PL/ |

Language

Programmer's Cui de

Copyright @ 1983

Di gital Research

P. 0. Box 579

160 Central Avenue
Pacific Grove, CA 93950
(408) 649- 3896

Twx 910 360 5001

Al'l Rights Reserved

COPYRI GHT

Copyright @ 1983 by Digital Research, Incorporated. All rights
reserved. No part of this publication my be reproduced, transmtted,
transcribed, stored in a retrieval system or translated into any

| anguage or conputer |anguage, in any formor by any neans, electronic,
nmechani cal, magnetic, optical, chenical, manual or otherw se, without
the prior witten permission of Digital Research, Post Ofice Box 579,
Pacific Grove, California, 93950.

DI SCLAI MER

Digital Research nakes no representations or warranties with respect to
the contents hereof and specifically disclains any inplied warranties
of nerchantability or fitness for any particul ar purpose. Further
Digital Research reserves the right to revise this publication and to
make changes fromtine to tine in the content hereof w thout obligation
of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/Mis a registered trademark of Digital Research. LINK-80, LINK-86,
SID, and SID-86 are tradenarks of Digital Research. ADM3Ais a
trademark of Lear Siegler Incorporated. IBMis a tradenane of

I nt ernati onal Business Machi nes.

The PL/1 Language Programmer's QGui de was prepared using the Digita
Research TEX-80 Text formatter and printed in the United States of
Areri ca.

* First Edition: Sept ember 1982
* Second Edition: May 1983

For ewor d

Digital Research PL/I is an inplenentation of PL/I based on Anerican
Nati onal Standard X3.74, PL/I GCeneral Purpose Subset (Subset Q.
Digital Research PL/lI is a conplete software devel opnent system for
bot h applications and system programi ng.

Digital Research has inplenented PL/I for both 8-bit and 16-bit
m croprocessors. At the source-code level, the 16-bit inplenentations
are upward conpatible with the 8-bit inplenmentations.

Digital Research PL/I runs under any of the Digital Research famly of
operating systens. It also runs under the | BM Personal Conputer Disk
Qperating System Version 1.1. This manual assunes you are already
famliar with your operating system and minimzes references to any
specific system

The PL/1 Language Programer's Quide is a tutorial introduction to the
features and faculties of PL/I. It should be used in conjunction with
the PL/1 Language Reference Manual which is the formal specification of
the |l anguage, its syntax and semantics.

This manual is divided into two parts. The first part, Sections 1
through 6, presents a brief introduction to the PL/I |anguage, with
enphasi s on bl ock structure, data types, and its vari ous executable
statenments. Section 5 gives guidelines for devel oping a readabl e
programmi ng style. Section 6 explains the operation of the systemas a
whol e, and introduces you to the nechanics of conpiling, |inking, and
executing prograns,

The second part, Sections 7 through 18, contains detail ed sanple
prograns that illustrate the useful facilities of the |anguage,

i ncl udi ng | nput/Qutput processing, string and |ist processing,
scientific computation, and business applications. There is also a
di scussi on about directly accessing certain routines in the Run-tine
Subroutine Library, and witing prograns that use overlays. Each
section presents general concepts, and then a detailed discussion of
one or nore exanple prograns to illustrate the concepts.

The best way to |l earn any programming | anguage is to study working
exanples. To learn PL/I, you should study these exanpl e prograns al ong
with the associated text, and cross-check the material with the PL/I
Language Reference Manual when necessary. Once you understand the
operation of a particular program you can nodify the programto
enhance its operation and further your experience with the |anguage.

Tabl e of Contents

Tabl e of Contents

[T INTRODUGCTION ...c.oiviiitiiieiiitiiieietesieieteseeiest et esteseeieateseetesteseesesseseesesseseesessessesessessesessesseressenseneas 1-1]
1.1 N N TSN =T L 2 1-1
1.2 USING THIS IMANUAL ...ttt sateeantessatessntessneeesneessseeesnsessnesesnsessneeesnsessneeesnres 1-1
1.3 [N TR T T 1-1

RSN N X = 2-1]
.1 SV Y N Y Ny S S L T —— 2-1

QECLARATIVE STATEMENTS. ...utttiiiie et ittt e e e e e ettt et e e e s eeabbt b e e e e esssaabbbeeeeaassssasbbebesaseessassbebenesaesss 2-1

E.S EXECUTABLE STATEMENTS ..ttt ittt ettt ettt ettt ebt e bt et e et e asbasbeasteesteeneeeneesnnas 2-1
? P/l BLOCKS -t 2-2
5 PROCEDURES ..o iittttiit i et et eet ettt e e et ettt e e e e e e et bttt e e e e e e s ab bbbt e e e e e s saabbtbaeeseessabbebaessaessesaabbaasseesseas 2-3
D.6 D10 e Yo [0 [T, 2-4

B DECLARATIONScoovivitieeeteteeeet et eeetee e etatestetatestetatestesnssessesessessessssesseressessesessesseressessensens 3-1|

[3_.1B SCALAR DAT A s 3-1

.1 AT T o D = T 3-1
E.l.Z SHING DALA. oo, 3-3
1.3 (O AT e D = W 3-4
%1 POINEET DAA s 3-6
1.5 (SN W T —— 3-6
[3_.25 DATA AGGREGATESveeveeteeeeeeeteeeeeeeteeeeeeeeseeeeeeteeeeneessneseseeseesesesseessseesnesnsessessesessntsneessesesesseesnens 3-6
2.1 AATTAYS ettt etttk ettt £ et et et e e bttt et e et e et b e enbeereeareas 3-6
3.2.2 SETUCTUTES ...ttt e ettt e e e e s sttt et e e e s sab bbb et e s eessaabbbbaaeseesssbbtbaaeeeessasnbbbanaeaeasaans 3-7

B EXECUTABLE STATEMENTS.......cooiieviveeeeeeeeeteteeeteeeeeteeteteteseteteeseseeeesstseeesssenssnsssesesssensssens 4-1|
A1 ASSIGNMENT STATEMENTS .vvuvveiuviiitieitiseetesssessesesesssssssesssssssssesessesassesesssesssesessseesesessseessesesseees 4-1
4.2 SEQUENCE CONTROL STATEMENTSecivviiitvieitteeirteeisteessreesserssssessssessssessssssssssssssessssessssessssesssesans 4-2

2.1 [EC=Y Ao TR 4-2
N.2.2 ProCeadUre TNVOCATIONcccviiivieiiiiitieciecctee et e eetee et e seteesteseeteesbesabessnbesasbessnbessssessrenas 4-4
1.2.3 Parameter PASSING..........ccveieeiresienieaieeiestiesteestaesteeseeseesseesseesseesseessesseesseessesssessseessesnsesnes 4-5
1.2.4 (O AT T T = Ve A T — 4-6
1.2.5 (T T [T =T Ve s T 4-6
B.3 1/O AND FILE-HANDLING STATEMENTS 1...teutetttiteetieteeiieieeteteeieeteeieeneeneaneeseeseeseeaneeneeseeneeseeseesees 4-7
1.3.1 OPENING FHES ...ttt ettt estesbesbe st e ebe e e eneeneeneebenes 4-7
1.3.2 [N STV = T — 4-9
1.3.3 ImEIied ATITIDULES ...ttt ettt e sttt e e et e e e sbtaaeseabaeesanbanessanenas 4-10
4.3.4 (O To T T I L= 4-10
4.3.5 Eile Access Y AT T T 4-10
1.3.6 D N A AL L TP — 4-11
4.3.7 Qontrol Format Items ..o 4-11
1.3.8 R T I LT 4-12
B.4 CONDITION-PROCESSING STATEMENTS ..o 4-12
1.4.1 RO NS T T ——— 4-12
h.4.2 Ihe REVERT STAIEMENTuviiiiiiiiiiiiiiiiicc ittt eeet bttt e e e e s s r e e e e e e s saabbbeeeeas 4-13
h.4.3 ThE SIGNAL SEAIEMENTeeiiieeiee sttt e ettt e ettt s sttt e e st a e e s eattaessabaaeessabaeeaas 4-13
A.4.4 Condition Categorles ... 4-13
1.4.5 Condition Processmg BUITIN FUNCHIONS. ..o..o.oooooooooooooooosoosososseieoosesoonessoneneee 4-14
B.5 MEMORY MANAGEMENT STATEMENTS ..ottt 4-15
1.5.1 BASED Variables and POINTETS ..o 4-15
4.5.2 The ALLOCATE STAEMENTc.veeievieeeieieieeeeeeie et eeeee sttt esneeesatessneeesnressneeessressneeessreas 4-16
1.5.3 ThE FREE SEAEMENT.......cccviiiviiiiiiiriecie i cteecteeeeteseteesetesentesasbessbesassessssesassesessessssesessenas 4-16
4.6 PREPROCESSOR STATEMENTSuvveiuviiivieiaeiesetisesttssresstesensesssressnsesssssssnsessssssssessssesansessssessnresans 4-17
A, INULL STATEMENTSvviiuviiiiteeitteeeseeeestesssesessessssesesssssssssssssesssssesssssssssssssessssessssessssessssesssessssesans 4-17

Tabl e of Contents

B PROGRAMMING STYLE ...ooooovoovooeeoeioeeeeeeeeeeeeeeeeereeeevereeeenereeeeenenenenennsanenesnsaneneensaneneeneereneene 5-1|
1 A E ettt ettt et e ettt e ea et eeeat e e e eane e e et b eseentee s e eane e s et te s e e Rt e s s nnbes e e et beseaanteseesnrereesasrreeaanns 5-1

2 INDENTATION. ..1vttiiieeiiettttieteeeeseeaatbeeteeessesasbetesasesssaasbeeseeseessaasbtbeesseessassbtbesssasasesabtbesseasasssanrbebanesas 5-1

B USING THE SYSTEM ..oiitieiiieiieteteeseseseseseseseseseseseseesssesesesesesesessssssssesssssssssssssnsnsnsnssesssesssssnsnsns 6-1]
b.1 PLIL SYSTEM FILESuiiiiiutiiei ittt ettt eett et e e e ettt e e ettt e e s ettt e e ettt e s saaaaaesentanenantaneesarens 6-1
b.2 INVOKING THE COMPILERiiiiiiiuttiiiiieeeeieetttiiieeeeeseeastetetseesssasnstsesssssssssnnssesssesssssmsssssesesesssessnsrenss 6-2
5.3 COMPILER OPERATION. ...ttt ettt testeesiteaasteaastaassteeasteaanteeasteaanseeasteaeseessteeansenesseeesseeesns 6-3
%1 THE DEMO PROGRAM ... 6-5)

.5 R U TN NI] = Y 1 I — 6-5

b.6 ERROR MESSAGES AND CODEScvvvieiiueiieieetiieeeeteieeseseeeeseseeesseesesessesseessssessssssessessssesessssseessnnees 6-6

' USING DIFFERENT DATA TYPES......cooioviiieieeteseteteeeeeeetstss st een st ses et ensnsesessnsnennseanees 7-1|
E.l THE FLTPOLY PROGRAM ..o 7-1

2 THE DECPOLY PROGRAM.cooutiiiiitiiie e eetieeeete e eeteeeseaeeeeeataaeeeaaaaeseaveeessnseesesnenaessnseeeas 7-2

B STREAM AND RECORD FILE PROCESSING.......ceciiiiiteiiiisriteiiesesesesesesesssesessssseseseeeeseesseas 8-1]
B.1 FILE COPY PROGRAM.uutiiiiiiiiiiiittiiiiie e et seetttt e e e e e s ettt et e e e s s saaab bttt e s e e s saabbbaesseessaabbbeaasaessasasbbeness 8-1
B.2 NAME AND ADDRESS FILEviiiiiiiiiiiiiiiiiiiieeeiiiiiee e s s ettt e e e s sseiattteessesssasssesesssesssasssssesssesssesnsrenss 8-3
B8.2.1 The CREATE PrOOIaM......c.cccuveiuiciiciiciccee ettt teseestaestaesteenreeneeaneeans 8-3
B.2.2 The RETRIEVE PIrOOIAM ...ttt ettt e e s etis e s senassenenaessneensssanenas 8-5

B.3 AN INFORMATION MANAGEMENT SYSTEM ..11eiuviiiitieiieeeiieeieesiieeaieesteassveessteasnseessteassseeseeasnseeans 8-8

3.1 The ENTER PIrOOIAM ...ttt s et s s eeaassntnessnenaessnnenas 8-9
3.2 THe KEYFILE PrOGIAM......cviiviceieeeieieee et tee et e e ataataaneenteseeseassessesseaseeseessenees 8-10

3.3 ThE UPDATE PIrOGIAM ...cuvviviiiieeeieie ettt e et st s stesstassneessnsessnressssessnsessssessnsesans 8-12
3.4 The REPORT PIOOIAMvcvveviiceeeieeeeeeeeseeteeeeneseestas e snaeraaneeneeseessessesseeseenseseessenses 8-14

D LABEL CONSTANTS, VARIABLES, AND PARAMETERScocooiiiiiiiieiicsisesesesesesesesesnanes 9-1|
D.1 [T N S N = N L E T — 9-1
D.2 PROGRAM LABELSviiiiiiiitiiiiiie ettt e e et sttt et e e e satattteaseassansbesseasesssanssessessesssassnesesssesssasneren 9-1
D.3 COMPUTED GOTO .0ttt e ettt e e e e e e bbbttt e e e s sasbbbbeaeeesssssabbbeaesessasarees 9-2
D.4 I;ABEL REFERENCES ..uvvviiiiiiiiitiiiiieee et setttteeeeesssaaatttetseesssassstbesssasssansssesssasasssnnsbesssssesssassrssnssassan 9-2
D.5 EXAMPLE PROGRAMuuutiiiiiiiiiiiitiiiiee e et seeteteeeeeessaaaattetesesssaaababesasesssasabbbaassaessasabbbasasasssesasbbeeess 9-3

L0 CONDITION PROCESSING ...oociietiteteesesesesesesesesesesstessesesesesesesesesessssesesesssssssesesesssssssssesesssssssseeas 10-1]
10.1 CONDITION CATEGORIES ...ttt ittt ittt sttt sb s bbb s bbb 10-1
10.2 CONDITION PROCESSING STATEMENTSueeiiuviiiiiutiiesitiieesettiesseeeressenersessssesessssesssssnsesessssereesans 10-1

