes the state of the equipment. This
bit map is shown in Table 6-3.

Table 6-4. DO6 Equipment Status Bit Map

Bit J Meaning

14, 15 Number of printers attached
13 Not used
12 Game I/O attached
II - 9 Number of RS232 cards attached
8 Not used
7, 6 Number of floppy disk drives
5, 4 Initial video mode
3, 2 Planar RAM 81ze
1 Not used
0 IPL from floppy

6 . 4 ~ - N O D m 10 COMTm

Wnen a v i r t u a l c o n s o l e i s i n PC-MODE (See IO F~I~D i n S e c t i o n 6 . 2)
IO 00~IN must r e t u r n e x t e n d e d codes f o r c e r t a i - n f u n c t i o n k e y s . Moa t
c h ' a r a c t e r a a r e r e t u r n e d as t h e i r ASCI~ code i n AL, and t h e i r scan
code in AH. The scan codes for all keys are shown in Table 6-5.
Extended keys are returned as a nul (0OH) in AL and an extended code
in AH. The extended keys and the value to be returned in AH are
shown in Table 6-6.

6-11

Concurrent CP/M System Guide

Table 6-5.

6.4

Keytx~rd Scan Code,,

PC)kxle ~O CON~

Key J Scan Code Key J Scan Code

A
n
C
D
E
F
G
H
T
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
1
2
3
4
5
6
7
8
9
0

m

[
]

e

/
\

(L)
(e)
(t)
($)
(t) (*)
(a)
(*)
(()
())
()
(;)
([)
(])
(,)
(')
(-)
(,)
(>)
(7)
(I)

30
48
46
32
18
33
34
35
23
36
37
38
39
49
24
25
16
19
31
20
22
47
17
45
21
44

2
3
4
5
6
7
8
9

10
11
12
13
26
27
39
40
41
51
52
53
54

ESO
Ctrl
Shift (left)
Shift (right)
Alt
Capm Lock
Num Lock
Scroll Lock
Return
Tab
backspace

Numeric Keypad e

HoMe (7)
cursor up (8)
Pg Up (9)
cursor left (4)
(5)
cursor right (6)
End (i)
cursor down (2)
PgDn (3)
I n s (0)
Del (.)
*(PrtSc)

+

Function Keys :

F1
F2
F3
F4
F5
F6
F7
F8
F9
FI0

1
29
42
54
56
58
69
70
28
15
14

71
72
73
75
76
77
79
8O
81
82
83
55
74
78

59
6O
61
62
63
64
65
66
67
68

6 - 1 2

Concurrent CP/M System Guide 6,4 PC Mode IO_CONIN

T a b l e 6 - 6 . Ex tended [eyboa.rd Codes

Character l AH 1 Function

ctrl 3 3 Nul character
]<-- 15 Reverse tab
Ins 82 Insert
Del 83 Delete
] 72 Cursor up
<-- 75 Cursor left
- - > 77 Cursor right
] 80 Cursor down
home 71 Cursor home
ctrl home 119 Control home
ctrl <-- 115 Reverse word
ctrl --> 116 Advance word
Pg Dn 81 Page down
ctrl Pg Dn 118 Contrl page down
Pg Up 73 Page up
ctrl Pg Up 132 Control page up
End 79 End
ctrl End 117 Control end
ctrl PrtSc 114 Print screen
Pl 59 Function key F1
F2 60 Function key F2
F3 61 Function key F3
F4 62 Function key F4
F5 63 Function key F5
F6 64 Function key F6
F7 65 Function key F7
F8 66 Function key F8
F9 67 Function key F9
FI0 68 Function key FI0
shift F1 84 Function key FI1
shift F2 85 Function key FI2
shift F3 86 Function key FI3
shift F4 87 Function key FI4
shift F5 88 Function key FI5
shift F6 89 Function key FI6
shift F7 90 Function key FI7
shift F8 91 Function key FI8
shift F9 92 Function key FI9
shift FI0 93 Function key F20

6 - 1 3

Concurrent CP/M System Guide 6.4 PC Mode IO CONIN

Table 6 - 6 .

Character

ctrl F1
ctrl F2
ctrl F3
ctr i F4
ctrl F5
ctrl F6
ctrl F7
ctrl F8
ctrl F9
ctrl FI0
alt F1
alt F2
alt F3
alt F4
alt F5
alt F6
alt F7
alt F8
alt F9
alt FI0
alt A
alt B
alt C
alt D
alt E
eli F
alt G
alt H
alt I
alt J
alt K
alt L
alt M
alt N
alt O
alt P
alt Q
alt R
alt S
alt T
alt U
alt V
alt W
alt X
alt Y
alt Z

(continued)

Function l- I
94
95
96
97
98
99
i00
101
102
103
104
105
106
107
108
109
110
iii
112
113
30
48
46
32
18
33
34
35
23
36
37
38
50
49
24
25
16
19
31
20
22
47
17
45
21
44

Function key F21
Function key F22
Function key F23
Function key F24
Function key F25
Function key F26
FUnction key F27
Function key F28
Function key F29
Function key F30
Function key F31
Function key F32
Function key F33
Function key F34
Function key F35
Function key F36
Function key F37
Function key F38
Function key F39
Function key F40
Alt A
Alt B
Aft C
Alt D
Alt E
alt F
Alt G
Aft H
Aft I
Air J
Aft K
Aft L
Alt M
AI~ N
Alt 0
Alt P
Aft O
Aft R
Alt S
Alt T
Aft U
Alt V
Aft W
Alt X
Alt Y
Alt Z

6-14

Concurrent CP/M System Guide 6 . 4 PC Mode IO CONIN

T a b l e 6 - 6 . (c o n t i n u e d)

Character 1 AH 1 Function

alt 1 120 Alt 1
alt 2 121 Alt 2
alt 3 122 Aft 3
alt 4 123 Alt 4
alt S 124 Alt 5
alt 6 125 Aft 6
alt 7 126 Alt 7
alt 8 127 Alt 8
alt 9 128 Aft 9
alt 0 129 Alt 0
alt - 130 Aft -
alt = 131 Alt=

End o f Section 6

6-15

Section 7
XIOS Tick Interrupt Routine

The XIOS must contlnually perform two DEV 9ETFLAG system calls.
Once every system tick the system tick flag must be set if the TICK
Boolean in the XIOS Header is 0FFH. Once every second, the second
flag must be set. This requires the XlOS to ccntaln an interrupt-
driven tick routine that uses a hardware timer to count the time
intervals between successive system ticks and seconds.

The recommended tick unit is a period of 16.67 milliseconds,
corresponding to a frequency of 60 Hz. When operating on 50 Hz
power, use a 20-milllsecond period. The system tick frequency
determines the dispatch rate for compute-bound processes. If the
frequency is too high, an excessive number of dispatches occurs,
creating a significant amount of additional system overhead. If the
frequency is too low, compute-bound processes monopolize the CPU
resource for longer periods.

Concurrent CP/M uses Flag #2 to maintain the system time and day in
the TOP structure in SYSDAT. The CLOCK process performs a
DEV WAITFLAG system call cn Flag #2, and thus wakes up once per
second to update the TOD structure. The CLOCK process also calls
the IO STATLINE XIOS function to update the status line once per
second-~ If the system has more than one physical console, one
physical console 18 updated each second. Thus if four physical
consoles are connected, each one will be updated once every four
seconds.

The CLOCK process is an RSP and the source code is distributed in
the OEM kit. Any functions needing to be performed on a per-second
basis can simply be added to the CLOCK.RSP.

After performing the DEV SETFLAG calls described above, the XIOS
TICK Interrupt rcutlne ~st perform a Jump Par to the dispatcher
entry point. This forces a dispatch to occur and is the mechanism
by whlch Concurrent CP/M effects process dispatching. The double-
~)rd pointer to the dispatcher entry used by the TICK interrupt is
located at 0038H in the SYSDAT DATA. Please see Section 3.6,
"Interrupt Devices," for more information cn writing XIOS interrupt
routines.

End o f S e c t i o n 7

7-1

Section 8
Debugging the XIOS

Thla section suggests a method of debugging Concurrent CP/M,
requiring CP/M-86 running on the target machine, and a remote
~ole. Hardware-dependent debugging techniques (ROi4monitor, in-
circuit emulator) available to the X~OS implementor can certainly be
used but are not described in this manual.

Implement the first cut of the XIOS using all polled i/O devices,
all interrupts disabled including the system TICK, and Interrupt
Vectors i, 3, and 225, which are used by DDT-86 end STD-86,
unlnitlalizmd. Once the XIOS functions are implemented as polling
devices, change then to interrupt-drlven I/O devices and test them
one at a time. The TICK interrupt routine is usually the last XIOS
routine to be implemented.

The initial system can run without a TICK interrupt, but has no way
of forcing CPU-bound tasks to dispatch. However, without the TICK
interrupt, console and disk I/O routines are much easier to debug.
In fact, if other problems are encountered after the TICK interrupt
is implemented, it is often helpful to dlsable the effects of the
TICK interrupt to simplify the environment. This is accomplished by
changing the TICK routine to execute an IRET instead of Jumping to
the dispatcher and not allowing the TICK routine to perform flag set
system calls.