O N T S = N — 10-1
[10.2.2 SIGNAL ..ottt ettt et ee e e stee e e e et teeeeaneesessnreeeeanreeeeanreeesirereean 10-3
fl0.3 EXAMPLES OF CONDITION PROCESSING..........coovevverresresrereesesrsesesesessossosssensensnsenssnsnesneneas 10-3
10.3.1 ThE FLTPOLY2 PrOOIaM......uiiiuiiiieiiiieiiiiiiieisiiesteisssesssssisssesesssessssessssssssessssessssessssessssesssses 10-3
10.3.2 ThE COPYLPT PrOGIaMccvvcuiiitiiiiieiieeiteeeieeeieeieeetteeteeeteeeteettestvesteesteesreasseeseansesnsesseesseen 10-4

11 CHARACTER STRING PROCESSINGcoovotoioteeeeseeesererererreeeeesesesesesesessessesesesesssesesnsnsnsnses 11-1]
11.1 THE OPTIMIST PROGRAM.......cuviiiiuiieiitiieeiettieeeette e st eeeeatteeeeaataeseatteeseatanssssessesssbenassreneasns 11-1
11,2 A PARSE FUNCTIONuuttiiiiiiiiietiiiiieeeee ettt e e e eeseeatttetseesssasastsessssessssnssesesssesssasssesesssesssesnssenss 11-4

11.2.1 The GNT PIOCEAUIEcciiuviieiitiie ittt sttt e e ettt e e sttt e e s eata e e s satbaeesantaaessabaneean 11-6
[11.2.2 THE DO-GIOUDvvieeieiie ittt s ettt e e ettt e s st s e s sattaeesnessessnsesesanssssassnessesssseneean 11-6

12 LIST PROCESSING........cooviuiiiiietieietitciitetsesetsteessseesesetstessssesesesssesssssesssesssesssssssssesssesssssssssssssenens 12-1|
12.1 BASED AND POINTER VARIABLESuiiiiii s 12-1
12,2 THE REVERSE PROGRAMuuiiiiitiiiii ittt eee et eeee e et e e s eaeeaeetaeeannaaaessnvanasateneennns 12-3
12.3 A NETWORK ANALYSIS PROGRAMccouviiieietiie e eeeeeeeieeeeeteeaeseneeseaansesessneessssnsesesssseseesans 12-6

12.3.1 NETWORK LISt STTUCIUIES.......ccvviiiviiiitieeitiiceteiectieeeteeestieesaeeesrveesseeesaveesseessssessseessssessseeessnes 12-8
12.3.2 Traversing the LINKEO LiSES.......c...ccuiiiiiiiiiiiiiiiiiiieiiieseieseeieseesssressseessssesssesssessssesssnes 12-9

Tabl e of Contents

12.3.3 OVErall Program StIUCIUIEc.eoviiuieitieciieiieieeeecteeseecteeeteeeteevesnreetseereeeteeressresseesnees 12-9
12,34 TNE SETUP PIOCEAUIE ..o 12-10
12.3.5 The CONNECE PTOCEAUIEuuveiiiviiieietii i ettt e ettt e e ettt e e sttt eessatae s s sataaessabanasssbasesanes 12-10
R R N S A e o 1o (VT LN —— 12-10
12.3.7 The Print-All PrOCEAUIEcocviiiiiiiiiiieiii ettt eetie e sttt e e sttt e s s eataaessabaeassssvaeesenes 12-10
12.3.8 TNE PHNE-PAINS PIOCEAUIE oo 12-10
12.3.9 The Print-ROUE PrOCEAUIE............ooiiiiiiiiiiie ettt e ettt e e etaa e s s erte e e e svaneesan 12-11
12.3.10 TNE SNOIEST-DISTANCE PIOCEAUIE oo 12-11
12.3.11 The Free-All PrOCEAUIEcoveiiiiriiiiciictie ettt ettt steeere v ene 12-12
12.3.12 NETWORK EXPANSIONvvevieieeeiieieeniiesiestiesieesieeseeaseeaseaneesssesseesseessesssesssesseesnseseesseenes 12-12

13 RECURSIVE PROCESSINGcoooviviuiviiitiiiistireiseenitsesesetsisessssteesessssesosssssssssssessssssnesssssessessans 13-1|
13.1 THEFACTORIAL FUNCTIONo..o.o. S OO OO OO PP PO PP PP PP PP PO PRPOPROR 13-1
13.2 FIXED DECINAL AND FLOAT BINARY EVALUATIONcovuiiiuiiiiieitieeieeitiesitessereesenenans 13-4
13.3 THE ACKERMANN FUNCTION Lot 13-6|
13.4 AN ARITHMETIC EXPRESSION EVALUATORociiiiiiiiiitiieeeeiiee e ettt e eetieeeeetieeeeetteeeeeiteeaeaieeaeenns 13-7
13.4.1 ThE EXD PTOCEUUIE ...ttt et e et s e ettt s s sanenaessnenaessnnensesnneenas 13-9
[13.4.2 CONAITION PrOCESSING vcvvevieieeeieeieeeieetteetieeieestaecteateaieeateeereesteesteeseeeseesseesseesseesseenseenes 13-10
[13.4.3 LMD OVEIMEBINTS ..eeiiiiieiiiiiieiee ittt e e e e e ettt e e e e e s sttt et eeesssabbebeeesasssansbebeessesssassstresssasssasnrees 13-11

14 SEPARATE COMPILATION......ccoooioeiioeeeeieeeeeteeseeeetseereteees et sssenses s ensesennsesesensesesensesesanseseses 14-1|
14.1 DATA AND PROGRAM DECLARATIONS.uiiiitiitiiiiiiitisieiti sttt 14-1
14,2 ENTRY DATA ...ttt et ete ettt e et e et e eteeeteeetestesaaesasesseeabeeeteenteesbeessestsesrsesteesteeresnnas 14-2
14.3 AN EXAMPLE OF SEPARATE COMPILATIONouiiiiiiiiiiiiiiiiiiiiicn s 14-3
15 DECIMAL COMPUTATIONScoooiiiiiiitieieeieissteetsieesenestsessteesensesesesssessossnsssesssasssssssssssseseas 15-1|
151 A COMPABISON OF DECIMAL AND BINARY OPERATIONSccuvviiiiieiiieieieiiesstieeesiseesesesesesseseeeeas 15—_1
15,2 DECIMAL REPRESENTATIONcvviiivvieitiesiteeessteesueeeesteesseeessseessseesssesssssssssessssessssessssessssessssessssesans 15-2
15.3 ADDITION AND SUBTRACTIONiiiittiieiittiieeiitieeeeetteeeeeuteeeesstseeeaessseesssseseeasseeeaassseessseseesssseeesans 15-4
15,4 IMIULTIPLICATIONcittii e ettt etiee e ettt e e ettt e ettt ee ettt eeeeateeeeeatteeeaeateeeesateeaeateeeeaasseeeesnseeaeaseeaeann 15-6
[15.5 DIVISION . .ttt ettt i e ettt ee ittt e ettt e e ettt e e ettt e e ettt eeeeaateeeeaasseeeetteeeeansseeeeanseeeesbeeeaanseseesnnseaeasbeaaeanns 15-7
16 COMMERCIAL PROCESSING........ccocovieeeieteeeeeteesstetseereeser s eenensesenensesenensesesensesenensesesnsesesas 16-1|
16.1 A SIMPLE LOAN PROGRAM.......cuueiiiitiieeiittee e etteeeeet e e e eee e e ettt e e aetteeeeeaaeeestteeeeestaeesssbeeaeateeaeanns 16-1
[16.2 ORDINARY ANNUITY L..uiiiiiuiiieiitiie e ettt eeteee e ettt e eeettteeeeateeeeatteeeaeateeeasateeaaaatseeeaassseeeanreeaeaaseeeeanns 16-3
16.2.1 MIXEU DALA TYPES ...vrveivrereereeieitestesteasaestessetessessessesssassessessessessessessseseessessessessessesssassessenses 16-5
16.2.2 Evaluating the PreSent ValUg PV..........c.couvoiiiiiiiieeiicceseeeee et aneaes 16-6
16.2.3 Evaluating the Payment PHT...........cccovciieiiiiieiiseceee e se st eaee et sresnassaeneenaesnennes 16-7
16.2.4 Evaluating the NUMDBEr 0f PErIOUS Nu...vc.veevecccicvee e e e aeeans 16-8

[16.3 LOANPAYMENT SCHEDULE FORMATvoviviveeiiirateisiaitestetecneai et eennaneenneeeeanenens 16-9
16.3.1 16.3.1 Variable DECIATatiONS.c..ccvviviirieiiieiieeiteeiteeeteereeieetveeteesteesteecreeresnresneeereenns 16-13
16.3.2 Program EXECUTION oo, 16-14
16.3.3 DiISPIAY FOIMALSvvevviiieciecicceceeeeeee ettt e b e et e enbeenbesreesteesreesreanreanes 16-14
6.4 COMPUTATION OF DEPRECIATION SCHEDULES.............oooooooooooooocooooeoooreooneseonereonereoneeeoneeoon 16-14
16.4.1 General AlGOITTNMS.cccuveuiiiiiieciecee ettt e ee st e st e e steenreenreenreereenes 16-14
16.4.2 Selecting the SChedUIE ..o 16-14
16.4.3 Displaying the OULPUL...........cueveieiieieeiieeeeeieeie e st eseeeeeeeeneeseeseeseesnesreeneeseeneeneenes 16-15

17 DYNAMIC STORAGE AND STACK ROUTINESc.ccoovitiieiiierieseteeeesiseeasieeeeseaens 17-1|
7.1 DYNAMIC STORAGE SUBROUTINES.........cvevevverierrerererereenetetessseressseseesssersessseseesssessssssereesssenees 17-1
17.1.1 The TOTWDS and MAXWDS FUNCLIONS ..o 17-1]
17.1.2 The ALLWDS SUDFOULINGccviiriiiiiiiiiiiieicteeete et ecte et et eveeebeeeveevaevesnvesreesnnes 17-1

[L7.2 THE STKSIZ FUNCTIONtteieieieitsetessesesssesssesesessesssssssssssasasassesesossssssessssssassssesssssssssssssssesans 17-3
L8 OVERLAYS ...ttt ettt ettts s sttets s ststsetsesetsessesassessesssssssesassssssssensssssasssssatesssrsssessssssesens 18-1|
[L8.1 USING OVERLAYS INPL/L....c.ociiviiiiiiiiieieiiesee ettt 18-1|

Tabl e of Contents

Vi

[18.2 WRITING OVERLAYS INPL/L. oo 18-2
18.2.1 OVErlay MethOG ONE.......cccveueiiiiiietieiees e se e seetae e e stestas e esaeraeneesteseessasseenaeseensenseseens 18-2
[18.2.2 OVErlay MEthOU TWOcviiuiiieicceieciieceeceee ettt taesteeeteenteenreenresseesreens 18-3
18.2.3 General Overlay CONSIIAINTScciiiiiiiiiiieiieieceie et 18-4

[18.3 COMMAND LINE SYNTAX .vovveviererereererereneretresesesreseseeresesesseseseseesssessossssseesssessosssessessseressssesesans 18-5

Tabl es, Figures, and Listings

Tabl es, Figures, and Listings

Tabl es
[TABLE 3=1 PL/T DATATYPES ...vcvvvivetieveveteieteteteteteeieteteeteteteetetesasetetsssesesassesessssesessssesessssasessssesesessesesssseres 3-1
EABLE A—1 PL/I VALID FILE ATTRIBUTESvviiiviiiietieitteeittieetteestteesateesstassasessstessnsessssssssessssessssessssessssessses 4-9
ABLE 4—2 FILE ATTRIBUTES ASSOCIATED WITH 1O ACCESS oo 4-10
TABLE 4—3 PL/I CONDITION CATEGORIES AND SUBCODES..........cueiiuvieiutieiutieietieiatesseessnressssessssesassesssrenans 4-13
TABLE 61 PL/T SYSTEM FILES oo 6-2
TABLE 6—2 PL/I COMPILER OPTIONSuviiiutiiitvieiutisittieisteesttieesteesssiesssessseessssesssssesssessssessssessseesssessssesssees 6-3
[TABLE 15-1. DIFFERENCE OF DECIMAL AND BINARY DATA .. iiiiiiitiiiiiiiiiiiiiiiiie et esiibiereeeeessiiireeeeeeesainnees 15-1
Fi gures
lEIGURE 2—1. PL/I PROCEDURE COMPONENTSccovireersesreesorsreessssneessesneeesssnenssesneneessneneseanensssenenssesneeessereneas 2-§|
[T R S N R Ry N T 3-7
IGURE 3-2. §TRUCTURE DECLARATION HIERARCHYuuvviiiiiiiiiiiiiiiiieeeeesetieieteeessseiietesseassssnnebesssasasssnnees 3-8
IGURE 4—1. FORMS OF THE DO STATEMENTuvviiiiiiiiiiittiitieeeeeiiittieteeesessiisssesesseessssssssesssesssssisssesssessssssses 4-3
IGURE 6—1. PL/l PROGRAM DEVELOPMENT oo, 6-1
EIGURE 8—1. DEFAULT FILENAMES IN THE COMMAND TAIL......uvviiiiiiiiiiiiiiiiieeeeiiiiiiiieeeeesssissrsesseesssssssssesess 8-2
IGURE 18—1. USING OVERLAYS IN A LARGE PROGRAM oo, 18-1
FIGURE 18—2. TREE STRUCTURE OF OVERLAYSciiiiiiiitttiiiieeiiieiuitteeseessesissttesseessssisssssssssssssssssssssesssssises 18-2
Li stings
[LISTING 2—1. SAMPLE PL/I PROGRAM..........ccvvititiiiitetiietetieieteeesetetssissessssesessssesessssesessssasessssesessssesessseres 2-2
| ISTING 3—1. EXAMPLE OF LABEL VARIABLES........cccciiiiitttiiiiiieiiiiiitiieeeesseetittesseesssaissetesssassssssssesseassssssnes 3-4
[ISTING 3—2 EXTERNAL PROCEDURE A oo, 35
|_ISTING 3-3 THE CALL PROGRAM..._. .. 3-5
|_ISTING 3—4. EXAMPLE STRUCTURE DECLARATIONccuvviiiitiieeiitteeeeettteeeeeteeessesuesesssseeeesssssesssssesssssseeeesnns 37|
|_ISTING 4—1. SIMPLE EXAMPLES OF ASSIGNMENT STATEMENTS....vvvveiiuviieiitiieeieueeeesenteeeesiseeeeseseeesssseeeesnes 4-2
| ISTING 4—2. PARAMETER PASSINGocciiuviiiiitiieiietiie e eetie e eeetee e s ettt e eeatae e e eaaeeesenaeseasasaeeesssesessnresessseeeesns 4-6
|_ISTING 5—1. PL/1 STYLISTIC CONVENTIONS......ueeiviiiutieeueisieeieeneessseeesseesssesesneesssesssssessesesseessesessseesserssses 5-§
|_ISTING 6—1. COMPILATION OF DEMO USING SN OPTION........ccuvieieeieeeiieieeeeeee et e et e seeeeeeraaeeaaesaaesaeeas 6-5
|_ISTING 6—2. COMPILATION OF DEMO USING L OPTIONcccuviiiuiieieiie ettt sae s 6-5
|_ISTING 6—3. INTERACTION WITH THE DEMO PROGRAMccccoiiiittiiiiiii ettt ettt ettt s e e esains 6-6
|_ISTING 6—4. ERROR TRACEBACK FOR THE DEMO PROGRAMccccciiiiiiiiiiiiiiiiccciiiiee et @
| ISTING 7—L. POLYNOMIAL EVALUATION PROGRAM (FLOAT BINARY) ... 7-2
|_ISTING 7—2. INTERACTION WITH FLTPOI:Y PROGRAMuvvviiiiiiiiiiiiiiiiic ettt e e B
|_ISTING 7—3. POLYNOMIAL EVALUATION PROGRAM (FIXED DECIMAL)c.coooviiiiiviieieiece e 7-3
|_ISTING 7—4. INTERACTION WITH DECPOLY PROGRAM.......cvvviiiitiiieeeiieeeeieeseeeeeeeeeeeeeeseneneasnreeeennns 7-3
|_ISTING 8—1. COPY (FILE-TO-FILE) PROGRAMccviviitiitiatiiieeiaiesiesestestesseaseeseaseseessessesseaseeeessessessessesns 8-1
|_ISTING 8—2. INTERACTION WITH THE COPY PROGRAMcoovviiiitiiieeeiie e seeeeeeeeeeeeneesenienesnnreeeennns 8-2
| ISTING 8—3. CREATE PROGRAMcocciiuviiiiitiieeietieeeetieeeeeteeeseaeeeesatteeeseaaesesessesesssteeeesassesessnsesassssseeesans 8-4
|_ISTING 8—4. INTERACTION WITH THE CREATE PROGRAMccvvviiiiiiiiiiiiiiiiiie ettt e eseiieia e e e e aesaains 8-§
|_ISTING 8-5. OUTPUT FROM THE CREATE PROGRAMuvviiiiiiiiiiiiiii ettt ettt s stvaaa e e sanns 8-5
| ISTING 8—6. RETRIEVE PROGRAMcccciiiiiiiiiiiiici ittt eettte et e e s s e et et it e e e s s asaabbanaeaeaaesanses 8-7
|_ISTING 8—7. INTERACTION WITH THE RETRIEVE PROGRAM.......ouvtiiiiiiiiiiiiiiiiie ettt ettt a e 8-8
| ISTING 8—8. THE ENTER PROGRAMccccciiiiiuiiiiiiiii ittt ettt e s eeeit et e e e s e sttt atasaeasssaabbenasasasssanres 8-10
|_ISTING 8-9. INTERACTION WITH THE ENTER PROGRAMcoiittiiiiiiii ettt ettt 8-10
|_ISTING 8—10. THE KEYFILE PROGRAMcccuviiiiitiiieiitiie et eeae e eaa et eaetaa e e sneaaesenreeeas 8-11
|_ISTING 8—11. INTERACTION WITH THE KEYFILE PROGRAMcuvtiiiiiiiiiiiiiiiiiee e ecitiaeeee e sevaveee e e neans 8-11
|_ISTING 8—12. CONTENTS OF THE KEY FILEccuuiiiiiuiiieieiiieeeeiee et e eeeaeseteeeseneenessnneneesenneeeas 8-12
| ISTING 8—13. THE UPDATE PROGRAMccouviiiiiuiiieiitiieeeetiieeeeieeesseteeeeaetasessaeeasseseeeessssesssssesesssrsenens 8-13
|_ISTING 8—14. INTERACTION WITH THE UPDATE PROGRAMcuvviiiiiiiiiiiiiiiiiiieieicciiiiieeeeesseeiveeeeeeeasanes 8—111
|_ISTING 8—15. THE REPORT PROGRAM.ccccuuiiiiiutieeiitiieeeetteeeeeteeesseteeeesasssessseeessessesesssesseseseseessrseees 8-15
ISTING 8-16. REPORT GENERATION TO THE CONSOLE ...uvvviiiiiiiiiiiiiiiieeeessiitirieeeeesssssssssessessssssssssssessns 8-16
| ISTING 8—17. REPORT GENERATION TO A DISK FILE....uuiiiiiiiiiiitiiiiiiceeieciitiii e eeiitvet e e e e s e s sibbans e e e e s s sanens 8-16

Tabl es, Figures, and Listings

|_ISTING 9—1. AN ILLUSTRATION OF LABEL VARIABLES AND CONSTANTS ..uvvvviieeeeiiiervrrieeeeessinisrseereeessssiines 9-4
|_ISTING 10—1. THE REVERT PROGRAMccctttiiiittiee i ittt eeettee e eetee e e st e e eetteaeseataeasstteesseseasessabesessnseesesnns 10-2
| ISTING 10—2. THE FLTPOLY 2 PROGRAMuutviiiiiiiiiiiiiiiiie i e iieieiee e e e e s eeiatet e e e e s seababasseeassssasbbesasasssssnres 10-4
|_ISTING 10—3. THE COPYLPT PROGRAM.cuttiiiiiiiiiiiitiiiieee ettt e e e e sttt e e s s s s s s ebbbba s s s e s s s e sababasseaeeessanses 10-6
|_ISTING 10—4. INTERACTION WITH COPYLPToiiiiiiiiiiiiiiiici ettt e sttt e e e s s e sabbbana e e e s e e saanes 10-7
|_ISTING 10-5. OUTPUT FROM COPYLPT ..ottt e e sabbbaa e e e e e s s saares 10-8
| ISTING 11—1. THE OPTIMIST PROGRAMuuviiiiiiiiiiiitiiiiiiei et iiiiitieeeeessseattseseeesssassstbesseesssssssbesasessssssnses 11-3
|_ISTING 11-2. INTERACTION WITH THE OPTIMIST ...ttt ettt e e 11-4
| ISTING 11—3. THE FSCAN PROGRAMccciiuuiiiiiutieeiiteeeeeetieeeeeteeesseteeseseseesessssesesssssssssssesesssesssssseseesans 11-5
|_ISTING 11-4. INTERACTION WITH THE FSCAN PROGRAMccoitvieeiittiieeeiteieeeetteeesetee e e etaeeesesveeessaaeeeanes 11-5
| ISTING 12—1. THE REVERSE PROGRAM........cuoiiiitiiiiitiie et eeteee e et eeeee e e e e e eetaeeeseaaesessareneessaeeenans 12-4
|_ISTING 12-2. INTERACTION WITH THE REVERSE PROGRAM........coiiiitiieiiteieeectteee et e e eteee e erveeeseaae e 12-4
|_ISTING 12—-3. INTERACTION WITH THE NETWORK PROGRAMccovviiiiiiiiiiciiieieiiee e eeinaeeans 12-7
|_ISTING 12—4. THE NETWORK PROGRAMvoiiiiteieiiitiieeeetieeeeeeee e s eee e e ettt e e seaaeaessavaeessesassessnrenesseneeees 12-16
| ISTING 13—1. THE IFACT PROGRAM.........cciiittiiiiiiiiiiiiiiiitee e e e s ieitieeeeessseabttetaeesssasabbbesseesssesbbbesesasssssaares 13-2
|_ISTING 13—2. OUTPUT FROM THE [FACT PROGRAM......uttiiiiiiiiiitiiiiiieeeeseiitttie e e e s sssbtress e e s s sssisbbanssaessesannes 13-3
|_ISTING 13—3. THE RFACT PROGRAMcociuutiiiiiiiiiiiitiiiieieeeesieiieieseeesssastatesssesssassstsesseesssesssbesssassssssses 13-3
|_ISTING 13—4. OUTPUT FROM THE RFACT PROGRAMuuiiiiiiiiiitiiiiiee e seiittiee s e e s s ssitbtess e e s s sssasabanseaessssanens 13-4
|_ISTING 13—5. THE DFACT PROGRAMcoiiuttiiiiieiiiiiitiiiieee e e e sietiaieseeessseabtsesssesssassstbesseesssesstbesesassssssres 13-41
|_ISTING 13—6. OUTPUT FROM THE DFACT PROGRAMvtviiiiiiiiittieiie e e e s seiittiee s e e s s ssiabbesseesssssasabesseasssssanens 13-5
| ISTING 13—7. THE PEACT PROGRAMccciiituiiiiitieeeitieeeeeuteeeeeteeaeseteeeeaeseesesessesassssssssesesesssesesssseeeesans 13-5
|_ISTING 13—8. OUTPUT FROM THE FEACT PROGRAM........ccoouviiiiiiieiiieeeeieeeeeeeeeeeeeeeeaesenenssaeneneesnns 13-6
| ISTING 13=9. THE ACK PROGRAMcuvviiiietiiieiitiie et eettee e e etae e st e e eeateeeseataeaesseeeeseaeasessnseeessssseeesn 13-7|
|_ISTING 13-10. INTERACTION WITH THE ACK PROGRAM ..o 13-7
|_ISTING 13-11. THE EXPRESSION PROGRAM USING EVALUATOR EXPRIcooovviiviiiiiiiicccii 13-9
|_ISTING 13-12. INTERACTION_WITH EXPR} .. 13-11
|_ISTING 13-13. EXPRESSION EVALUATOR EXPR2ovvviiiiiiiiiiiic et 13-13
|_ISTING 13-14. INTERACTION WITH Eﬂz .. 13-13
|_ISTING 14-1. AN ILLUSTRATION OF ENTRY CONSTANTS AND VARIABLEScccovvviiiiieiiiiiiiiiiieeeeseiianns 14-3
|_ISTING 14-2. MAININVT - MATRIX INVERSION MAIN PROGRAM NODULE........cccouvviiieiiiiiiiiiiiiieeiiiinnns 14-5
|_ISTING 14-3. INVERT MATRIX INVERSION SUBROUTINE..........0uvviiiiiiiiiiiriiiieeeeiiiisusiesseessseissreseeessssiinnes 14-6
|_ISTING 14—4. INTERACTION WITH THE INVMAT PROGRAMcvvviiiiiiiiiiiiiiiiieeiiieiiiieieeeeseeiniveeeeeesaeiinnes 14-7
| ISTING 16—1. THE LOANI PROGRAMcoceiituiiiiiutieeiitieeeeettie e eeteeeeseteeeeaeaeeeeseatesassseeeeseseessssnsesessssseeesn 16-2
|_ISTING 16—2. OUTPUT FROM THE LOANTL PROGRAMocoouiiiiiieiieieieeeeieeeeeeeeeeeeeeensessneensseneeeeanns 16-?_>
| ISTING 16—3. THE ANNUITY PROGRAMuuiiiiiuiiiiiitiieeeeiie e eetiee e seteeeeeteeeeeteeaesaaeeessaaasessnreessssseeeesns 16-5
|_ISTING 16—4. INTERACTION WITH THE ANNUITY PROGRAMuuviiiiiiiiiiiiiieiiiiiieieiiiesseiessesiseeeessseessanes 16-5
|_ISTING 16—5. THE LOANZ PROGRAMcocciiuviiiiitiie it eeeiee e seteeeeetaeeeeaaaeseateeesantaneasnnenaessnreneas 16-13
|_ISTING 16—6. FIRST INTERACTION WITH LOANZ ..ottt ettt s e e e e s s evieaeeessaaans 16-14
|_ISTING 16—7. SECOND INTERACTION WITH LOANZovviiiiiiiiiiiiiiiice ettt a e saies 16-14
|_ISTING 16—8. THIRD INTERACTION WITH LOANZottt ettt et e s sabbbrae e e e 16-14
|_ISTING 16—9. FOURTH INTERACTION WITH LOANZovviiiiiiiiiiiiiiiiiic ettt e s e e e sains 16-14
|_ISTING 16—10. THE DEPREC PROGRAMouttiiiiiiiiiiittiiiiee e eeettttt e e e s ettt s s e s s s sibbaass s e s s s s sabbbaaasesesssanres 16-14
|_ISTING 16-11. FIRST INTERACTION WITHDEPRECcoiiiiiiiiiiiiiiie e 16-16
|_ISTING 16—12. SECOND INTERACTION WITH DEPREC ...ttt 16-17
|_ISTING 16—13. THIRD INTERACTION WITH DEPRECcocoviiiiiiiiiciiiie e 16-18
|_ISTING 16—14. FOURTH INTERACTION WITH DEPREC ...ttt 16-18
| ISTING 17—=1. THE ALLTST PROGRAMcocuiiiiiutiieiitiieeeetieeeeeteeeesteeeeeeaeesesessesasssesesssssesesssesssssseseesns 17-2
|_ISTING 17—-2. INTERACTION WITH THE ALLTST PROGRAMcovveieiiitiie et e eetteee et e e eavee e eavee e s sbeeeeanes 17-3
| ISTING 17—3. THE ACKTST PROGRANcccuutiiiiiiiiiiiittiiitieeeiiiitieteteesssiaissssesssssssasssssesseessssiissresesessssinses 17-4
[ISTING 17—4. OUTPUT FROM THE ACKTST PROGRAM vvovvoooon, 17-4

viii

Section 1

1 Introduction

1.1 Whatis PL/I?

Digital Research PL/l is a programm ng | anguage that you can use to
wite either applications or systemlevel prograns. It is formally
based on Anerican National Standard X3.74, PL/|I General Purpose Subset
(Subset G. Subset G has the formal structure of the full |anguage, but
in sone ways it is a new | anguage, and in many ways an i nproved

| anguage conpared to its parent.