When a routine must delay fo~ a specific amount of time, the XIOS
usually makes a P DELAY system call. An example is the delay
required after the-disk motor is turned on until the disk reaches
operational speed. Until the TICK interrupt is implemented, P DELAY
cannot be called and an assembly language time-out loop is needed.
To improve performance, replace theme time-outs with P DELAY system
calls after the tick routine is implemented and debugged. See the
MOTOR_ON: routine in the example XIOS for more details.

8 . 1 Running Ur~ler CP/N-86

To debug Concurrent CP/M under CP/M-86, CP/M-86 must use a console
separate from the console used by Concurrent CP/M. Usually a
terminal is connected to a serial port and the console input,
console output and console status routines in the CP/M-86 BIOS are
modified to use the serial port. The serial port thus becomes the
CP/M-86 console. Load DDT-86 under CP/M-86 using the remote console
and read the CCPM.SYS image into memory using DDT-86. The
Concurrent CP/M XIOS must not reinitialize or use the serial port
hardware that CP/M-86 is using.

It is somewhat difficult to use DDT-86 to debug an interrupt-drlven
virtual console handler. Because the DDT-86 debugger operates with
interrupts left enabled, unpredictable results can occur.

8-1

Concurrent CP/M System Guide 8.1 Running Under CP/M-86

Values in the CP/M-86 BIOS memory segment table must not overlap
memory represented by the Concurrent CP/M memory partitions
allocated by GENCCPM. CP/M-86, in order to read the Concurrent CP/M
system image under DDT-86, must have in its segment tables the area
of RAM that the Concurrent CP/M system is configured to occupy. See
Figure 8-1.

CCP/M transient~
program area
defined by
GENCCPM

CP/M transient ~
area described
.in BIOS

memory address O:

CCPM.SYS

DDT86

CPM.SYS

Interrupt Vectors

~CCP/M 0.8. image

~CP/M O.S. image

Figure 8-i. Debugging Memory La1~ut

Any hardware that is shared by both systems is usually not
accessible to CP/M-86 after the Concurrent CP/M initialization code
has executed. Typically, this prevents you from gettlng out of DDT-
86 and back to CP/M-86, or executing any disk I/O under DDT-86.

The technique for debugging an XIOS with DDT-86 running under CP/M-
86 is outlined in the following steps8

i. Run DDT-86 on the CP/M-86 system.

2. Load the CCPM.SYS file under DDT-86 using the R command and the
segment address of the Concurrent CP/M system minus 8 (the
length in paragraphs of the CMD file header). The segment
address is specified to GENCCPM with the OSSTART option. Set
up the CS and DS registers with the A-BASE values found in the
CMD file Header Record. See the Concurrent CP/M Opera~inq
System Programmer's Reference Guido description of the CMD file
~eader.

3. The addresses for the XIOS ENTRY and INIT routines can be found
in the SYSDAT DATA at Offsets 28H for ENTRY and 2CH for INIT.
These routines will be at offset 0C03H and 0C00H relative to
the data segment in DS.

4. Begin exeoutlon of the CCPM.SYS file at offset 0000H in the
code segment. Breakpoints can then be set within the XIOS for
debugging.

8-2

Concurrent CP/M System Guide 8.1 Running Under CP/M-86

In the followlng figure, DDT-86 is invoked under CP/M-86 and the
file CCPM.SYS is read into memory starting at paragraph 1000H. The
OSSTART command in GENCCPM was specified with a paragraph address of
1008H when the CCPM.SYS file was generated. Using the DDT-86 D(ump)
command the CMD header of the CCPM.SYS file is displayed. As shown,
the A-BASE fields are used for the initial CS and DS segment
register values. The following llnes printed by GENCCPM also show
the initial CS and DS valuesl

Code starts at 1008
Data starts at 161A

Two G(o) commands with breakpoints are shown, one at the beginning
of the XlOS INIT routine and the other at the beginning of the ENTRY
routine. These routines can now be stepped through using the the
DDT-88 T (race) command. See the Procjrammer's Utilities Guide for
more information on DDT-86.

A>ddt86
DDT 86
-rcopm. sys, i000 : 0

START END
i000:0000 1000:EDTF
-dO
i000:0000 01 12 06 08 i0 12 06 00 00 02 B9 08 1A 16 B9 08

- x c s
CS 0000 1008
DS 0000 161a
SS 0051 .
- l d s : c O 0
161A:0C00 JMP
161A:0C03 JMP

L _ _ J L _ _
l

IE2E
0C3B

I

r

-g,ds:0C00
*I61A:0C00

;set a break point at XIOS INIT
;the INIT routine may now be degugged

-g,ds:0C03
*161A:0C03

Iset a break point at XIOS ENTRY
;the XIOS function being called is
IAL

F i g u r e 8 -2 . Debugging CCP/M under DDT-86 and CP/N-86

8-3

Concurren t CP/M System Guide 8.i Running Under CP/H-86

When using SID-86 and symbols to debug the XIOS, extend the CCPM.SYS
file to include unltlallzed data area not in the file. This ensures
the symbols are not written over while in the debugging session.
Assuming the same CCPM.SYS file as the preceding, use the followlng
co~nands to extend the file.

SID86
r c c p m . s y s , 1 0 0 0 : 0

START END
i000=0000 1000:EDTF
#xcs
CS 0000 1008
DS 0000 161c
SS 0051 .
|Sw44
161C:0044 XXXX .

fwuopu . sye ,1000 :0 ,XXXX:0
f e
f r o c p u . a y s , 1 0 0 0 = 0

START EHD
L000:0000 YYYY:ZZZZ
f e * x i o 8
SYMBOLS

7EHDSEG value from SYSDAT DATA

; r e l e a s e memory
;read in larger file

;get XIOS.SYM file

Figu re 8-3. Debugging t h e XXOB Under BID-86 and CP/ I -86

The p r e c e d i n g p rocedure t o e x t e n d the f i l e o n l y needs t o be
pe r f o rmed once a f t e r the CCPM.SYS f i l e i s g e n e r a t e d by GENCCPM.

End o f S e c t i o n 8

8-4

Section 9
Bootstrap Adaptation

This section dlsausses the example bootstrap procedure for
Concurrent CP/M on the IBM Personal Computer. This example is
intended to serve as a basis for customization to different hardwar~
environments.

9.1 ~ ~ o f TTaak 0 , m t h e XEIK

Both Concurrent CP/M and CP/M-86 for the IBM Personal CoIputsr
reserve track O of the 5-1/4 inch floppy disk for the bootstrap
routines. The rest of the tracks are reserved for directory and
file data. Track 0 is divided into two areas, sector 1 which
~ntalns the Soot Sector and sectors 2-8 whlah contain the Loader.
Figure 9-1 shows the layout of track 0 of a Concurrent CP/M boot
disk for the IBM Personal Computer.

Sector 1

Sector 2

Sector 8

F~gure 9-1.

Boot Sector

Loader

Track 0 o~ the IE~ PC

The Boot Sector is brought into memory on reset or power-on by the
IBM PC's R0M monltor. The Boot Sector then reads in all of track 0
and transfers control to the Loader.

The Loader is a simple version of Concurrent CP/M that contains
sufficient file proaeeslng capability to read the CCPM.SYS file,
which contains the operating system image, from the boot disk to
memory. When the Loader completes its operation, the operating
system image receives control and Concurrent CP/M begins execution.

9-1

Concurrent CP/M System Guide 9.1 Track 0 on the IBM PC

The Loader consists of three moduless the Loader BDOS, the Loader
Program, and the Loader BIOS. The Loader BDOS is an invariant
module used by the Loader Program to open and read the system image
file from the boot disk. The Loader Program is a variant module
that opens and reads the CCPM.SYS file, prints the Loader sign-on
message and transfers control to the system image. The Loader BIOS
handles the variant disk I/O functions for the Loader BDOS. The
term variant indicates that the module is Implementation-specific.
The layout of the Loader BDOS, the Loader Program, and the Loader
BIOS is shown in Figure 9-2. The three-entry jump table at 0900H is
used by the Loader BDOS to pass control to the Loader Program and
the Loader BIOS.

Notes The Loader for the IBM PC example begins in sector 2 of
track 0, and continues up to sector 8 along with the rest of the
Loader BDOS, the Loader Program and the Loader BIOS.

offsets from
Loader BDOS

0909E~
0906H:
0903H:
0900H:

0000H:

Loader BZOS

Loader Program

JMP LOADP
JMP ENTRY
JMP INIT

Loader BDOS

Figure 9-2. Loader Organization
(Sectors 2 through 8, Trsuk 0 on IBM PC)

9.2 The Bootstrap Process

The sequence o f e v e n t s i n the IBM PC a f t e r p o w e r - o n i s d i s c u s s e d in
t h i s s e c t i o n . E x c e p t f o r the f u n c t i o n s t h a t a r e pe r fo rmed by the
IBM ROM m o n i t o r , t he f o l l o w i n g p r o c e s s can be g e n e r a l i z e d t o o t h e r
8086/8088 mach ines .