Digital Research PL/I is easy to learn and use. It is a highly portable
| anguage because its design generally ensures hardware i ndependence. It
is also nore efficient and cost effective, because programs witten in
PL/1 are easier to inplenent, docunent, and maintain.

1.2 Using This Manual

This manual is designed to help you learn PL/I by studying sanple
prograns. |If you have never progranmed in a structured, high-Ieve

| anguage such as PL/I, you should read Sections 1 through 4 first.
These sections provide you with a brief introduction to the |anguage.
PL/1 has features that are sinilar to other progranm ng | anguages, but
it also has its own unique constructs and synt ax.

Sections 1 through 4 outline the fundanental structure and features of
PL/1 in an infornmal and conceptual franmework. This summary can hel p you
become familiar with the overall capabilities of PL/I and encourage you
to use its full power.

Sections | through 4 are not a conplete tutorial on PL/l progranmmng in
general. If you find the overviewis not sufficiently detailed, you

m ght want to read sone of the books listed in Appendix E of the PL/I
Language Reference Manual. You should also refer to the material in
Sections 1 through 4 of the PL/I Language Reference Manual

If you are already an experienced PL/I progranmer, you night want to
begin with Section 6, which describes howto conpile and |ink prograns.

1.3 Notation
The follow ng notational conventions appear throughout this docunent:

Wrds in capital letters are PL/I keywords or the names of PL/I
prograns that are described in the text.

Wrds in lower-case letters or in a conbination of |ower-case letters
and digits separated by a hyphen represent variable information for you
to select. These words are described or defined nore explicitly in the
text.

* Exanple statements are given in |ower-case.
* The vertical bar | indicates alternatives.
* | represents a blank character

* Square brackets [] encl ose options.

1-1

PL/1 Progranmer's CQuide 1.3 Not ati on

* Ellipses ...indicate that the inmediately preceding item can occur
once or any nunber of times in succession

Except for the special characters |isted above, all other punctuation
and special characters represent the actual occurrence of those
characters.

In text, the synmbol CTRL represents a control character. Thus, CTRL-C
nmeans control-C. In a PL/lI source programlisting or any listing that
shows exanpl e consol e interaction, the synbol represents a control
character.

* The acronymBIF refers to one of the PL/I built-in functions

* Throughout this manual, programlistings have brackets on the |eft
side to illustrate and enphasi ze the bl ock structure of the
| anguage.

* References to nmaterial in the PL/I Language Reference Manual are
noted at the end of each section. The acronym LRM denot es Language
Ref erence Manual . For exanpl e,

Ref er ences: LRM Section 3.1.1
* In this manual, CP/M& refers to any of the Digital Research famly

of 8 and 16-bit operating systens. DOS refers to the | BM Persona
Conput er Di sk Operating System Version 1.1

e Listings of sanple prograns in this nmanual use the device names $CON
and $LST. This is standard for CP/M However, under a different
operating system the device nanes may be different. This does not
af fect the way the programruns.

* In this docunent, the use of color in exanples denotes user
interaction with the conputer.

End of Section 1

1-2

Section 2

2 The PL/I Language

Every PL/| program consists of one or nore statenents fromthree
general categories:

e structural statenents
e declarative statenents

e executable statenents

These categories are not mutually exclusive, but provide a convenient
starting point. The followi ng sections describe and illustrate the
statenents in each general category.

2.1 Structural Statements

Structural statements are the foundation of any program because they
define the logical units in a program These logical units are called
bl ocks. When a program executes, control always flows from one | ogica
unit to another. Logical units can contain other |ogical units, causing
control to flowinto and out of the units. You use structural
statenments to specify the hierarchical and l|ogical structure in a

progr am

2.2 Declarative Statements

Decl arative statenments always occur in a logical unit defined by a
structural statenent, and determi ne the environment of a logical unit.
The environnent is the name and type of all the data variabl es
available in a logical unit. Use declarative statements to specify the
context of the variables you want to nmanipulate in a logical unit.

2.3 Executable Statements

Execut abl e statenents mani pul ate storage, transfer the flow of control
bet ween | ogi cal units, control the flow of data to and froml1/O
devices, and performcal cul ations. Both structural statenents and
declarative statenents serve only to create a context for executable
st at enent s.

Listing 2-1 on the foll owi ng page shows a PL/I programthat illustrates
statenents from each category. You need not fully to understand the
programor the syntax of each statenent at this point, but you can see
t he program consi sts of distinct blocks of statenents. Each block is a
| ogi cal unit of control

sample:

procedure options(main);

declare
c character(10) varying;

do;
put skip list("lnput:)
get list(c);
c = upper(c); /* function reference
put skip list("Output: *,c);

end;

PL/1 Progranmer's CQuide 2.4 PL/1 Bl ocks

begin;
declare
c float binary(24);

put skip list("Input:

get list(c);

call output(c); /* subroutine invocation
end;

upper:
procedure(c) returns(character(10) varying);
declare
¢ character(10) varying;

return(translate(c, "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
"abcdefghi jkImnopgrstuvwxyz®));
end upper;

output:
procedure(c);
declare
c float binary(24);

put skip edit(c) (column(20),e(10,2));
end output;
end sample;

Listing 2-1. SAMPLE PL/I Program

Every PL/1 program nust have a main procedure block. Although you can
separately devel op and conpile external procedures that can be |inked
to and called froma nain procedure, there can be only one main
procedure block in a program In Listing 2-1, the first two statenments,
together with the last statement, determine the outernpst, or main

bl ock of the program

2.4 PL/I Blocks

In PL/1 a block can have its own |l ocal environnent, and possibly an
envi ronnent inherited froma containing block. A containing block is
any bl ock that contains another block. For exanple, in Listing 2-1 the
DO group inherits the environment of the main procedure bl ock. However,
the BEG N bl ock has its own | ocal environnent, even though it is
contained in the nmain procedure block

In PL/1 there are two types of bl ocks:
* PROCEDURE bl ocks
* BEG N bl ocks

You can nest either type of block. This nmeans that you can put one

bl ock inside another, but the bl ocks cannot overlap. The essenti al

di fference between a PROCEDURE bl ock and a BEG N bl ock is the way that
PL/1 executes each block in the overall program

PL/1 executes BEG N bl ocks as they are encountered in the normnal
sequence of statements in the program A BEG N bl ock ends when its

PL/1 Progranmer's CQuide 2.5 Pr ocedures

correspondi ng END statenment is encountered or when control passes

out side the bl ock. When control reaches a BEG N bl ock, the statenents

i nside the bl ock execute sequentially. Usually, when control |eaves the
block, it sinply passes to a containing block or goes to the next
sequenti al bl ock.

PL/1 ignores PROCEDURE bl ocks as they are encountered in the usual
sequence of statenments in the program Control only passes to and
enters a PROCEDURE bl ock when the program invokes the procedure with a
CALL statenent or a function reference. A PROCEDURE bl ock is active
when the statenments inside the block are executing. Wen the statenents
i nside the procedure finish executing, the PROCEDURE bl ock returns
control to the point of the call.

For this reason, you can place a procedure anywhere in a program |t
is good programm ng practice to put all procedures at the bottom of the
mai n program This nmakes debuggi ng and nai ntai ning a program easi er.

2.5 Procedures

Every procedure consists of a procedure nane, procedure header, the
procedure body of zero or nobre statenents, and an end statemnent.
Figure 2-1 shows the conponents of the main procedure in the SAMPLE
program

PROCEDURE
HEADER

PR
OCEDURE [—® SAMPLE:
NAME

PROCEDURE OPTIONS (MAINY};

PROCEDURE BODY ———-[

END L END SAMPLE;
STATEMENT

Figure 2-1. PL/I Procedure Conponents

I f you nest procedures, they inherit the environnent of containing
bl ocks. However, any variable that you declare in a containing block
can be redeclared, with local attributes, in the nested procedure.

There are two general types of procedures in PL/I:
* subroutine procedures

« function procedures

You use the CALL statenent to invoke a subroutine procedure. A
subroutine procedure performs a specific task, and optionally returns
val ues to the invoking procedure.

You i nvoke a function procedure by making a function reference. A
function reference is sinply using the nane of the function in a
statenent. PL/I evaluates the function reference and replaces it with a
scal ar value at the point of the reference.

Procedures are either internal or external in relation to the main
procedure. An internal procedure is contained in the body of the nmain
procedure, while external procedures are witten and conpil ed

PL/1 Progranmer's CQuide 2.6 DO gr oups

separately fromthe nain program To make an external procedure known
to the main procedure, you nust declare the procedure nane as an entry
constant (see Section 3.1.3). You nust also link the external procedure
to the main procedure after both are conpiled. Al the procedures in
the SAMPLE programare internal to the nmain procedure.

2.6 DO-groups

The DO-group is simlar to the BEG N bl ock. There are several forms of
the DO group, and they are executable statenents because they influence
the flow of control. However, they are also considered structura
statenments because they define |ogical units.

Listing 2-1 illustrates the sinplest formof the DO group. It |ooks
like a BEG N bl ock, but there is a crucial difference. Al though a DO
group binds all the statenments in its body into one logical unit, it
cannot define a new environnent. A DO group cannot define new vari abl es
whose environnent is limted to the body of the DO group

A DO-group can bind only executable statenents. However, a BEG N bl ock
can bind both declarative statenents and executabl e statenments. The
envi ronnent of a DO-group is deternmined by the environnent of the block
where it occurs.

Ref erences: LRM Sections 2.1 to 2.19, 8.1 to 8.2

End of Section 2

2-4

Section 3

3 Declarations

You use declarative statements to specify the data itens you want to

mani pul ate with the executable statenents in your program PL/1 has a
rich variety of data types. In addition to arithnetic and string data,
PL/1 supports pointer, |label, and entry data, which are generally not
avai l abl e in other I anguages. Table 3-1 shows the PL/I data types

di vided into categories and subcategori es.

Cat egory Subcat egory
Arithnetic FI XED BI NARY
FLOAT BI NARY
FI XED DECI MAL
String CHARACTER
BIT
Contr ol Label Variable

Label Const ant

Entry Variable

Entry Const ant

Poi nt er PO NTER

File File Variabl e
Fil e Const ant

Dat a Aggregat es Arrays
Structures

Pr ocedur es Subr outi nes
Functi ons

Table 3-1 PL/| Data Types

Al'l declarative statenments specify either data constants or data
variabl es. You rmust explicitly declare all data variables in a DECLARE
statenent, but data constants are usually declared inplicitly by their
occurrence in an executable statement. A PL/| variable is defined by an
identifier nane. The nane can consist of up to thirty-one al phanuneric
characters or underscores. The first character nust be a letter.

Usual Iy, declarative statenments, whether explicit or inplicit, result
in a specific allocation of storage for the data item declared. The
conpil er determines the anount of storage required for the type of
data, and associates the itemwth this storage. BASED variables are
an exception because they do not necessarily force an allocation of
storage (see Section 4.5).

3.1 Scalar Data

There are two nmain kinds of data: scalar, or single, data itens, and
aggregate, or nultiple, data itenms. Scalar data types are the
fundanmental data types of the | anguage.

3.1.1 Arithmetic Data

You use arithmetic data for direct nunerical calculation. PL/I provides
several types of arithnetic data, so you can match the data to the
application.

PL/1 Progranmer's CQuide 3.1 Scal ar Data

3.1.1.1 FIXED BINARY

You can use FI XED BI NARY data to represent integers. PL/I internally
represents this data type in two's conplenent binary form The
precision of a FIXED Bl NARY nunmber is the nunber of bits used to
represent it, independent of the sign. PL/I uses from1l to 15 bits, so
it can represent integers in the range from-32768 to +32767.

3.1.1.2 FLOAT BINARY

You can use FLOAT BI NARY data to represent very snmall or very large
nunbers. FLOAT BI NARY data has a binary fractional part (called the
mantissa) , a binary exponent, and a sign. PL/I supports both single-
preci si on and doubl e-preci si on FLOAT BI NARY nunbers. The precision of a
FLOAT BI 14ARY nunber is the nunber of bits in the mantissa.

Si ngl e- preci si on nunmbers can have from1l to 24 bits, while the exponent
part is always represented by 8 bits. The maxi mum range of single-
preci sion FLOAT BI NARY nunbers in decimal is approximately 10-39 to
1038.

Doubl e- preci si on nunbers can have from24 to 53 bits, while the
exponent has 11 bits. The nmaxi num range of doubl e-precision FLOAT
Bl NARY nunbers in decimal is approximtely 10-308 to 10 308

3.1.1.3 FIXED DECIMAL

You can use FlI XED DECI MAL data to represent nunbers with a fixed
decimal point. You can al so use FI XED DECI MAL data to represent
integers. Internally, PL/I represents FIXED DECI MAL data in binary
coded decimal (BCD) digits.

FI XED DECI MAL nunbers have both a precision and scale factor. The
precision is the total nunber of decimal digits used to represent the
nunber. The scale factor is the nunber of decimal digits to the right
of the decimal point.

In PL/1, the precision of a FI XED DECI MAL nunber can vary fromone to
fifteen, while the scale factor can vary fromzero to fifteen. This
arithmetic data type is particularly useful for conmerci al

cal cul ations, which require exact representations of dollars and cents
and cannot accept the truncation errors of binary arithnmetic.

You declare an arithnetic data variable in a declaration statenent of
one of the following forms, where p is the precision and q is the scale
factor.