9-2

Concurrent CP/M System Guide 9.2 The Bootmtrap Process

Pirst the ROM monitor reads sector l, track 0 on drive A: to memory
location 0000:7C00H on power-on or reset. The ROM then transfers
control to location 0000:TC00H by a JMPF (jump far) instruction.
The Boot Sector program uses the ROM monitor to check for at least
160K of memory contiguous from 0. The ROM monitor is then used to
read in the remainder of track 0 to memory location 2600:0000H
(152K). Control is transferred to location 2620z00O0H, which is the
beginning of the second sector of track 0 end the beginning of the
Loader. (Each sector is 512 bytes, or 20H paragraphs long.) The
source code for the Boot Sector program can be found in the file
BOOT.AS5 on the Concurrent CP/M distribution disk.

The exact location in memory of the Boot Sector and the Loader
depend on the hardware environment and the system implementor.
PxT~ever, the Boot Sector must transfer control to the Loader BDOS
with a JMPF (jump far) instruction, with the CS register set to
paragraph address of the Loader BDO8 and the IP register set to 0.
Thus the Loader BDOS must be placed on a paragraph boundary. In the
exau~le Loader, the Loader BDOS begins execution with a CS register
set to 2620H and the IP register set to 0000H.

The Loader BDOS sets the DS, SS, and ES registers equal to the CS
register and sets up 64-1evel stack (128 bytes). The three Loader
modules, the Loader BDOS, Program and BIOB, execute using an 8080
model (mixed code and data). It ia assumed that the Loader BDOS,
the Loader Program and the Loader BIOS will not require more than 64
levels of stack. If this is not true then the Loader Program and/or
the Loader BIOS must perform a stack switch when necessary. The
Jump table at 0900H is an invariant part of the Loader, though ~he
destination offsets of the jump instructions may vary.

After setting up the segment registers and the stack, the Loader
BDOS performs a CALLF (call far) to the JMP INIT instruction at
CB:9OOH. The INIT entry is for the Loader BIOS to perform any
hardware initialization needed to read the CCPM.SYS file. Note that
the Loader BDOS does not turn interrupts on or off, so if they are
needed by the Loader, they must be turned on by the Boot Sector or
the Loader BIOS. The example Loader SIOS executes an ST7 (Set
Interrupt Enable Flag) instruction in the Loader BIOS ISIT routine.

The Loader BIOS returns to the Loader BDOS by executing a RETF
(Return Far) instruction. The Loader BDOS next initializes
interrupt vector 224 (0EOH) and transfers control to the JMP LOADP
instruction at 0906B, to start execution of the Loader Program.

The Loader Program opens and reads the CCPM.SYS file using the
Concurrent CP/M system calls supported by the Loader BDOS. The
Loader Program transfers control to Concurrent CP/M through the
"JMPF CCPM" (Jump Far) instruction at the end the Loader Program,
thus completing the loader sequence. The following sections discuss
the organization of the CCPM. SYS file and the memory image of
Concurrent CP/M.

9-3

C o n c u r r e n t CP/M Bystem Guide 9 . 3 Loader Function S e t s

9.3 The Loader BOOB and Loader BIOB Functlou Beta

The Loader BDOS has a minimum set of functions required to open the
system image file and transfer it to memory. These functions are
invoked as under Concurrent CP/N by executing a INT 224 (00EOH) and
are documented in the Concurrent CP/MProqrammer*8 Reference Guide.
The functions implemented by the Loader BDOS are in the following
list. Any other function, if called, will return a 0FFFFh error
code in registers AX and BX.

Funs# CL Function Name

14 0Eh Select Disk
15 0Fh Open File
20 14h Read Sequential
26 iAh Set DbtAOffset
32 20h Set/Get User Number
44 2Oh Set Multlseotor Count
51 33h Set DNA Segment

Blocking/Deblocking has been implemented in the Loader BDOS, as well
as multlaector disk Z~O. This simplifies writing and debugging the
loader BIOS and improves the system load time. File LBDOS.H86
i n c l u d e s t h e Loader BDOS.

The Loader BZO8 must implement the minimum set of functions required
by the Loader BDOS to read a file.

Funcf AL

9 09H
10 0AH

Function Name

IO SELDSK (select disk)
IO~READ (read physical sectors)

To invoke ~0 BELDSK Or I0 READ i n t h e Loader BZ06, t h e Loader BDOS
p e r f o r m s a CALLF (C e l l Fa~) i n s t r u c t i o n t o t h e Jump i n s t r u c t i o n a t
ENTRY (0903H).

The Loader BIOS functions ere implemented in the same way as the
corresponding XIOS functions. Therefore the code used for the
Loader BIOS may, with a few exceptions, be a subset of the system
XIOS code. For example, the Loader BIOS does not use the
OEVWAITFLAGor DBV POLL Concurrent CP/M system functions. Certain
fie~da in the Disk Parameter Headers and Disk Parameter Blocks can
be initialized to 0, as in Figure 9-3:

9-4

Concurrent CP/M System Guide 9.3 Loader Function Bets

00H

08H

10H

Disk Parameter Header

XLT 0000 00 I 00
1 I I

DPB 0000 0000
I I

DATBCB 0000

0000
!

DIRBCB

00H SPT

08H ..DRM 00

10H ~PHM

Figure 9-3.

Disk Parameter B l o c k

BSH BLM t EXM DSM DR
[I

00 0000 OFF PSH

Disk Parameter Field Initialization

ThE Loader Program and Loader BIOS may be written as separate
modules, or combined in a single module as in the example Loader.
The size of these two modules can vary as dictated by the hardware
environment and the preference of the system implementor. The
LOAD.AS6 file contains the Loader Program and the Loader BIOS.
LOAD.AS6 appears on the Concurrent CP/M release disk, and may be
assembled and listed for reference purposes.

The Loader Program and the Loader BIOS are in a contiguous section
of the Loader to reduce the size of the Loader image. Grouping the
variant code portions of the Loader into a single module, allows the
implementation of nonfile-related functions in the most size-
efficient manner. The example Loader BIOS implements the IO CONOUT
function in addition to IO SELDSK and IO READ. This Loader B~OS can
be expanded to support keyboard input to-allow the Loader Program to
prompt for user options at boot time. However, the only Loader BZOS
functions invoked by the Loader BDOS are IO SELDSK and IO READ, any
other Loader BIOS functions must be invoked directly by the Loader
Program.

9 . 4 T r a c k 0 C o n s t r u o t l o n

Track 0 for the example IBM PC bootstrap is constructed using the
following procedure: The Boot Secto~ is 0200H (512) bytes long and
is assembled with the command:

A>ASK86 BOOT

This results in the file BOOT.H86, which becomes a binary CMD file
with the command:

9-5

Concurrent CP/M System Guide 9.4 Track 0 Construction

A>GlaiCXDBOOT 8080

The LOAD.A86 file, containing the the Loader Program and the Loader
BIOS, is assembled using the command:

A>ASN86 LOAD

The Loader BDOS starts a 0000H and ends at 0900H. The LOAD module
starts at 0900H and ends at 0E00H. This equals the size of the 7
sectors remaining after the Boot Sector. The IBM PC disk format has
eight 0200H-byte (512-byte) sectors, or 1000H (4K) bytes per track.
Subtracting 0200H, the length of the Boot Sector, we get 0E00H. The
LOADER.HaG file, containing the Loader BIOS, Loader Program and
Loader BIO8, is constructed using the command:

A>PIP LOADBR.R86=LBDOS.H85,LOAD.N86

Next a binary CMD file is created from LO&DER.H86 with GENCHD=

A>GENCNDLOADER 8080

This results in the file LOADER.CMD with a header record defining
the 8080 Model. Note this CMD file is not directly executable under
any CP/M opeDatlng system, but can be debugged as outlined below.
Next the BOOT.CMD and LOADER.CMD files are combined into a track
image. Use DDT-86 or SID-86 to do this:

A>DDT86 I or SIDe5
-rboot.omd

START END !aaaa is paragraph where DDT86
mama:0000 aaaa:027F ~ places BOOT.CHD
-wtrmukO,S0,107f 7 create the 4K file, TRACK0, without

j a CMD header
-rtraokO ~ read the 4K TRACK0 file into memory

START END
-bbbb:0000 bbbbs0FFF p TRACK0 starts at paragraph bbbb
-rloader.omd 7 read LOADER.CHD to another area of

START END ~ memory
-SSss=O000 S=sm:OETF ~ LOADER.CND starts at paragraph zzzz
-llSSs|80,0RTF,bbbbzO200 j move the Loader to where sector 2

I starts in the track image
-wtrack0,bbbb|O,OFFF ! write the track image to the file

p TRACK0

The final step is to place the contents of TRACK0 onto track 0. The
TCOPY example program accomplishes this with the following command:

A>TCOPY TRACK0

9-5

Concurrent CP/M System Guide 9.4 Track 0 Construction

Scratch diskettes should b e used for testing the Boot Sector and
Loader. TCOPY is included as the source file TCOPY.A86, and needs
to be modified to run in hardware environments other than the IBM
PC. TCOPY only runs under CP/M-86 and cannot be used unde~
Concurrent CP/M.

The Loader can be debugged separately from the Boot Sector under
DDT-86 or SID-86, using the following commands:

A>DOT86
-rloader .uad

START END
mama:0000 aaaa:0ETF
-haaaa, 8
yyyy, zzzz
-Tx~s
CS 0000 yyyy
-1900

D e .

. o .

; or SID86

;aaaa is paragraph where DDT86
; places the Loader

Add 8 paragraphs to skip over CMD
; header, aaaa+ 8 = yyyy

; set CS for debugging
IP is set to 0 by DDT86 or SID86

The 1900 command lists the Jumps to INIT, ENTRY and LOADP to verify
the Loader Program and the Loader BIOS are at the correct offsets.
Breakpoints can now be set in the Loader Program and Loader BIOS.
The Boot Sector can be debugged in a similar manner, but sectors 2
through 8 need to contain the Loader image if the JMPF LOADER
instruction in the Boot Sector is to be executed.

9 . 5 O t h e r B o o t s t r a p M e t h o d s

The preceding three sections outline the operation and steps for
constructing a bootstrap loader for Concurrent CP/M on the IBM PC.
Many departures from this scheme are possible and they depend on the
hardware environment and the goals of the implementor. The Boot
Sector can be eliminated if the system ROM (or PROM) can read in the
entire Loader at reset. The Loader can be eliminated if the
CCPM.SYS file is placed on system tracks and the ROK can read in
these system tracks at reset. ~owever, this scheme usually requires
too many system tracks to be practical. Alternatively, the Loader
can be placed into a PROM and copied to RAM at reset, eliminating
the need for any system tracks. If the Boot Sector and the Loader
are eliminated, any initialization normally performed by the two
modules must be performed in the XIOS initialization routine.

9-7

C o n c u r r e n t CP/M S y n t e n Guide 9.6 Organization of CCPM.SYS

9 . 6 O r g a n i s a t i c m o f C C P H . ~

The CCPM.SY8 f i l e , g e n e r a t e d by GEHCCPM and r e a d by t h e L o a d e r ,
consists of the seven *.CON files and any included *.RSP files. The
CCPH.SYS file 18 prefixed by a 128-byte ~ Header Record, which
contains the following two Group DeacrIptorst

G-Form G-Length A-Base

01h

02h

x x x x
!

X X X X

1008h
I

(varies)

G-His G-Max

XXXX XXXX
i J

XXXX XXXX

F i g u r e 9 - 4 . Group D e ~ r l p t o r a - OCPN.HTS Heade r Reoord

The first Group Descriptor represents the 0.8. Code Group cf the
CCPM.SYS file and the second represents the Data. The preceding
Code Group Descriptor has an A-Base load address at paragraph 1008H,
or "paragraph:byte" address of 01008s0000H. The A-Base value in the
Data Group Descriptor varies according to the modules included in
this group by GENCCPM. The load address value shown above i8 only
an exauple. The CCPH.SYS file can be loaded and executed at any
address where there is sufficient memory space. The entire CCPM.SYS
file appears on disk as shown in Figure 9-5.

9-8

Concurrent CP/M System Guide 9.6 Organization of CCPM.SYS

ENDSEG ~

RSPSEG

System
Data
Area

1
OSSEG •

Image in Memory

(High Memory)

Disk Buffers

RSPs
(includlng TMP, CLOCK)

O.S. Table Space

XIOS Code and Data

O.S. Data

O.S. Code

Low Memory

Image in CCPM.SYS

.t~----OCOOB---~
(xlos)

~----XIOS
(CS:,DSz)

Rnd of F i l e

CCPM.SYS
DATA
GROUP

CCPM.SYS
CODE
GROUP

CCPM.SYS
HEADER

(Start of File

Figure 9-5. CCPM System Image and the CCPM.SYS File

The CCPM.SYS file is read into memory by the Loader beginning at the
address given by Code Group A-Base (in the example shown above,
paragraph address 1008H), and control is passed to the Supervisor
INIT function when the Loader Program executes a JMPF instruction
(Jump Far) to 1008z0000H. The Supervisor INIT must be entered with
CS set to the value found in the A-BASE field of the code Group
Descriptor, the IP register equal to 0 and the DS register equal to
A-BASE value found in the data Group Descriptor.

End of Section 9

9-9

Section 10
OEM Utilities

A commerclally vlable Concurrent CP/M system requires OEM-supported
capabilities. These capabilities include methods for for~attlng
disk and ~mage backups of disks. Typically, an OEM supplies the
following utilities:

• Disk Formatting Utility (FORMAT.CMD)
• Disk Copy Utility (DCOPY.CMD)

These utilities are usually hardware-speclflc and either make direct
XIOS calls or go directly to the hardware.

10.1 Bypassing the BIX~

When special OEM utilities bypass the BDOS by making direct XIOS
calls or going directly to the hardware, several programmlng
precautions are necessary to prevent conflicts due to the Concurrent
CP/Mmultitasking environment. The following steps must he taken to
prevent other processes from accessing the disk system:

i. Warn the user. This program bypasses the operating system. No
other programs should be running while this program is being
used.

2. Check for Version 2 or 3.1 of Conourrent CP/M through the
S OSVER function. The following steps are specific to these
v-erelons of Concurrent CP/M. They do not work in previous
Digital Research operating systems, nor are they guaranteed to
work in future Digital Research operating systems.

3. Set the process priority to 150 or better through the
P PRIORITY function. If another program is running on a
background console, it cannot obtain the CPU resource while
this program needs it.

4. Set the P KEEP flag in the Process Descriptor to prevent
termlnation of the operation without proper cleanup.

5. Make sure the program is running in the foreqround and that the
console is in DYNAMIC mode. Then lock the console into the
foreground by setting the NOSWITCH flag in the CCB. This
prevents the user from initiating a program on another virtual
console while this program is running in the background.
Because the file system is locked, a program cannot load from
disk.

6. Make sure there are no open files in the system. This also
detects background virtual consoles in BUFFERED mode.

i0-i

C o n c u r r e n t CP/M System Guide 10.1 Bypassing the BDOS

7. Lock t h e BDOB by r e a d i n g t h e MXdisk qumue m e s s a g e .

8. You can now safely perform the FORMAT and DCOPY operations on
the disk system, independent of the BDOS.

9. OnCe t he operations are complete, allow the d i s k system to be
reset by setting the logln sequence number in each affected DPH
to 0. When the disk system is reset, these drives are reset
even if they are permanent. The login sequence field is 06h
bytes from the beginning of the DPH.

i0. Release the EDOS by writing the MXdlsk queue message.

ii. Reset the Disk System with the DRV ALLRESET function.

12. Unlock the console system allowing console switching by
unsettlng the NOSWITCH bit of the CCB FLAG field in the CCB.

13. Reset the P_KEEP flag in the Process Descriptor.

14. Terminate.

Listing i0-I illustrates these steps and shows how to make d i r e c t
XlOSca118 t o a c c e s s t h e d i s k a y s t e m . The r o u t i n e s c o r r e s p o n d i n g t o
the steps are labeled for cross-reference purposes.

i 0 - 2

Concurrent CP/M System Guide" 10.1 Bypassing the BDOS

PAGEWIDTH 80
F

I*
;* PHYSICAL.AS6
7"
I* Sample Program Illustrating Direct Calls to
I* the Disk Routines in the X~OB.

I* This program will lock the console and disk
I* systems, read • physical sector ~nto memory
I * and gracefully terminate.
I* **

true equ 0ffffh
false equ 0

cr equ 0dh
if equ 0ah

copmi~t equ 224
ccp~ver2 equ 01420~

! XIOS functions

io seldsk equ 0gh
io--read equ 0ah
io~wrlte squ 0bh

I SYSDAT Offsets

sy_xentry equ 028h
sy_nvcns equ 047h
sy_ccb .equ 054h
sy_openfile squ 088h

! Process Descriptor
p flag equ word ptr 06h
p_uda equ word ptr 010h
pf_keep equ 00002h

I Console Control Block
cab size equ 02ah
cob-state equ word ptr 0eh
cf buffered equ 00001h
cf~backgEound equ 00002h
cf_noswltch equ 00008h

L i S t i ~ 10-1 . D isk U t i l i t y P r o g z m i n g Example

10-3

Concurrent CP/H System Guide I0.i Bypassing the BDOS

; Disk Parameter Header

dph_leeq equ byte ptr O6h

; drvvec bits

drivea equ 00001h
driveb egu 00002h
drivec equ O0004h

**

;* CODE SEGMENT
7" **

CSEG
ORG 0

; Switch Stacks to make sure we have enough.
; This is done with interrupts off.