St at enment :

DECLARE identifier FIXED BINARY[(p)1:;
Exanpl e:

declare index-counter fixed binary(7);
St at enment :

DECLARE identifier FLOAT BINARY[(p)1:;
Exanpl e:

declare pi float binary(53);

St at enent :

PL/1 Progranmer's CQuide 3.1 Scal ar Data

DECLARE identifier FIXED DECIMAL[L(pf,ql)];
Exanpl e:
declare base_pay fixed decimal(5,2);

Not e: The precision and scale factor are optional. If you onmit them
PL/1 supplies default val ues.

You should use binary arithnetic for nost nunerical work, because it is
faster and uses the | east storage. If you are doing scientific work,
PL/1 has a conplete library of built-in mathenmatical functions which

i ncludes the trigononetric and the hyperbolic functions.

3.1.2 String Data

The ability to mani pulate string variables is one of the nost usefu
features of PL/I. PL/I has a conplete set of built-in functions that
you can use to nmanipulate string data. You declare a string variable to
be either a bit string or a character string in a declaration of one of
the foll owi ng forns:

St at enent :

DECLARE identifier CHARACTER[(n)]:
Exanpl e:

declare alphabet character(26);
St at enment :

DECLARE identifier CHARACTER[(n)] VARYING;
Exanpl e:

declare state character(20) varying;
St at enent :

DECLARE identifier BIT[(nN)];
Exanpl e:

declare flag bit(l);

The VARYING attribute neans that the character string can vary in

| engt h, but cannot exceed the value of n. For CHARACTER vari abl es, the
val ue of n can be between 0 and 254. If you want to nmani pul ate | onger
strings, you can use one-di nensi onal arrays.

Character-string constants are inplicitly declared by their occurrence
in a program You indicate a character-string constant by enclosing it
in single apostrophes. If you want to include an apostrophe in the
string, you nust precede it with an extra apostrophe. PL/I also allows
you to include control characters in a character string.

The followi ng are exanples of character strings:

"Ada Lovelace®
"~g ~g Input Error*
"Can""t Read Previous Line"

Bit-string variabl es cannot have the VARYING attribute, and the l[ength
of a bit string cannot exceed sixteen. PL/l allows you to specify bit-
string constants in several different fornats. Each fornmat corresponds

PL/1 Progranmer's CQuide 3.1 Scal ar Data

to a different base, which is the nunber of bits used to represent the
item The formats for bit-string constants are

* base 2 (B or Bl fornmat)
* base 4 (B2 format)

* base 8 (B3 fornat)

* base 16 (B4 format)

In each of the formats, you wite the bit-string constant as a string
of numeric digits for the desired base, enclosed in single apostrophes
and followed by the format type. The follow ng are exanples of the four
formats:

"101111°B equals 101111
"101111"B1 equals 101111
"233"B2 equals 101111
"57"B3 equals 101111
"2F"B4 equals 00101111

3.1.3 Control Data
There are two types of control data:

e LABEL data
« ENTRY dat a

LABEL data allows you to reference individual statenments in your
program PL/I not only allows individual statenents to have | abels, it
also allows you to declare | abel variables. This means that you can
mani pul ate | abels in your programlike any other valid data itens.

The value of a label variable is always a | abel constant, inmplicitly
defined and declared by its occurrence as a |l abel of a statenent in the
program PL/I allows you to subscript |abel constants. You can al so
decl are arrays of |abel variables.

You can use | abel variables to manipulate the flow of control between
| ogical units of a program It is good progranming practice to do this
wi t hout using GOTO S and | abel s.

The followi ng programis a whinsical exanple of |abel variables.

chase_your_tail:
procedure options(main);
declare
wherever label;

there:

wherever = here;
here:

wherever = there;

goto wherever;

end chase_your_tail;
Li sting 3-1. Exanple of Label Variables

PL/1 al so supports a powerful data type called ENTRY data. ENTRY data
allows you to reference procedures just |like any valid data item You

3-4

PL/1 Progranmer's CQuide 3.1 Scal ar Data

can declare an entry variable then assign it a value. The value of an
entry variable is an entry constant.

Entry constants are the | abels of procedures, rather than |abels of
execut abl e statenents. An entry constant is inplicitly declared by its
appearance as a label to an internal procedure.

When you declare an entry variable, you nust explicitly define the type
of entry constant that the variable can assunme. When you explicitly
declare an entry constant, you nust declare it with the sanme attributes
as the procedure it references.

The nodul es shown in Listing 3-1 illustrate these concepts. Listing 3-

| a shows an external procedure called a. Listing 3-1b shows the program
CALL, that references a. In CALL, f is an entry variable that assumes
three different constant values. To create a program you conpile each
nodul e separately then |ink themtogether

procedure(x) returns(float); /* external procedure
declare x float;
return(x/2);

end a;

Li sting 3-2 External Procedure A

call:
procedure options(main);
declare
f(3) entry(float) returns(float) variable,
a entry(float) returns(float); /* entry constant /*
declare
i fixed, x float;

() a;
T(2) b;
f(3) c;

doi =1 to 3;

put skip list("Type X")

get list(x);

put list("f(",i,")=",F(1)(X));
end;
stop;

b:
procedure(x) returns(float); /* internal procedure
declare x float;

return (2*x + 1);

end b;

c:
procedure(x) returns(float); /* internal procedure
declare x float;
return(sin(x));
end c;

end call;
Li sting 3-3 The CALL Program

PL/1 Progranmer's CQuide 3.2 Dat a Aggregat es

3.1.4 Pointer Data

Poi nter data allows you to mani pulate the storage allocated to
vari abl es. The value of a pointer variable is the address of another
vari abl e.

3.1.5 File Data

File data itens describe and provide access to the data associated with
an external device. File data items are either file constants or

vari abl es. You nust always assign a file constant to a file variable
bef ore you access the data in the file.

You declare file data in a declaration statenent in one of the
foll owi ng forns:

St at enment :

DECLARE identifier FILE;
Exanpl e:

declare current_transaction file;
St at enent :

DECLARE identifier FILE VARIABLE;
Exanpl e:

declare f(2) file variable;

The executable statenents used for file access determne the file
attributes. (Section 4.3 describes file-handling and I/O operations.)

3.2 Data Aggregates

A data aggregate is a conbination of data types that forns a data type
on a higher level. There are two kinds of aggregates in PL/I:

e arrays

° structures

3.2.1 Arrays

An array is a subscripted collection of data itens of the sane data
type. PL/I allows arrays of arithnetic values, character strings, bit
strings, |abel constants, entry constants, pointers, files, or
structures (see Section 3.2.2).

The follow ng are exanples of array declarations:

declare test_scores(100);
declare A(4,5);
declare A(1:4,2:5,0:10);

You make direct references to individual elenments of an array by using
a subscripted variable reference. PL/lI also allows you to make cross-
sectional references, with the restriction that the reference nust
specify a data conponent whose storage is connected. For exanple,
using the foll ow ng declarations:

PL/1 Progranmer's CQuide 3.2 Dat a Aggregat es

declare A(5,2) fixed binary;
declare B(5,2) fixed binary;

you can visualize the arrays pictured in Figure 3-1:

A B

a A W N PP
a A W N PP

Fi gure 3-1. Arrays

In this exanple, A and B are identical in size and attributes.
Theref ore, an assi gnnment such as

AG3) = B(4):

is valid because the cross-sectional reference specifies connected
st or age.

3.2.2 Structures

A structure is a very different type of data aggregate than an array. A
structure is hierarchical, much like a tree, where the | eaves of the
tree, called nodes, can be various PL/I data types.

Each node of the tree, beginning with the root, has a nane and a | evel
nunmber. The | evel nunber indicates the |evel of each node in relation
to the root. The followi ng exanple illustrates a structure declaration

declare
1 employee,
2 pame address,
3 name,
4 first character(10),
4 middle initial character(l),
4 last character(20),
3 address,
4 street character(40),
4 city character(10),
4 state character(2),
4 zip_code character(5),
2 position,
3 department no character(3),
3 job - title character(20),
2 salary fixed decimal(8,2),
2 number_of_dependents fixed,
2 health_plan bit(l),
2 date-hired character(B);

Li sting 3-4. Exanple Structure Declaration

Figure 3-2 illustrates the hierarchy of levels that corresponds to the
decl arati on.

PL/1 Progranmer's CQuide 3.2 Dat a Aggregat es

enpl oyee name_addr ess nane first

mddle_initia

| ast
addr ess street
city
position depart ment _no
)) state
job_title
zi p_code
sal ary

nunber _of _dependents
heal t h_pl an

date_hired

Fi gure 3-2. Structure Declaration Hierarchy

Nodes on each | evel can also determ ne a structure. Such a substructure
is a menber of the main structure. You can give the BASED attribute to
the main structure with the result that all the nenbers of the
structure receive the attribute

Structures are powerful tools because they enable you to group
logically related data itens that m ght not have the sanme data type
Thus, structures allow you to characterize and mani pul ate | ogica
objects in your programto nore closely resenble real data

Ref erences: LRM Sections 3.1 to 3.6, 5.1 to 5.5

End of Section 3

Section

4 Executable Statements

The category of executable statenents is divided into severa
subcat egori es based on the type of function that the statenent
perforns. The subcategories are

* assignnent statenents

* sequence control statenents

* |/Oand file-handling statenents
* menory nmanagenent statenents

* condition processing statenments
* preprocessor statenents

* null statenents

4.1 Assignment Statements

An assi gnnent statenent places the value of an expression into the
storage | ocation associated with a vari able.

An expression is a conbination of operators, operands, function
ref erences, and parentheses that control the order of evaluation of the
expr essi on.

In PL/1, the assignnment statenent has the form
variable reference = expression;

An expression in PL/lI can be fairly conplicated. The sinplest type of
variable reference is instantiating the variable name, which neans to
assign the variable a specific value. A variable reference can also be
a reference to a data aggregate, or to a conponent of the aggregate. If
the variable is BASED, a pointer-qualified reference night be required
(see Section 4.5.1).

PL/1 also allows certain built-in functions such as UNSPEC and SUBSTR
to appear as targets on the left side of assignment statenents. Wen
they appear as variables in this context, they are called pseudo-
vari abl es.

Expressi ons can be conputational. This means that the expression

i nvolves arithmetic or string values of the various types and their
respective operators. Expressions can al so be nonconputati onal

i nvol vi ng conpari sons of nonconputational data types such as |abels,
entry constants, and pointers.

PL/1 allows conputational expressions of different data types, and
automatically performs conversion between the various types follow ng a
standard set of default rules. You should becone fanmiliar with the
automatic conversion rules and the properties of the built-in
conversion functions (see Section 4 LRM.

The foll owi ng sequence of code illustrates sone sinple exanples of

assi gnment statenments. These exanples also illustrate some of the ways
you can reference a variable in PL/I. Such references can al so occur in
expressions, although PL/I limts aggregate expressions to conparison
for equality.

PL/1 Progranmer's CQuide 4.2 Sequence Control Statenents

assign:
procedure options(main);
declare
p pointer,
i fixed binary(7),
r bit(16),
s bit(16) based,
(u,v) float binary(24),
A(5,2) character(2),
B(5,2) character(2),
C character(20),
1w,
2 x Fixed binary,
2 y bit(16),
12z,
2 x Fixed binary,
2 y bit(16);

u=u+V; /* simple assignment

A = B; /* array aggregate assignment

A(3) = B(3); /* cross-sectional reference

w z; /* structure aggregate assignment

p s = (r = w.y); /* pointer-qualified reference

W.x = W.x + Z.X; /* partially-qualified aggregate reference
unspec(w.y) = unspec(A(5,1)); /* pseudo-variable reference
substr(C,i+1,3) = substr(C,10,3); /* pseudo-variable reference
A(C2*i+1) BM; /* variable is expression

end assign;
Listing 4-1. Sinple Exanples O Assignment Statenents

4.2 Sequence Control Statements

You can use sequence control statements to alter the nornal sequenti al
flow of control. In PL/lI, sequence control statenments perform
uncondi ti onal branching, conditional branching, iteration, branch and
return through procedure invocation, and a nore uni que construct called
condi ti on processing.

4.2.1 lteration

PL/1 provides an extensive variety of iteration control in the various
forns of the DO statenent. For exanple, you can performiteration not
only with an arithnmetic control variable, but also with a pointer
control variable that is noving through a linked list of pointers.

The following diagrams illustrate the basic fornms of the DO statenent
and the flow of control that they induce. The values el, e2, e3, and e4
represent any scal ar expressions.

PL/1 Progranmer's CQuide

DO;

END;

DO WHILE (e);

END;

DO i = el REPEAT(e2);

END;

4.

2

Figure 4-1. Forms of the DO Statenent

Sequence Contr ol

St atenment s

PL/1 Progranmer's CQuide 4.2 Sequence Control Statenents

DO i = el REPEAT (e2) WHILE(e3);

END;

DO i = el TO e2 BY e3 WHILE (ed);

END;

I=1+E3

Figure 4-1. (continued)

4.2.2 Procedure Invocation

A branch and return occurs as the result of a procedure invocation. As
we have seen, in PL/I there are two types of procedures: subroutine
procedures and function procedures. There are two correspondi ng forns
of invocation.

You i nvoke a subroutine procedure with a CALL statenment, but you invoke
a function procedure by using its name in an expression. You call a
subroutine procedure for a specific reason, such as altering the val ue
of variables passed to the procedure, or input and output. You always
i nvoke a function procedure in an expression to return a scalar data
item In PL/I, both types of procedures can be recursive, which neans
they can call thensel ves.

4-4

PL/1 Progranmer's CQuide 4.2 Sequence Control Statenents

There is an inmportant distinction between a procedure definition and a
procedure invocation. A procedure definition is a declarative
statenent; a procedure invocation is an executable statenent. The data
itens you pass to the procedure when you invoke it are called the
argunents. The argunments are distinguished fromthe paraneters you give
in the procedure definition. Thus, the arguments are the paraneters as
they are known in the invoking block, while the paranmeters are the
correspondi ng paranmeters as they are known in the invoked bl ock, the
procedure.

4.2.3 Parameter Passing

In PL/1, you can pass paraneters by reference or by value. You pass
them by reference if the argunments and the paraneters share storage.
You pass them by value if the value of the parameter is held as a | oca
copy of the value of the argument.