Old 8086's and 8088's will allow an
T interrupt between SS and SP setting.

pushf I pop bx
cli
mov ax,ds ! nov ss,ax
mov sp,offset tos
push bX I popf

; Step i. - Warn the user.

mov dx,warning I call c_writebuf

Step 2. - Check for Concurrent CP/M V3.1

oall sosver
and ax~0fffOh
cap ax, ccpmver2 ! je good_version

imp bad version
good version:

; Step 3 - Set priority to 150

mov dl,150
oall p_priority ;priority = 150

call get_osvalues ;get OS values

T.ISti~ I0--I. (~amti~)

10-4

Concurrent CP/M System Guide 10.1 Bypassing the BDOS

; Step 4 - Set the P_KEEP flag in PD

call no_termlnate ;set p_keep flag

; Step 5 - Lock the console

call lock_con ;lock consoles

; Step 6 and 7 - Lock the BDOS,
; make sure there are no open files

call lock_disk ;lock bdos

; Step 8 - Perform the Operation

call operation ;do operation

imp terminate ;terminate

operation:
e

; Do our disk operations. If we make changes to a
disk, make sure to set the appropriate bit in the

; drvvec variable to force the BDOS tc relnltlallze
; the drive• In this example are only going to
; read a physical sector from disk.

; Lets read Track 2 Sector 2 of drive B
; with DMA set to sectorbuf
; Setup for Direct IO_READ call with
; IOPB on Stack.

mov axrde
push esl push ds
mov es,udaseg
mov ds,sysdat
mov ch,l
mov cl,l I push cx
mov cx,2 ! push cx
m o v cx,2 ! push c x
push ax
mov cx,offset sectorbuf
push cx
mov ax.io read

;-do the read
callf dword ptr .sy_xentry
add sp,10
pop de ! pop ee
cmp el,0 I je success

mov dx,offset physerr
call c wrltebuf

;save for DMA sag

;mscnt = 1
;drive I B
;track I 2
;sector = 2
;DMA Sag - Our DS

;DMA Ofst

Listing 10-1. (continued)

10-5

C o n c u r r e n t CP/M S y s t e m Guide i0.i Bypassing the BDOB

SUCCESS:
; force a keystroke to allow testing
; of locking mechanisms

imp creed

get_osvalues:

; get system addresses for later use

; Get System Data Area Segment
push ea
call a_oysdat
may sysdat,es

; Get Process Descriptor Address
call p_pdadr
mOV pdaddr,bx

; Get User Data Area Segment for
! XlOB calla

mov s x , e s : p _ u d a [b x]
~OV udasegwax
pop e s
c e t

no_terminate:

; Set the pf_keep flag. We cannot be terminated.

mov b x , p d a d d r
push de I may d s , s y s d e t
or p _ f l a g [b x] , p f _ k e e p
pop ds
r e t

l o c k _ d i s k :

; Lock the BDOS. No BDO8 calls will be allowed in
; the system until we unlock it.

; g e t currently logged in drives
;for later reset

call drv_loglnvec
may drvveo,ax

;read mxdisk queue message
mov dx,offset mxdiskqpb I call q open
mov dx,offset mxdlskqph | call q read

;turn on bdoslock flag for
;terminate

may hdoslock,true

L i s t i n g 1 0 - 1 . (c o n t i n u e d)

10-6

Concurrent CP/M System Guide 10.1 B y p a s s i n g the BDO8

;verlfy no open files. This will
;also check background consoles in
;buffered mode since they have open
;files when active.

push ds I mov ds,sysdet
omp word ptr .sy openfile,0
pop ds
je Ickb

;Error, open files
jmp openf

lokb: rat

bdos_unlockl

unlock the BDOS. Reset all logged in drives to
I make sure BDO8 relnltiallzes them internally.

;reset all loggedln drives as well
;as drives we have played with.

xor c X , o X
moV a x , ~ r v v e c

resetdz omp cx,16 1 je r d o n e
test ax,l I Jz nextdrv

! we have a logged in drive,
; get DPH address from XIOS

p u s h c x 1 p u s h ax
push es 1 push ds
z~ov es,udeseg
mov ds,sysdat
mov ax,io_seldsk
mov dx,0
oallf dword ptr .sy xentry

; if legal ~rive, set
; logln sequence # to 0.

x r e t : cap bx,0 ! Je nodisk
racy dph lseq[bx],0

nodisk: pop de 1 pop es
p o p ax 1 pop c x

;try another drive
nextdrw ino o x

shr ax,l
jmps resetd

; all drives can be reset,
; write mxdisk queue message
; reset all drives

rdone: mov dx,offset mxdlskqpb
call q_write
jmp drv_resetall

L i s t i n g 1 0 - 1 , (~ n t i n u ~)

1 0 - 7

Concucrsnt CP/M S y s t e m Guide

lock_con:

; Lock the console system

call getccbadr
mov bx,ccbadr
push ds ! mov ds,sysdat
pushf | eli

; make sure our console is
foreground, dynamic

cmp cob state[bx],0 ! Je foreg
p o p f I pop d s
jmp in back

foreg:
set console to NOSWITCH

or ccb_state[bx],cf_noswltch
popf | pop ds

T turn on conlock flag for
terminate

mov conlockntrue
ret

con_un lock :

! Set console to switchable.

mov bx,ccbadr
push ds ! mov ds,sysdat
and cob etate[bx],not cf_noswltch
p o p d s
r e t

getccbadr:
J

Calculate the CCB address for this console.

=all c_getnum
xor ah,ah
mov cx,ocb_slze | mul cx
push ds ! mov ds,sysdat
add ax,.sy cob
pop d s
mov ccbadr,ax
ret

bad_version:
|

mov dx,offset wrong_version
jmps errout

Listing 10-1. (continued)

1O.l Bypassing the BDOS

1 0 - 8

Concurrent CP/M System Guide i0.I Bypassing the BDOS

inback:

mov dx,offset in background
jmps errout

openf:

mov dx,offset openfiles
errout|

call u_.writebuf
terminatsz

; Step 9,10,ii Clean up the file system

cmp bdoslook,false I Je t01
call bdos unloak

; Step 12 - Unlock the console system

t01z cmp conlock,false ! Je t02
call conunlock

; Step 13 - Unset the P KEEP flag in PD

t02: mov bx,pdaddr
push ds ! mov ds,sysdat
and p flag[bx],not pf_keep
pop ds

; Step 14 - Terminate

Jmp p_termcpm

; OS functions

c_getnum: mov ci,153 I jmps copm
c read: mov cl,l I Jmps ccpm
o--writebuf: mov 01,9 ! jmps ccpm
d~v_loginvecz mov ci,24 | Jmpe ccpm
dry resetallz mov ci,13 1 imps ccpm
p pdadrz mov c1,156 1 Jmps ccpm
p_-priority: mov ci,145 1 jmps capm
p_termcpm: mov el,0 1 imps ocpm
q_open: mov 01,135 ! jmps copm
q_read: mov c1,137 ! imps ccpm
q_write: mov ci,139 1 jmps ccpm
s_osver: mov ci,163 1 imps ccpm
s_sysdat: mov ci,154 l jmps ccpm
ocpm: int ccpmint

ret

Listing 1 0 - 1 . (c o n t i n u e d)

1 0 - 9

Concurrent CP/K System Guide 10.1 Bypamslng the BDOS

I*
I* DATA SEGMENT
I*
**

DSEG
ORG 0100H

s y e d a t dw 0
p d a d d r dw 0
udaseg dw 0
ccbadr dw 0
drvvec dw 0
bdoelock db false
conlock db false

mXdlskqpb dw 0,0,0,0
db 'MXdlsk '

warning d b
db
d b
db
d b
db

i n _ b a c k g r o u n d db
db
d b

wrong_version db
db
db

open__filss db
db
db
db
db
db
db
db

phyeerr db
db

ERROR MESSAGES

'PHYS~CALz This program '
'bypasses the operatlnq '
'system.',cr,lf
'Make sure no other '
tproqrams are runnlng, t
ur,lf,'$'

'PHYSZCALs mumt he run '

'in the foreground, in'
' DYNAMIC ~ode. n,cr,lf,'$'

'PHYSICAL: runs only on '
'Concurrent CP/M Version 2'
or,lf,'$'

'PHYSICALs Cannot run'
'while there are open files.'
or,lf
'If any virtual consoles are'
' in BUFFERED mode,',cr,lf
'Use the VCMODE D command to'
' set a virtual console to '
'DYNAMIC mode.',cE,if,'$'

'Physical Error on Read.'
or,lf,'$'

sectorbuf rb 1024

Limting I0-I. (continued)

10-10

Concurrent CP/M System Guide 10.1 Bypassing the BDOS

Lots of Stack. Bottom prefilled with 0cch
; (INT 3 instruction) to see if we are
! overrunning the stack. Also if we

accidently execute it under DDT86,
I a breakpoint occurs.

DW
DW
DW
DW
DW
DW
DW
DW

RW
tos DW

END

0CCCCH,0CCCCH,0CCCCH
0CCCCH,0CCCCH,0CCCCH
0CCCCH,0CCCCH,0CCCCH
0CCCCH,0CCCCH,0CCCCH
0CCCCH,0CCCCH,0CCCCH
0CCCCH,0CCCCH,0CCCCH
0CCCCH,0CCCCH,0CCCCH
0CCCCH,0CCCCH,0CCCCH

0100H
0CCCCH ! DW at en~ of DATA BEG

! to make sure HEX is
generated.