Under PL/I rules, the paraneter and argunent always share storage if
they have identical attributes. If the argunent is an expression, or if
its data attributes do not match those of the correspondi ng paraneter,
then the paranmeter is passed by value. PL/I passes the paraneter by
value if you enclose the paraneter in parentheses in the procedure
header statenent of the procedure definition

A procedure is an independent |ogical unit that perforns a specific
function. If you carefully define the specific function that the
procedure performs and the paraneters that it expects fromthe invoking
envi ronnent, you can divide the design, coding, and debuggi ng of the
overall programinto separate units.

If you pass a paraneter by reference to conserve storage, be aware that
t he i nvoked procedure can change the value of a variable outside its
local environment. If you want to assure that the procedure does not
change a variable outside its |ocal environnent, then you rmust pass the
paraneters by val ue and use extra storage.

Paraneter passing is a trade-off between the anpunt of storage
avai | abl e on your system and the | evel of nodularity and isolation you
want in your program There are three alternatives for paraneter

passi ng, characterized as the high, niddle, and low road. The skeleta
programin Listing 4-1 illustrates the concepts they represent.

In the low road, you pass by reference but pay close attention to the
possi bl e side effects that can result. The advantage of this method is
that it conserves storage.

In the middle road, you pass by value, enclosing the argunent in
parent heses at the point of invocation in the CALL statement or
function reference.

In the high road, you declare a duplicate variable for each paraneter
in the procedure definition. You then assign the correspondi ng
parameter to its duplicate, and use the duplicate as a |l ocal copy in
the procedure. Equally you can enclose the paraneter in parentheses in
the procedure header. The high road is least efficient in its use of
st or age.

main:
procedure options(main);
declare

PL/1 Progranmer's CQuide 4.2 Sequence Control Statenents

a float binary;

call low-sub(a); /* pass by reference
call middle-sub((a)); /* pass by value
call high-sub(a); /* pass by reference

low sub:
procedure(x);
declare
x float binary;

end low-sub;

middle-sub:
procedure(x);
declare
x float binary;

end middle-sub;

high_sub:
procedure(x);
declare
(x,my_x) float binary;
my-x = X; /* reassign using local variable

end high_sub;
end main;

Li sting 4-2. Parameter Passing

4.2.4 Conditional Branch

PL/1 provides a conditional branch in the formof an IF statenent. The
conditional branch has one of the follow ng forns:

IF condition THEN group
IF condition THEN group-1 ELSE group-2

where the condition is a scalar expression that PL/l eval uates and
reduces to a single value, and the groups are either single statenments,
DO groups, or BEG N bl ocks.

You can nest |F statenents, in which case PL/I matches each ELSE with
t he i nnernost unmatched | F- THEN pair. However, you can use nul
statenents following an ELSE to force an arbitrary matchi ng of ELSE
statenents with | F-THEN pairs. (See Section 4.7, "Null Statements.")

4.2.5 Unconditional Branch

PL/1 provides an unconditional branch in the formof a GOTO statenent.
The uncondi tional branch has one of the forns:

GOTO label constant;
GOTO label-variable;

Because PL/1 is block-structured, certain rules apply to the use of the
GOTO. The target |abel nmust be in the sane bl ock containing the GOTQ

or in a containing block. You cannot transfer control to an inner

bl ock.

PL/1 Progranmer's CQuide 4.3 |/0O and File-handling Statenents

4.3 1/0 and File-handling Statements

The executable I/0O statenents provide PL/I with a device- independent

i nput/out put systemthat allows a programto transnit data between
nmenory and external devices. To understand the I/O statenments, you nust
first know about files and their attributes.

The collection of data elenents that you transnt to or from an
external device is called the data set. The corresponding internal file
constant or variable is called a file.

As with other data items, you nust declare files before you use themin
a program A file declaration has the form

DECLARE file-id FILE [VARIABLE];

where file id is the file identifier. If you do not include the
optional 7VARI ABLE attribute, the declaration defines a file constant.
Wth the VARI ABLE attribute, the declaration defines a file variable
that can take on the value of a file constant through an assi gnnent
statenent. You nust assign a file constant to a file variable before
you can performany |/ O operations.

4.3.1 Opening Files

PL/1 requires that a file be open before perform ng any |1/O operations
on the data set. You can open a file explicitly by using the OPEN
statenent, or inplicitly by accessing the file with the following 1/0O
st at enent s:

e GET EDIT
e PUT EDIT
e GET LIST
e PUT LIST
* READ

* WRITE

* READ Varying

* WRITE Varying

The general formof the OPEN statenent is
OPEN FILE(File-id) [file-attributes];

where file-id is the file identifier that appears in a FILE declaration
statenent, and file-attributes denotes one or nore of the follow ng:

* STREAM RECORD

* PRINT

* | NPUT/ QUTPUT/ UPDATE
* SEQUENTI AL/ DI RECT

* KEYED

e TITLE

PL/1 Progranmer's CQuide 4.3 |/0O and File-handling Statenents

* ENVI RONMENT
* PACESI ZE
* LI NESI ZE

Multiple attributes on the sane Iine are conflicting attributes, so you
can only specify one attribute. The first attribute listed is the
default attribute. Al the attributes are optional; you can specify
themin any order.

A STREAM file contains variable length ASCI1 data. You can visualize it
as a streamof ASCI| character data, organized into |lines and pages.
Each line in a STREAMfile is deternm ned by a linemark, which is a
line-feed or a carriage return/line-feed pair. Each page is detern ned
by a pagemark, which is a formfeed. GCenerally, you nust convert the
data in a STREAMfile fromcharacter formto pure binary form before
using it. Sone text editors automatically insert a line-feed follow ng
each carriage return, but files that PL/I creates can contain |line-
feeds without preceding carriage returns. In this case, PL/lI senses the
end of the Iine when it encounters the |ine-feed.

A RECORD file contains binary data. PL/lI accesses the data in bl ocks
determined by a declared record size, or by the size of the data item
you use to access the file. A RECORD file nust al so have the KEYED
attribute, if you use FI XED BI NARY keys to directly access the fixed-
| ength records.

The PRINT attribute applies only to STREAM QUTPUT files. PRINT
i ndi cates that the data is for output on a line printer

For an INPUT file, PL/I assunes that the file already exists when it
executes the OPEN statenent. When it executes the OPEN statenent for an
QUTPUT file, PL/l also creates the file. If the file already exists,
PL/I first deletes it, then creates a new one.

You can read fromand wite to an UPDATE file. PL/| creates an UPDATE
file, if it does not exist, when executing the OPEN statenent. An
UPDATE fil e cannot have the STREAM attri but e.

You access SEQUENTI AL files sequentially frombeginning to end, but you
access DIRECT files randomy using keys. PL/1 automatically gives

DI RECT files the RECORD attribute. PL/I also requires you to declare
all UPDATE files with the DI RECT attribute, so you can locate the

i ndi vi dual records.

A KEYED file is sinply a fixed-length record file. The key is the
relative record position of the record within the file based upon the
fixed record size. You nmust use keys to access a KEYED file. PL/I
automatically gives KEYED files the RECORD attri bute.

The TITLE(c) attribute defines the progranmmtic connection between an
internal filenane and an external device or a file in the operating
systemis file system If you omit the TITLE attribute, PL/I assigns the
default title file id. DAT, where file-id is the file identifier
specified in the OPFFN statenent.

The character string c¢c can specify a physical device such as a consol e
or printer (see Section 10.2, LRM . If the character string c
specifies a disk file, it nust be in the form

d:filename.typ;password

PL/1 Progranmer's CQuide 4.3 |/0O and File-handling Statenents

where the drive code d, the filetype, and the password are al
optional. You nust specify a filename. The fil ename cannot be an
anbi guous wi I dcard reference.

You can al so specify $1 or $2 for both the filenanme and filetype. $1
gets the first default nane fromthe command |ine, $2 gets the second
defaul t nane.

The ENVI RONMENT attribute defines fixed record sizes for RECORD files,
internal buffer sizes, the file open node, and the |evel of password
protection. You can open a file in one of three nodes: Locked, Read-
Only, or Shared. Locked is the default node, and neans that no ot her
user can access the file while it is open. Read-Only neans that other
users can access the file, but only to read it.

Shared node nmeans that other users can al so sinultaneously open and
access the file. You can use the built-in LOCK and UNLOCK functions to
| ock and unl ock individual records in the file, so there are no
collisions with other users.

If you assign a password to a file, you can also assign the |evel of
protection that the password provides. The |levels of protection are:
Read, Wite, and Delete. Read neans that you nust supply the password
toread the file. Wite neans that you can read the file, but you nust
supply the password to wite to the file. Delete neans that you can
read the file or wite to it, but you cannot delete the file wthout

t he password.

Note: File password protection and record | ocking/unl ocking for
i ndi vidual records is not available in all inplenentations. See
Appendix Ain the LRM

The LINESIZE attribute applies only to STREAM files, and defines the
maxi mum nunber of characters in the input or output line length. The
PAGESI ZE attribute applies only to STREAM QUTPUT files, and defines the
nunber of |ines per page on output.

4.3.2 File Attributes

PL/1 controls all file transactions through an internal data structure
called the File Parameter Block (FPB). The FPB contains information
about the file, such as whether it is open or closed, the externa
device or file associated with the file, the current |ine and col um,
or record being accessed, and the internal buffer size. The FPB al so
contains a File Descriptor that describes the file's attributes. These
attributes in turn describe the allowabl e nmethods of access. Table 4-1
sunmari zes the valid attributes that you can assign to a file, either
t hrough an explicit OPEN statement, or inplicitly by an I/O access

st at ement .

Table 4-1 PL/1 Valid File Attri butes

STREAM | NPUT ENVI RONMENT TI TLE LI NESI ZE

STREAM OUTPUT ENVI RONMENT TI TLE LI NESI ZE PAGESI ZE

STREAM OQUTPUT PRI NT ENVI RONMVENT TI TLE LI NESI ZE PAGESI ZE

RECCORD | NPUT SEQUENTI AL ENVI RONMENT TI TLE

RECORD QUTPUT SEQUENTI AL ENVI RONMVENT TI TLE

RECORD | NPUT SEQUENTI AL KEYED ENVI RONMENT TI TLE

RECORD OUTPUT SEQUENTI AL KEYED ENVI RONMENT TI TLE

PL/1 Progranmer's CQuide

4.3 |/0O and File-handling Statenents

RECORD | NPUT DI RECT KEYED ENVI RONMENT TI TLE

RECCORD QUTPUT DI RECT KEYED ENVI RONMENT TI TLE

RECORD UPDATE DI RECT KEYED ENVI RONMVENT TI TLE

4.3.3 Implied Attributes

If you do not open a file with explicit attributes, PL/I determ nes the
attributes fromthe type of 1/0O statement you use to access the file.
Tabl e 4-2 sumuarizes the attributes inplied by each of the I/0O

statenents. In the follow ng table,

is afile constant, x is scal ar

or aggregate data type that is not CHARACTER VARYING and k is a FlI XED

Bl NARY key val ue.

Table 4-2 File Attributes Associated Wth |1/O Access

I/ O Statenent

Inmplied Attributes

GET FILE(f) LIST STREAM | NPUT
PUT FILE(f) LIST STREAM OUTPUT
GET FILE(f) EDIT STREAM | NPUT
PUT FILE(f) EDIT STREAM OUTPUT
READ FILE(f) | NTO(V) STREAM | NPUT

WRI TE FILE(f) FROM V)

STREAM QUTPUT

READ FILE(f) I NTO(x)

RECORD | NPUT SEQUENTI AL

READ FILE(f) INTO(x) KEYTQ(K)

RECORD | NPUT SEQUENTI AL KEYED
ENVI RONVENT(Locked, Fi xed(i))

READ FILE(f) INTO(x) KEY(K)

RECORD | NPUT DI RECT KEYED
ENVI RONVENT(Locked, Fi xed(i))
RECORD UPDATE DI RECT KEYED

ENVI RONVENT(Locked, Fi xed(i))

WRI TE FILE(f) FROM x)

RECORD OUTPUT SEQUENTI AL

VWRI TE FILE(f) FROM x) KEYFROM k)

RECORD OUTPUT DI RECT KEYED
ENVI RONVENT(Locked, Fi xed(i))
RECORD UPDATE DI RECT KEYED
ENVI RONVENT(Locked, Fi xed(i))

4.3.4 Closing Files

The CLOSE statenent di sassociates the file fromthe external data set.

The formof the CLOSE statenent
CLOSE FILE(File-id);

where file id is a file constant for which PL/I clears the internal
buffers, records all the data on the disk, and closes the file at the
operating systemlevel. You can subsequently reopen the same file using
the OPEN statenent. PL/| automatically closes all open files at the end
of the program or upon execution of a STOP statenent.

4.3.5 File Access Methods

PL/1 supports two nmethods of file access:

e STREAMI/O
* RECORD I/O

There are three different kinds of STREAM I/ QO

4-10

PL/1 Progranmer's CQuide 4.3 |/0O and File-handling Statenents

* LIST-directed uses the GET LI ST and PUT LI ST statenments, which
transfer a list of data itenms w thout any format specifications.

* Line-directed uses the READ and WRI TE statenents, which allow you to
access vari abl e-1 engt h CHARACTER data in an unedited form These
statenents might not be available in other inplenmentations of PL/I.

e EDIT-directed uses the GET EDIT and PUT EDI T statenents, which allow
formatted access to character data itens.

EDI T-directed 1/Ois simlar to list-directed I/O except that it wites
data into particular fields of the output line, as described by a list
of format itenms. The data |ist specifies a number of values to wite in
fixed fields defined by the format-Iist.

The format-1ist can contain two kinds of format itenms: data format
itenms and control format itens. PL/I pairs each el ement of the data
list with an itemin the format-list. The format item deterni nes how
PL/l1 interprets the data elenent. PL/| executes control format itens as
they are encountered in the format-1Iist.

You can precede any format itemw th a positive integer constant val ue,
not exceedi ng 254, that determ nes the nunber of tinmes to apply the
format itemor group of format itens.

4.3.6 Data Format Items

The foll owi ng exanpl es show the various format itenms you can use in a
GET EDIT or PUT EDI T statenent.

Al (W]
The A format reads or wites the next al phanuneric field whose width is
specified by w, with truncation or blank padding on the right. [If you

omit w, the A format uses the size of the converted character data as a
field w dth.

B nl[(W]

The B fornmat reads or wites bit-string values. n is the nunber of bits
used to represent each digit. wis the field width that you mnust
i ncl ude on input.

E(w, d])

The E format reads or wites a data iteminto a field of w characters
in scientific notation, with maxi mum precision allowed in the field
wi dth. w nust be at |east 8.

F(w, d])

The F format reads or wites fixed-point arithnmetic values with a field
width of wdigits, and d optional digits to the right of the decimal
poi nt .

4.3.7 Control Format Items
LI NE(I n)

Moves to the line specified by In in the data streambefore witing the
next data item

COLUMN(nc)

4-11

PL/1 Progranmer's CQuide 4.4 Condi ti on-processing Statenents

Moves to col um position specified by nc in the data stream before
reading or witing the next data item This can flush the current |ine.

PAGE

Perforns a page eject for PRINT files.

SKIP[(nl))

Skips nl lines before reading or witing the next data item
X(n)

Advances n bl ank characters into the data stream before reading or
witing the next data item

R(fnt)

Specifies a renote format. This means that the format is specified
el sewhere in a FORMAT st atenent.

4.3.8 Predefined Files

PL/1 has two predefined file constants called SYSIN, the console
keyboard, and SYSPRINT, the consol e output display. These files do not
need to be declared unless you nake an explicit reference to themin an
OPEN or 1/0O statenent.

SYSIN has the default attributes:

STREAM INPUT ENVIRONMENT(Locked,Buff(128)) TITLE("$CON") LINESIZE(80)
PAGESIZE(0)

SYSPRI NT has the default attri butes:

STREAM PRINT ENVIRONMENT(Locked,Buff(128)) TITLE("$CON") LINESIZE(80)
PAGESIZE(0)

4.4 Condition-processing Statements

PL/1 has several features that nmake it ideal for applications
progranm ng. One of these features is its capability for condition
processing. In nost |anguages, the program cannot recover fromrun tine
error conditions, such as an invalid data conversi on—ontrol reverts to
the operating system

PL/1 has various features that allow you to intercept run-time errors,
program a response, and recover control. These features are
collectively called condition processing.

PL/1 provides condition processing with these executable statenments:

* ON
* REVERT
* SIGNAL

4.4.1 The ON Statement

You use the ON statement to intercept and programa response to a run-

tinme condition signaled by the system or by the execution of a SIGNAL

statenment. The ON statenment is an executable statenent that defines the
response. It has the form

4-12

PL/1 Progranmer's CQuide 4.4 Condi ti on-processing Statenents

ON condi ti on-nane on-body;

where condition-name is one of the major condition categories, with or
wi t hout a subcode (see Section 4.4.4). The on-body is a PL/I statenent
or statenent group that you process when the condition occurs.

If the subcode is not present, then PL/I processes the ON statenent
when any of the subcode conditions occur. This is equivalent to subcode
0. The file conditions nust have a file reference describing the file
for which the condition is signaled.

4.4.2 The REVERT Statement

You use the REVERT statenent to disable the ON condition set by the ON
statenment. This is inportant because you can have only sixteen ON
conditions set without overflowi ng the condition code area. |If overflow
happens, the PL/I run-tine system stops processing. The formof the
REVERT statement is

REVERT condi ti on- nane;

PL/1 automatically reverts an ON condition set in a given bl ock when
control |eaves the environnment of that bl ock.

4.4.3 The SIGNAL Statement

The SI GNAL statenent allows you to activate the response for a
condition. The formof the SIGNAL statement is

SI GNAL condi ti on- nane;

4.4.4 Condition Categories

The condition categories describe the various conditions that the run-
time systemcan signal or that your programcan signal by executing a
SI GNAL st at enent.

There are nine mjor condition categories with subcodes, some of which
are systemdefined, and sone of which you can define yourself. Table
4-3 shows the predefined subcodes.

Table 4-3 PL/I Condition Categories and Subcodes

Type Meani ng

ERROR
ERROR(0) Any ERRCOR subcode
ERROR(1) Dat a conversion
ERROR(2) I/ O Stack overfl ow
ERROR(3) Function argunent invalid
ERROR(4) I/O Conflict
ERROR(5) Format stack overfl ow
ERROR(6) Invalid format item
ERROR(7) Free space exhausted
ERROR(8) Overlay error, no file
ERROR(9) Overlay error, invalid drive
ERROR(10) Overlay error, size
ERROR(11) Overlay error, nesting

4-13

PL/1 Progranmer's CQuide 4.4 Condi ti on-processing Statenents
Type Meani ng
ERROR(12) Overlay error, disk read error
ERROR(13) Invalid OS call
ERROR(14) Unsuccessful Wite
ERROR(15) File Not Open
ERROR(16) File Not Keyed

FI XEDOVERFLOW

FI XEDOVERFLOW 0)

Any FI XEDOVERFLOW subcode

OVERFLOW
OVERFLOW 0) Any OVERFLOW subcode
OVERFLOW(|) Fl oati ng- poi nt operation
OVERFLOW 2) Fl oat precision conversion
UNDERFLOW
UNDERFLOW 0) Any UNDERFLOW subcode
UNDERFLOW |) Fl oati ng- poi nt operati on
UNDERFLOW 2) Fl oat precision conversion
ZERODI VI DE

ZERODI VI DE(0)

Any ZERODI VI DE subcode

ZERODI VI DE(1)

Deci mal divi de

ZERODI VI DE(2)

Fl oati ng- poi nt divide

ZERODI VI DE(3)

I nt eger divide

ENDFI LE

UNDEFI NEDFI LE

KEY

ENDPAGE

In addition to these predefined system condition subcodes, you can
define certain subcodes for a specific application, test for the
desired condition, and then use the SIGNAL statement to signal the

condi ti on.

4.4.5 Condition Processing Built-in Functions

PL/1 provides certain built-in functions to help handl e conditions when
they occur. These functions are

* ONCODE
* ONFILE
* ONKEY

* PAGENO
* LI NENO

The ONCODE function returns the subcode of the nost recently signal ed
condition, or zero if no condition has been signal ed.

The ONFI LE function returns the internal filenane of the file invol ved
in an |/O operation that signaled a condition.

The ONKEY function returns the value of the last key involved in an I/O
operation that signaled a condition.

4-14

PL/1 Progranmer's CQuide 4.5 Menmory Managenent Statenents

The PAGENO and LI NENO functions return the current page nunber and |ine
nunber for a PRINT file named as the paraneter

4.5 Memory Management Statements

Every variable in a PL/l program has a storage-class attribute. The
storage cl ass determ nes how and when PL/I allocates storage for a
vari abl e, and whether the variable has its own storage or shares
storage with another variable.

PL/I supports four different storage classes:
* AUTOMATIC (the default in PL/I)

* BASED

* PARAMETER

» STATIC

PL/1 treats AUTOVATI C storage as STATIC storage, except in procedures
mar ked as RECURSI VE. The conpiler allocates storage for STATIC
variables prior to execution, and the storage remains allocated as |ong
as the programis running. You can use the INITIAL attribute to assign
initial constant values to STATIC data itemns.

If a variable appears in a paranmeter list, the conpiler assigns it the
PARAMETER st orage class. Storage for paranmeters is allocated by the
calling procedure when it passes the paraneters to the called
procedure. (See Appendix A in the LRM)

Note: Only STATIC variables can have the INITIAL attribute, to be
conpatible with the ANSI Subset G PL/I standard.

Storage-class attributes are properties of scalars, arrays, mgjor
structure variables, and file variables. You cannot assign storage
class attributes to entry nanes, file constants, or nenbers of data
aggr egat es.

45.1 BASED Variables and Pointers

The conpiler does not allocate storage for variables with the BASED
storage class. A based variable is a variable that describes storage
that you nust access with a pointer. The pointer is the |ocation where
the storage for the based variabl e begins, and the based variabl e
itself determines how PL/I interprets the contents of the storage

begi nning at that location. Thus, the pointer and the based variable
taken together are essentially equivalent to a nonbased vari abl e.

You can visualize a based variable as a tenplate that overlays the
storage specified by its base. Thus, a based variable can refer to
storage all ocated for the based variable itself, or to storage

all ocated for other variabl es.

The format of the BASED variable declaration is
DECLARE name BASED[(poi nter-reference)];
For exanpl e,

declare A(5,5) character(10) based;
declare bit-vector bit(8) based(p);

4-15

PL/1 Progranmer's CQuide 4.5 Menmory Managenent Statenents

where the pointer reference is an unsubscripted PO NTER variable, or a
function call, with zero argunents, that returns a PO NTER val ue.

A pointer-qualified reference can be either inplicit or explicit. Wen
you declare a variable as BASED wi thout a pointer reference, then each
reference to the variable in the programnust include an explicit
pointer qualifier of the form

pointer-exp -> variable

When you declare a variable as BASED with a pointer reference, then you
can reference it without a pointer qualifier. The run-time system
reeval uates the pointer reference at each occurrence of the unqualified
vari abl e using the pointer expression given in the variable

decl arati on.

The followi ng code sequence illustrates the concept of based vari abl es.

declare
p pointer,
a character(128),
b(128) character(l) based(p),
c(0:127) bit(8) based(p),
d(64) bit(16) based(p),
e(8,0:15) bit(8) based(p);

p = addr(a);

In this exanple, after pointer p is set to the address of a, each of
the variables b, ¢, d, and e refers to the sane 128 bytes of storage
occupi ed by the variable a, although they do so in different ways.
Thus, the variables b, ¢, d, and e overlay the variable a.

There is one inportant point to consider here. The overlays illustrated
above depend on the nmethod a particul ar processor uses to internally
represent and store the data itenms. Such code nmakes a program

i mpl enent ati on-dependent. For exanple, in inplenentations other than
PL/1, the internal representation of an array could include sone header
bytes in addition to the bytes used to represent the data elenents. In
each case, you nust investigate the internal representation before
usi ng based variables to overlay other data types.

45.2 The ALLOCATE Statement

The ALLOCATE statenment explicitly allocates storage for a BASED
vari abl e. The ALLOCATE statenent takes the form

ALLOCATE based variable SET(pointer variable);
For exampl e,
allocate input_buffer set(buffer_ptr);

The run-tine system obtains sufficient menory for the based variable
fromthe free storage area and then sets the pointer variable to the
address of this nenory segnent.

45.3 The FREE Statement

The FREE statenent rel eases the storage allocated to a BASED vari abl e.
The FREE statenent takes the form

FREE [pointer variable] based variable;

4-16

PL/1 Progranmer's CQuide 4.6 Preprocessor Statenents

For exampl e,
free inputbuffer;

Note: The pointer variable reference is optional if you declared the
based variable with a pointer reference.

The foll owi ng code sequence illustrates the use of the ALLOCATE and
FREE st at ement s.

declare

(p,q,r) pointer,
a character based,
b fixed based(r);

allocate a set(p);
allocate b set(r);
allocate a set (q)

free p a;
free q a;
free b;

4.6 Preprocessor Statements

Preprocessor statenents allow you to include other files and nodify the
source programat conpile tine.

The % NCLUDE st atenent copies PL/I source fromanother file at conpile
time. The 9% NCLUDE statenent is useful for filling in declarations that
are repeated throughout a program The % NCLUDE st at enent takes the
form

%INCLUDE *“filespec”;

For exanpl e,
%include "fcb.dcl";

The 9%REPLACE statement allows you to replace identifiers by litera
constants throughout the text of a PL/I programat conpile tinme. The
YREPLACE statenent takes the form

%REPLACE identifier BY literal constant;

You can put nore than one identifier-constant pair in a single %
REPLACE st atenent by separating the pairs with comas.

For exanpl e,

%replace
true by "1%b,
false by "0"b;

4.7 Null Statements
The null statenent does not performany action. Its formis sinply:

You can use the null statement as the target of a THEN or ELSE cl ause
inan |F statement. In the foll ow ng exanpl e,

if x > average then
goto print_it;
else;

4-17

PL/1 Progranmer's CQuide 4.7 Nul | Statenents

no action takes place when x is |less than or equal to average, and the
sequence of execution continues at the statenment followi ng the ELSE. As
anot her exanpl e, consider this statenent:

on endpage(report-file);

Here, no action takes place when PL/I processes the ON-unit for
ENDPAGE, and the 1/0O statenent that signaled the condition continues.

You can also use null statenents to give nore than one |abel to the
sane executabl e statenent. For exanple,

A:;
B: statement-1;
statement-2;

Ref erences: LRM Sections 2.7 to 2.9, 2.15, 7, 8, 9, 10.1 to 10.3, 10.7
to 10.8, 11.1, 11.3

End of Section 4

4-18

Section 5

5 Programming Style

PL/1 is a free-format | anguage. You can wite prograns w thout regard
to columm positions and specific line formats. Each line can be up to
120 characters long terninated by a carriage return, and logically
connected to the next line in sequence. The conpiler sinply reads the
source programfromthe first through the last |ine, disregarding |line
boundari es.

In exchange for this freedom of expression, you should adhere to sone
stylistic conventions, so that your programs can be easily read and
under st ood by other programmers. A professional programnot only
produces the correct output, but is consistent in formand divided into
| ogi cal segnents that are easy to conprehend. A logically structured
programis al so nmuch easier to debug. A well constructed programis
appreciated for its formand its function

There are many stylistic conventions in use by individual programmers.
The following rules illustrate one set of conventions that are used

t hroughout the exanples in this guide. Listing 5-1 illustrates the
conventions presented in this section

5.1 Case

You can wite PL/I progranms in either upper- or lowercase. Internally,
the PL/1 conpiler translates all characters, outside of string quotes,
to uppercase. Using the use of |owercase throughout progranms generally
i mproves readability.

5.2 Indentation

Use indentation throughout your programto set off various declarations
and statenents. To sinplify indentation, the conpiler expands tabs
(CTRL-1 characters) to every fourth columm position. Some text editors
expand tabs to nmultiples of eight columms, so the |line appears wi der
during the edit and di splay operations. The conpiler issues the TRUNC
(truncate) error if the expanded |line |length exceeds 120 col umms.