End of PHYSICAL.AS6

. _ _ _ _ _

L i s t i n g 10-1. (o o n t i n u e d)

10.2 D i r e u t o r y Initialization in the FORMAT Utility

The FORMAT utility initializes fresh disk media for use with
Concurrent CP/M. It is written by the OEM and packaged with
Concurrent CP/M as a system utility. The physical formatting of a
disk is hardware-dependent and therefore is not discussed here.
This section discusses initialization of the directory area of a new
disk.

The FORMAT program can initialize the directory with or without time
and date stamping enabled. This can be a user option in the FORMAT
program. If time and date stamps are not initialized, the user can
independently enable this feature through the INITDIR and SET
utilities.

It i s highly recommended that the OEM supports the advanced features
of Concurrent CP/M including time and date stamping in the FORMAT
program. This allows the user to use these features in their
default disk format. Otherwise, the user must first learn that date
stamps are possible and then must use the INITDIR and SET utilities
to allow the use of this feature. If the disk directory is too
close to being full, the INITDIR program will not allow the
restructuring of the directory that is necessary to include SFCB's.

10-11

Concur ren t CP/M System Guide 10.2 Directory Initialization

The cost of enabling the time and date stamp feature on a glvendisk
is 25% of its total directory space. This space is used to store
the time and date information in special directory entries called
SFCBs. For time and date stamping, every fourth directory entry
must be an SFCB. Each SFCB is logically an extension of the
previous three directory entries. This method of storing date-stamp
information allows efficient update of date stamps since all of the
directory information for a given file resides within a single 128-
byte logical disk record.

A disk under Concurrent CP/M is divided into three areas, the
reserved tracks, the directory area and the data area. The size of
the directory and reserved areas is determined by the Disk Parameter
Block, desuribed in Section 5.5. The data area starts on the first
disk allocation block boundary followlng the directory area.

Reserved Tracks

Directory Area

Data Area

Figure 10-1. Ca~.~urrent CP/m Disk Layout

The reserved area and the data area do not need to be initiallzedto
any particular value before use as a Concurrent CP/M disk. The
directory area, on the other hand, must be initialized to indicate
that no files are on the disk. Also, as discussed below, the FORMAT
program can reserve space for t ime end date information end
initialize the disk to enable this feature.

The directory area is d i v i d e d into 32-byte structures called
Direc to ry Entries. The first byte of a Directory Entry determines
the type and usage of that entry. For the purposes of directory
initialization, there are three types of Directory Entriee that are
of concern: the unused Directory Entry, the SFCB Directory Entry
and the Directory Label.

A disk directory initialized without time end date stamps has only
the unused type of Directory Entry. An unused Directory Entry is
indlcatedby a 0E5H in its first byte. The renalnlng 31 bytes in a
Directory Entry are undefined and can be any value.

10-12

Concurrent CP/M System Guide 10.2 Directory Initialization

entry 0
1
2

OH IH 20H

0E5H I undefined I
I ozs~ I • I
0E5H [

n 0E5H I undefined

Figure 10-2. DirectorF Initialization Without Time Stawpe

A disk directory initialized to enable time and date stamps must
have SFCB's as every fourth Directory Entry. An SFCB has a 021H in
the first byte and all other bytes must be OH. Also a directory
label must be included in the directory. This is usually the first
Directory Entry on the disk. The directory label must be
initialized as shown in Figure 10-3.

0H ZH 0CH 0DH 0EH 0FH 10H

10H IIH 12H 13H 14H 15H 16H 17H 18H

18H 19H IAH 1BH ICH IDH IEH IFH 20H

Figure 1 0 - 3 . DirectorF Label Initialization

1 0 - 1 3

Concurrent CP/M System Guide 10.2 Directory Initialization

Tale i0-Io DirectoEy L~3elDataFialdo

Field I Explanation

NAME

DATA

An ll byte field containing an ASCII name for the
drive. Unused bytes should be initialized to
blanks (20H).

A bit field that tells the BDOS general
oharscterlstlu8 of files on the disk. The DATA
field can assume the following values:

• 060H enables date of last modification and date
of last access to be updated when appropriate.

• 030H enables date of last modification and date
of creation to he updoted when appropriate.

The FORMATprocJran should ask the user for the name of the disk and
whether to use the date of last access or the date of creation for
files on this disk. The date of last modification should always be
used. If the DATA field 18 OH or if the Directory Label does not
exist, the time and date feature is not enabled. The DATA Field
must be OH if SFCB's are not initiallzed in the directory.

10-14

Concurrent CP/M System Guide 10.2 Directory Initialization

0H IH

entry 0
1
2
3
4
5
6
7

20H

020H NAME,DATA (Directory Label)
0ESH undefined (Unused)
0ESH undefined (Unused)
021H NULLS (SFCB)
0ESH undefined (Unused)
0ESH undefined (Unused)
0ESH undefined (Unused)
021H NULLS (SFCB)

0ESH [u n d e f i n e d (Unused)
[0ESS] u n d e f i n e d (Unused)
[0ESH] undefined (Unused)

n [o21s [NULL8 (SFC.~

Figure 10-4. DirectozF Initialization With Time Stmnps

End of Section i0

10-15

Section l !
End-user Documentation

O ~ must be aware that the documentation supplied by Digital
Research fQr the generic release of Concurrent CP/N describes only
the example XZOS implementation. If the UrN decides to change,
enhance, or eliminate a function which impacts the Concurrent CP/M
operator interface, he must also issue documentation describing the
new implementation. This is best done by purchasing reorlnt rights
to the Concurrent CP/M system publications, rewriting them to
reflect the changes, and distributing them along with the OEM-
modified system.

One area that is highly susceptible to modification by the OEM is
the Status Line XIOS function. Depending upon the implementation,
it might be desirable to display different, more, or even no status
parameter e. The documentation supplied with Concurrent CP/14,
however, assumes that the Status Line function is implemented
exactly llke the example XIOS presented herein.

Another area which the OEN might want to change is the default login
disk. At system boot time, the default system disk as specified in
the system GENCCPM session is automatically logged-in and displayed
in the first system prompt. However, a startup conm~and file,
STARTUP.N, where N is the Virtual Console number, can be implemented
for each Virtual Console. This file can switch the default logged-
in disk drive to any drive desired. However, the Concurrent CP/N
Operating System User's Guide assumes that the prompt will show the
system disk. For more information on startup files, see the
Concurrent CP/M Operating System User's Guide and the Concurrent
CP/M Operating System Pro~rarmuer's Reference Gulde.

The Concurrent C9/M system prompt is similar to the CP/M3 prompt in
that the User Number is not displayed for User 0. If the user
changes to a higher User Number, then the User Number is displayed
as the first character of the prompt, for example 5A>. If the OEN
wants to change this, or any other function of the user interface,
such as implementing Progranmlable Function Keys, he can rewrite the
TMP module source code included with the system. However,
documenting these changes is entirely the OEM'e responsibility.

End of Section ii

ii-i

Appendix A
Removable Media

All disk drives are olasaified under Concurrent CP/M as having
eltherpermanent or renovable media. Removable-medla drives support
media cha~ges! permanent drives do not. Betting the high-order bit
of the CKS field of the drlve's DPB marks the drive as a permanent-
media drive. Bee Section 5.5, "Disk Parameter Block."

The BDOS file system makes two important distinctions between
permanent and removable-media drives. If a drive is permanent, the
BDOS always accepts the contents of physical record buffers as
valid. It also accepts the results of hash table searches on the
drive.

BDOS handling of removable-media drives Is more complex. Because
the dlsk media can he changed at any time, the BDOB discards
directory buffers before performing moat system calls involving
directory searches. By rereading the dlsk directory, the BDOS can
detect media changes. When the BDOB reads a directory record, it
computes a checksum for the record and compares it to the current
value in the drlve'a checksum vector. If the values do not match,
the BDOB assumes the media has been changed, aborts the system cell
routine, and returns an error code to the calling process.
Similarly, the BDOS must verify an unsuccessful hash table search
foe a removable-medla drive by accessing the dlrectory. The point
to note is that the BDOS can only detect a media change by reading
the directory.

Because of the frequent necessity of directory access on removable-
media delves, there is a considerable performance overhead on these
drives compared to permanent drives. Another disadvantage is that,
since the BDOS can detect media removal only by a directory access,
Inadvertently changing media during a disk write operation results
in writing erroneous data onto the disk.

If, however, the disk drive and controller hardware can generate an
interrupt when the drive door is opened, another option for
preventing media change errors becomes available. By using the
followlng procedure, the performance penalty for removable-medla
drives is practically eliminated.

i. Mark the drive as permanent by setting the value of the CK8
field in the drlve's DPB to 8000H plus the total number of
directory entries divided by 4. For example, you would set the
CKS for a disk with 96 directory entries to 8018H.

2 . W r i t e a Door Open I n t e r r u p t r o u t i n e t h a t s e t s t h e DOOR f i e l d i n
t h e XlOS H e a d e r a n d t h e DPH M e d i a F l a g f o r a n y d r i v e s i g n a l l i n g
an o p e n d o o r c o n d i t i o n .

A-I

C o n c u r r e n t CP/lq System Guide A Removable Media

The BDOS checks the XIOS Reader IX)OR flag on entry to all disk-
related XIOS function calls. If the DOOR flag is not set, the BDOS
assumes that the removable media has not been changed. If the DOOR
flag is set (0FFH), the BDOS checks the Midis Flag in the DPH of
each currently logged-in drive. It then reade the entire directory
of the drive to determine whether the media has been changed before
performing any operations on the drive. The BDOS also temporarily
reclassifies the drive as • removable-media drive, and discards all
directory buffers to force all subsequent directory-related
operations to access the drive.

In sunluary, using the DOOR and Media Flag facilities wlth removable-
media drives offers two important benefits. First, performance of
removable-media drives is enhanced. Second, the integrity of the
disk system is greatly improved because changing media can at no
time result in a write error.

End of Appendix A

A-2

Appendlx B
Graphics Implementation

Concurrent CP/Mcan support graphics on any virtual console assigned
to s physical console that has graphics capabilities. Support is
provided in the operating system for GSX, that has its own separate
I/O system, GIOS° The GIOSdoee its own hardware initialization to
put a physical console in graphics mode. A graphics process that is
in graphics Node can not run on a background console, because this
would cause the foreground console to change to graphlos mode.
Also, whenever the foreground console is inltlallsed for graphics,
you cannot switch the screen to another virtual console. The
following points need to be kept in mind when writing an XIOS for a
system that will support graphics.

s TO SCREEN (Function 30) will be called by the GIOS when it
wants to change a vlrtual console to graphics or alphanumeric
mode. If the virtual console is in the background and graphics
is requested, IO SCREEN must flagwsit the process. If the
virtual console Is in the foreground, change the screen mode
and allow the process to continue. You must reserve at ~east
one flag for each virtual console for this purpose. See
Section 6.1 "Screen I/O Functions" for more information on
IO_SCREEN.

s IO SWITCH (Function 7) must flagset any process that was
flagwalted by IO SCREEN when its virtual console is switched to
the foreground. When a foreground console is in graphics mode,
IO SWITCH will not be called, because PIN cells Function 30
(get), ignoring the switch key if the screen is in graphics
mode. Thus while a graphics process is running in graphics
mode in the foreground, it is not possible to switch screens.
For more information on IO_SWITCH see Section 4.2 "Console I/O
Functions".

• IO STATLINE (Function 8) must not display the status llne on a
co~sole that is in graphics mode. This can be done by checking
the same variable in the screen structure that Function 30
returns as the screen mode. For more information on
IO STATLINE see Section 4.2 "Console I/O Functlons".

End o f Append ix B

B-1

Index

A

ABORT.RSP, 2-2
Allocation Vector Address, 5-23
ALV, 5-23
Auto density support, 5-50
Auxiliary input, 4-15
Auxiliary output, 4-15

B

Background mode, 4-6
Basic Disk Operating System,

1-3, 1-11
SIX)8, 1-3, I-ii
BDOS system calla, i-ii
BDOS. CON, 2-2
BIOS Conversion to XIOS, 3-14
BIOS Jump Table, 3-13
Blocking/Deblocking Buffers,

5-9
Blocking/Deblocking

Changes from CP/M-85, 3-14
breakpoints, 8-2
Bypassing the BDOS, I0-I

CCB, 1-18, 4-1, 4-2
CCB initialization, 4-3
CCB table, 4-1
CCPM.SYS, 2-1, 3-8, 8-2
CCPM.SYS Header Record, 9-8
CCPMLDR, 3-8
CCPMSEG, 1-17
CCPMVERNUM, 1-19
Character Control Block,

1-11
Character I/O, 4-1, 6-1
Character I/O Manager, 1-11
Character I/O Module, 1-3
Checksum Vector Address, 5-22
CIO, 1-3
CIO module, 1-11
CIO system calls, 1-11
CIO.CON, 2-2
Clock, 3-14
CL(XZK.RSP, 2-2
CLSZZE, 5-32
CMD file Header, 8-2
CMD~ING, 2-7

COMPATMODE, 2-7
CON files, 2-2
Concurrent CP/M Organizatiml,

1-3
Concurrent CP/M

features, I-I
levels of interfacing, I-I
System Overvlsw, i-i
XIOS, 1-1

Console Control Block, 4-1, 4-2
Console input, 4-8
Console input status, 4-7
Console outlm~t, 4-9
Console switching keys, 4-8
consoles, 4-1
CSV, 5-22
CTRL-O, 1-13
CTRL-P, 1-13, 4-4
CTRL-S, 1-13

D

Data Buffer Control Block
Header Address, 5-23

DATBCB, 5-23
DAY FILE, 1-17
Device Polling, 1-6
Device polling, 4-16
Dev flagset, 2-9
DEV_FLAGWAIT, 4-7
Dev_flagwt, 2-9
DEV POLL, 4-7, 4-16
DEV--POLL system call, 1-6
DEV~SETFLAG, 4-7
DEV SETFLAG system call, 1-6
DEV--WAITFLAG system call, 1-5
DZR?RSP, 2-2
DIRCB, 5-23
Directory Buffer Control Block

Address, 5-23
Directory buffer space, 2-15
Directory hashing, 2-15
Directory hashing space, 2-15
Disk buffering, 2-15
Disk definition tables, 5-9
Disk Errors, 5-17
Disk I/O Functions, 5-1
Disk I/O

Multisector, 5-11
Disk Parameter Block Address,

5-22

Zndex-1

Disk Parameter Block Workshset,
5-35

Disk Parameter Header,
5-2, 5-21

disk performance tradeoffs,
2-15

Dispatcher, 1-b
DISPATCHER, 1-16
Display status line, 4-11
DLR, 1-18
DF~OFF, 5-12
DMASEG, 5-12
DOS disk errors, 5-4
DOS disks, 5-1
DOS DPB, 5-31
DOS IOP5, 5-15
DOS sector read, 5-6
DOS sector write, 5-8
DPB, 5-22
DPB Worksheet, 5-35
DPB

Changes from CP/M-86, 3-14
DPBASE, 5-26
DPH, 5-21
DPH and GENCCPM, 2-15
DPH Table, 5-26
DPH

Changes from CP/M-86, 3-14
DRL, 1-18
DRV, 5-11

ENDSEG, 1-17
F~ITRY, 3-9, 8-2
Equipnent check, 6-11
Error Handling

Disk I/O, 5-17
Extended disk errors, 5-4
Extended DPB, 5-31
Extended I/O System, 1-13
Extended Input/Output System,

1-3
external memory fragmentation,

2-11
EXTFLAG, 5-32

Far Call, 3-8
Far Return, 3-8
FAT, 5-24
FATADD, 5-32
File Allocation Table, 5-24
fixed-partition memory, 1-8

FL~GS, 1-18, 2-6, 2-9
Flagset, 2-9
Flagwait, 2-9
FLUSH SUFFERS, 5-9
Fragmentation menory, 2-11

OENCCPM, 1-1, 1-14, 1-21, 2-1
GE~CCPM Boolean values, 2-2
GE)ICCPM command file

example, 2-17
OENCCPM defaults, 2-2
GENCCPM DELETESYS command, 2-4
GEHCCPM DESTDRIVE coamand, 2-4
GEaCCPM Disk Buffering Menu,

2-13
GE~CCPM Disk Buffering Sample

Session, 2-14
GENCCPM D~SK3UFFERS Menu

command, 2-5
GENCCPM error messages,

2-2, 2-11
G~CCPM GENSI~S co~unand, 2-15
OENCCPM GENSYS Option, 2-15
G~J~CCPN HELP, 2-2
GF.~CCPM Help Function Screens,

2-4
GF~/CCPM Input Files, 2-16
G]WCCPM Main Menu, 2-2
GF~ICCPM Main Menu options, 2-4
GENCCPM Memory Allocation Menu,

2-10
GEaCCPM Memory Allocation

Sample Session, 2-10
GE~CCPM MEMORY Menu command, 2-5
GENCCPM memory partitions, 2-11
GEIICCPM Operation, 2-1
GF~CCPM OBLABEL Menu, 2-13
GE~CCPM OSLABEL Menu command,

2-5
GENCCPM output redirection,

2-16
GENCCPM prompt, 2-2
GEHCCPM RBP List Menu, 2-12
GF~CCPM RSP List Menu Sample

Session, 2-12
GENCCPM RBP Menu, 1-20
GE~ICCPM RSPB Menu command, 2-5
G~CCPM BYSPARAMS Menu command,

2-4
GF~CCPM System Generation

Messages, 2-16
GENCCPM System Parameters Menu,

2-5

Index-2

GENCCPMVERBOSE conand, 2-4
GENDEF, 5-9
Get/set screen, 6-2
Get/Set Screen Mode, 6-1
Graphics implementation, 8-i

Hardware interfaas, I-1
Hash Table Segment, 5-24

INIT, 3-8, 8-2
Internal memory fragmentation,

2-11
Internal system calls, 3-21
Interrupt 10, 6-1, 6-4
Interrupt 11, 6-11
Interrupt 13, 5-6
Interrupt 16, 6-10
Interrupt 2-24, 3-9
Interrupt Handler, 3-16
Interrupt-driven devioes, 3-15
Interrupt-driven Devices

Changes from CP/M-86, 3-14
Interrupt-driven I/O, 8-1
Interrupts

spurious, 3-9
IOPB, 5-4, 5-10

Changes from CP/M-86, 3-14
DOS, 5-15

IO__, 1-3
IO_ AUXIN, 4-15
IO _AUXOUT, 4-16
IO_CONIN, 4-8, 6-9
IO CONOUT, 4-9
IO--CONST, 4-7
IO_EQCK, 6-11
IO FLUSH, 1-13, 5-7
IO INTI3 READ, 5-6
io-i~13-~i~B, 5-8
IO_KEYBD, 4-8, 6-9
IO__LSTOUT, 4-15
IO__LSTST, 4-14, 4-15
IO__POLL, 4-16
IO_READ, 1-13, 5-4
IO__SCRE~, 4-10, 6-2, B-1
IO_SELDSK, 1-13, 5-2
IO_SHFT, 6-10
IO STATLINE, 1-13, 4-4, 4-6,

--4-11, 4-13, 6-9, B-I
IO_SWITCH, 4-10, 13-1
IO_VIDEO, 6-4
IO_WR~TE, 1-13, 5-7

K

Keyboard mode, 6-9

L

LCB, 1-19, 4-2, 4-13
LINK, 4-6
List Control Block, 4-2, 4-13
List devices, 4-2
List output, 4-15
LIST OUTPUT, 4-15
List status, 4-14
LIST STATUS, 4-15
Locked records, 2-7
LOCKMAX, 2-7
LOCKSEG, 1-18
LOCK MAX, 1-20
Ix=gically invariant intsrface,

1-1

M

M disk, 5-47
M drive, 5-47
MAL, 1-19
MAXBUFSI ZE, 4-6
MDQL, 1-18
Media Flag, 5-22
Media type selection, 5-3
MEM, 1-3, 1-8
MEM module, i-8, 2-11
HEM.CON, 2-2
M~J~4AX, 2-7
Memory allocation, 2-11
Memory allocation defaults,

2 - 1 1
Memory Allocation List (MAL),

1-8
Memory Allocation Unit (MAU),

1-8
MemOry Descriptor (MD), 1-8
Memory disk, 5-47
Memory fragmentation tradaoffa,

2-11
Memory Free List (MFL), 1-8
Memory Layout, 1-4
Memory management, 1-8
Memory mapped I/O, 4-10
Memory Module, 1-3
Memory partitions, 2-10, 2-11
MF, 5-22
MPL, 1-18
MIMIC, 4-4
)e4P, 1-17

I n d e x - 3

MSCNT, 5-11
MSOURCE, 4-14
Multiple media support, 5-50
Multlple-sector disk I/O, 5-4
Multleector Count, 5-11
Multisector disk I/O

Changes from CP/M-86, 3-14
MXdisk queue, 1-13

N

NCCB, 1-17
NCCB field, 4-1
NCIODEV, 1-19
NCLSTRS, 5-32
NCO~nEV, 1-19
h~I~ATRECS, 5-32
NFAT8, 5-32
b~FLAGS, 1-17, 2-9
SLCS, 1-17
NLSTDEV, 1-19
BOPENFILES, 2-8
NPDESCS, 2-9
EI;~BE, 2-9
BVCSS, 1-17
NVCNS field, 4-1

O

O~F 8087, 1-20
Open files, 2-7
OPENMAX, 2-7
OPEN FILE, 1-19
OPEN--MAX, 1-20
Operating System Area, 1-4
OSSTART, 2-8
OWNER, 4-4, 4-14
OWIqER_8087, 1-20

Partitions
memory, 2-11

PC, 4-5
PC-MODE, 4-8, 6-1, 6-9
PDISP, 1-16
Physical console number, 4-5
Physical consoles, 4-1
PIN.RSP, 2-2
PLR, 1-18
POLL DEVICE, 4-16
Poll Device Number, 4-i~
Polled Device Changes from

CP/M-86, 3-14
Polled devices, 3-15

Polled X/O, 8-1
Process Descriptor, 1-6, 1-21,

4-I
PDL, 1-18

Q

QBUFSZZE, 2-9
QLR, 1-19
QMAU, 1-18
~aue Control Block, 2-9
Queue

Mutual exclusion, 1-13
MXdisk, 1-13

Queues, 1-7
Conditional rend/write, 1-7
Unconditional road/wrlte, 1-7

QUL, 1-18

R

Read attribute/character, 6-6
Read cursor position, 6-5
Read DOS sector, 5-6
READ SECTOR, 5-4
Real-tlme Monitor, 1-3, 1-6
Real-Time Monitor, 4-16
Reentrant XIOS code, 1-13
Register usage, 3-10
~alfant Syatl Procaii,

1-21, 2-1
Roeldent Sylten ProceiseI,

I-3, 1-20
RLR, 1-18
RSP, 1-3, 1-20
RSP Data Structures, 1-20
RSP files, 2-2
RBP

PD and UDA, 1-20
relative to SYSDAT, 1-20

RSPSEQ, 1-17
RTM, 1-3, 1-6
RTM process scheduling, 1-6
RTM Queue management, 1-7
RTM system calls, 1-7
RTM. CON, 2-2

8

Screen buffering, 4-1, 4-9
screen buffering, 4-10
Screen Mode, 6-1
Screen mode, 6-2
Screen structure, 4-9
Scroll down, 6-6

I n d e x - 4

Scroll up, 6-5
SECTOR, 5-12
Sector Translatlcn

Changes from CP/M-86, 3-14
SEG 8087, 1-20
SELDSK DPBASE Address Return

Punotion, 5-27
SELECT DISK, 5-2
Semaphores, 2-9
Serial I/O, 4-10
Serial I/O devluee, 4-1
Sat cursor position, 6-4
Shared code, 1-8
Shift status, 6-10
Skew Table, 5-16
Spurious interrupts, 3-9
STATE, 4-6
Statue line, 4-4, 4-5, 4-11

updating, 4-12
SUP, 1-4
SUP ENTRY, 1-16
SUP Module, 1-3
SUP system calls, I-4
SUP.CON, 2-2
Supervisor Module, 1-4
Switch screen, 4-10
8YSDAT, 1-3, 1-21, 5-2
SYSDAT DATA, 1-3
SYSDAT segment, 1-14
SYSDAT Table Area, 1-3
SYSDAT.CON, 2-2
SYSDISK, 1-17
SYSDRIVE, 2-6
System calls

P_.CLI, 1-3
P LOAD, 1-3

System Clock, 3-14
System configuration, 4-1
System Data Area, 1-3, 1-14
System Table Area, 1-14
SYS 87 OF, 1-20

T

TEMP DISK, 1-18
Terminal Message Process. i-I
THRDRT, 1-18
TICKS/SEC, 1-18
TMP, i-i
TMP. RSP, 2-2
TMPDRIVE, 2-6
TOD DAY, 1-19
TOD--HR, 1-19
TOD~MIN, 1-19

TOD SEC, 1-19
TPA~ 1-3
TRACK, 5-11
Transient Program Area, 1-3
Tranelati~ Table, 5-21

UDA, 1-21
Unintlalisef intszrupt|, 3-9
Unused interrupts, 3-9
User Data Area, 1-21
User interface, I-i

V

VC, 4-5
VERBOSE, 2-2
VERNUM, 1-19
VERSION, 1-19
Video Input/output, 6-4
Video TO, 6-i
Virtual c~sols number, 4-5
Virtual consoles, 4-1
VOUT. RBP, 2-2

Workshset
DPB, 5-35

Write attrlbute/character, 6-7
Write character, 6-7
WR/TE DISK, 5-7
Write DOS sector, 5-8
Write serial character, 6-8

XIOS, 1-3, 1-13
XIOS Build System Requireeents,

3-13
XIOS Building from CP/M-86 BIOS,

3-13
XIOS Clock, 3-14
XIOS Data Area, 1-4, 1-14
XIOS ENTRY, 1-16. 3-9
XIOS Entry Points, 3-13
XIOS Function names, 1-3
XIOS INIT, 1-16
XIOS Interrupt-drlven Devices,

3-15
XIO8 List Device Functions,

4-13
XIOS Segment Address, 1-4

Index-5

XZOB
8080 Model, 1-4
debugging, 8-1
reentrant code, 1-13
relatlonohlp to CCPM.SYS

file, 1-4
spurious interrupt handling,

3-9
XIOS. CON, 2-2
XLT, 5-21
XPCNS, 1-20, 4-2

Zndex-6

NOTES