Program statenents start at the outer block level in the first colum
position. Each successive block level, initiated by a DO group, BEGQ N,
or PROCEDURE bl ock, starts at a new indentation |evel, four spaces or
one tab stop. Gve statements in a group the sane indentation |evel

wi th procedure nanes and | abels on a single line by thensel ves.

PL/ I

Programmrer's Gui de 5.2 | ndent ati on

Original Page number 5-2 is missing. If you have it please send email
to pdlawrence@prodigy.netfand 1 will insert.

mailto:bdlawrence@prodigy.net

PL/1 Progranmer's CQuide 5.2 I ndent ati on

i nfornmation required to understand the overall purpose and operation of
your program They also sinplify the task of naintaining and updating
the code without introducing errors.

This program computes the largest of three
/* FLOAT BINARY numbers x, y, and z.

test:
procedure options(main);
declare
(a,b,c) float binary;
put list ("Type Three Numbers:
get list (a,b,c);
put list ("The Largest Value is",max3(a,b,c));

/* this procedure computes the largest of x, y, and z
max3: proceduredx,y,z) returns(float binary);
declare
(x,y,z,max) Float binary;

if x >y then

X > z then
if max = x;
else
max = z;
else
if y > z then
max = y;
else
max = z;
return(max) ;
end max3;

end test;
Listing 5-1. PL/1 Stylistic Conventions

Ref erences: PL/I Command Summary

End of Section 5

Section 6

6 Using the System
Devel oping a PL/1 programis a 3-step process:

1. Wite the source file using any suitable text editor
2. Conpile the source file and generate the rel ocatable object file.
3. Link the relocatable object file with the Run-time Subroutine

Li brary to generate an executable conmand file.

PL/1 is a conpiled | anguage. Consequently, if you nake any change to
the source file, you nmust reconpile the program Try to divide |arge
programs into several snall nodul es, conpile each nodul e separately,
then link themtogether. Small prograns conpile faster and use |ess

storage for the Synbol Table.

Figure 6-1 illustrates the devel opnent process.

PL/I Optional
Source % INCLUDE
File File
PL/I
Compiler
R Other
elgcatat_)le Relocatable
Obiject File Obiject Files

Linkage
Editor

Optional
PRN
Listing

Subroutine
Run-Time
Library

Executable SYM
Command Symbol
File Table File

Fi gure 6-1. PL/I Program Devel opnment

6.1 PL/1 System Files

When you receive your PL/1 system you should first make copi es of al
the distribution disks. If you are unsure howto do this, read your
operating system docunentation

The contents of the distribution disks varies with the inplenentation
The file RELNOTES. PRN on the Sanple Program Di sk descri bes the contents
of the files for your particular inplenentation

Note: You have certain responsibilities when making copies of Digita
Research programs. Be sure you read your |icensing agreenent.

After you nmake back-up disks, |oad your conpiler disk and type a DIR
command:

A>dir

PL/1 Progranmer's CQuide 6.2 I nvoki ng the Compil er

The directory contains several types of files, as shown in Table 6-1

Table 6-1 PL/I System Files

Type Definition

C\VD Execut abl e conmand file (8086
i mpl ementations) , for exanple,
DEMO. CVD

com Execut abl e conmand file (8080
i mpl ementations) , for exanple,
DEMO. COM

DAT Default data fil etype

DCL % NCLUDE file (data decl arations)

EXE Execut abl e command file (under |BM
DOS) , for exanple, DEMO EXE

| RL I ndexed Rel ocatable File, for
exanple PLILIB.IRL

L86 Library file (8086
i npl ementations), for exanple,
PLILIB.L86

oBJ Rel ocat abl e obj ect code file (8086
i mpl ement ati ons), for exanple,
DEMO. OBJ

OvL PL/1 Conpiler Overlays (8080
i npl ementations) , PLIO, PLI1, and
PLI 2

OVR PL/1 Conpiler Overlays (8086
i npl ementations) , PLIO, PLI1, and
PLI 2

PLI PL/1 source prograns, for exanple,
DEMO. PLI

PRN Printer disk file; conpiled
programlisting on disk. Also
used for readabl e docunentation
file

REL Rel ocat abl e obj ect code file (8080
i npl ementations), for exanple,
DEMO. REL

SYM Synbol Table File, for exanple
DEMO. SYM

Note: The only files that contain printable characters are the PL
source programs, PRN printer listing files, and the SYM synbol table
files.

6.2 Invoking the Compiler
You i nvoke the PL/I conpiler using a conmand of the general form

pli filespec [$options]

where filespec designates the programto conpile and can include an
optional drive specification. For exanple,

d:myfile_pli

PL/1 Progranmer's CQuide 6.3 Conpi |l er Operation

You need not specify the filetype because the conpiler assunes type
PLI.

$options represent a list of paraneters that you can optionally include
in the command |ine when conpiling a program These paraneters enabl e
the various conpiler options as shown in Table 6-2 on the follow ng
page.

In each case, the single-letter option follows the $ synbol in the

conmmand |ine. You can specify a maxi mum of seven options follow ng the
dol lar sign. The default nbde using no options conpiles the program but
produces no source listing and sends all error nessages to the console.

Table 6-2 PL/I Conpiler Options

Option Action Enabl ed

A Abbreviated listing. Disables the listing of
parameters and % NCLUDE statenments during the
conpiler's first pass.

B Built-in subroutine trace. Shows the Run-tine
Subroutine Library functions that are called
by your PL/1 program

D Disk file print. Sends the listing file to
di sk, using the filetype PRN

I Interlist source and machi ne code. Decodes the
machi ne | anguage code produced by the conpiler
in a pseudo-assenbly | anguage form

K Sane as A

L Li st source program Produces a listing of the
source programw th |ine nunbers and machi ne
code | ocations (automatically set by the
switch).

N Nesting | evel display. Enables a pass 1 trace

that shows exact bal ance of DO, PROCEDURE, and
BEG N statenments with their correspondi ng END
st at enent s.

(@) bj ect code off. Disables the output of
rel ocat abl e obj ect code normally produced by
the conpiler.

P Page node print. Inserts formfeeds every 60
lines, and sends the listing to the printer
S Synbol Tabl e di splay. Shows the program

vari abl e nanes, along with their assigned,
defaul ted, and augnmented attri butes.

6.3 Compiler Operation

The PL/1 conpiler reads source programfiles and generates a

rel ocatabl e, native code object file as output. PL/I is a 3-pass
conpiler, with each pass a separate overlay. Pass 1 collects

decl arations, and builds a Synbol Table used by subsequent passes.
Pass 2 processes executable statenents, augnents the Synbol Table, and
generates internedi ate | anguage in tree-structure form Both passes
anal yze the source text using recursive descent.

Pass 3 perforns the actual code generation, and includes a
conpr ehensi ve code optim zer that processes the internmediate tree

PL/1 Progranmer's CQuide 6.3 Conpi |l er Operation

structures. Alternate forns of an equival ent expression are reduced to
the sane form and expressions are rearranged to reduce the nunber of
tenporary variables. There is also a special-fornms recogni zer that
detects and natches approximately three hundred tree structures of
special interest. Special-forns recognition allows the conpiler to
generate concise code sequences for many common statenents.

Note: All the conpiler overlays (PLIO, PLI1, and PLI2) nust be on the
default drive.

As the conpiler proceeds through the first two passes, it displays the
nessages:

NO ERROR(S) IN PASS 1
NO ERROR(S) IN PASS 2

If there are errors, the conpiler lists each Iine containing an error
with the line nunber to the left, a short error nmessage, and a ? bel ow
the position in the line where the error occurs.

At the end Pass 3, the conpiler displays the nessage,

CODE SIZE = nnnn
DATA AREA = nnnn
FREE SYMS = nnnn

END COMPILATION

where nnnn are hexadeci mal nunbers representing the anount of storage
used for the code and data, as well as the anpbunt of Transient Program
Area (TPA) left for Symbol Table space.

If the nunmber of error nessages is excessive and you want to make
corrections before proceeding, you can halt the conpilation by pressing
any key. The conpiler responds with the nessage:

STOP PL/1 (Y/N)?
Enter Y to halt the compilation.

Not e: Under DOS, you stop a program by pressing CTRL-Break, which
i mediately returns control to the operating system Therefore, you
will not see the nmessage output by PL/I

If you use the N option, the conpiler lists the programline nunmber on
the left, followed by a letter a through z that denotes the nesting

| evel for each line. The main programlevel is a, and each nested BEG N
advances the level by one letter, while each nested PROCEDURE advances
the level by two letters.

If you use the L option, the conpiler lists the relative machine code
address for each line as a four-digit hexadeci mal nunber. This address
is useful for deternmining the anbunt of nmchine code generated for each
statement and the relative nachi ne code address for each line of the
program The conpiler prints the source |anguage statenent on the |ine
following the relative machi ne code val ue.

Listings 6-la and 6-1b show two conpilations of a program call ed DEMO
that is on your sanple program di sk

1 a demo:

2b procedure options(main);

3b

4 b declare

5b name character(20) varying;
6 b

6-4

PL/1 Progranmer's CQuide 6.4 The DEMO Pr ogram

7b
8 b put skip(2) list("PLEASE ENTER YOUR FIRST NAME: *);
9b get list(name);

10 b put skip(2) list("HELLO *, name," WELCOME TO PL/1%);

12 bend demo;
Li sting 6-1. Conpilation of DEMO Using $N Option

0000 demo:

0006 procedure options(main);

0006

0006 declare

0006 name character(20) varying;

0006

0006

0006 put skip(2) list("PLEASE ENTER YOUR FIRST NAME: *);
0022 get list(name);

10 ¢ 003C put skip(2) list("HELLO ", name," WELCOME TO PL/1%);
11 c 006C

12 a 006C end demo;

Li sting 6-2. Conpilation of DEMO Using $L Option

OCoO~NOOUTAWNPE
O000O00 2R

6.4 The DEMO Program

You can start learning to use the PL/I system by conpiling the program
call ed DEMO. The source file for DEMOis on your PL/I| sanple program
di sk, so you do not have to wite the code. To display the source file,
use the TYPE comand, as foll ows:

To conpile the DEMO program enter the conmand
A>pli demo

Now exam ne your directory and find the object file that contains the
rel ocat abl e machi ne code produced by the conpiler. The machi ne code
produced by the conpiler is not directly executable, so you have to
link the object file with the Run-tine Subroutine Library (RSL) with
t he conmand:

A>link demo

Now exam ne your directory and find the conmand file and the Synbol
Table file produced by the Iinkage editor. You can | oad the Synbo
Table file under SID-80 or SID-86 for debuggi ng.

6.5 Running DEMO
To run the conpiled program enter the nane of the conmand file,

A>demo

The operating system | oads the DEMO program which begins processing
and pronpts you with the nessage,

PLEASE ENTER YOUR FIRST NAME:
Console input is free-field and incorporates the full line-editing

facilities of the operating system Wen you enter your nane, DEMO
gi ves an appropriate response. Listing 6-2 shows interaction with DEMO

PL/1 Progranmer's CQuide 6.6 Error Messages and Codes

A>demo

PLEASE ENTER YOUR FIRST NAME: Larry
HELLO Larry, WELCOME TO PL/1

A>

Listing 6-3. Interaction with the DEMO Program

Various run-tine errors can halt processing if the program does not
explicitly intercept them In this case, PL/I displays the nessage in
the following form

error-condition (code), file-option, auxiliary-message
Traceback: aaaa bbbb cccc dddd # eeee FFff gggg hhhh

The error-condition is one of the standard PL/1 condition categories
(see Section 4.4.4). Code is an error subcode identifying the origin of
the error.

PL/1 prints the file option when the error involves an |/O operation,
and takes the form

File: internal=external

where internal is the internal programnanme that references the file
involved in the error, and external is the external device or filenane
associated with the file. PL/I prints the auxiliary nmessage whenever
the preceding information is insufficient to identify the error

The traceback portion lists up to eight elenments of the internal stack
In the preceding general form elenent aaaa corresponds to the top of
the stack, while hhhh corresponds to the bottomof the stack. If the
stack depth exceeds eight elenents, the # character separates the four
topnost elenents on the left fromthe four [owernost el enents on the
right.

Listing 6-3 is an exanple of the diagnostic form In this case, the
console input is an end-of-file (CTRL-Z) character. Entering a CTRL-Z
signal s the ENDFILE condition for the SYSINfile. This is standard
console input. In this exanple, the external device connected to the
SYSIN file is the console, denoted by CON

A>demo

PLEASE ENTER YOUR FIRST NAME: ~Z

END OF FILE (1), File: SYSIN=CON

Traceback: 07BE 0769 012E 4C00 # 0702 0322 8090 012E
A>

Listing 6-4. Error Traceback for the DEMO Program

6.6 Error Messages and Codes

PL/1 can detect two kinds of errors: conpilation errors and run-tine
errors. The Conpiler nmarks each conpilation error with an error nessage
following the I[ine containing the error, with a ? character near the
position of the error in the line. The ? mght follow the actual error
position by a few colums. |In sone cases, an error on one |line can | ead
to errors on subsequent |ines.

PL/1 categorizes errors as either recoverable or non-recoverable. Most
conpile-time errors are recoverable, and the Conpil er continues
processing the source file. However, sone conpile-tine errors are non-

PL/1 Progranmer's CQuide 6.6 Error Messages and Codes

recoverabl e. The Conpiler stops processing and control imediately
returns to the operating system

The run-tinme system detects errors while the programis running. Mst
run-tinme errors are recoverable if intercepted by an ONNunit. However,
sone run-time errors are non- recoverable. The program stops and
control imrediately returns to the operating system

In general, the error nmessages are inplenentation-dependent. See
Appendix Ein the LRMfor the conplete I|ist.

End of Section 6

Section 7

7 Using Different Data Types

PL/1 prograns allow you to use different data types to suit different
applications. In prograns throughout the nanual, you should note how
and why each type of data is used in a particular situation

7.1 The FLTPOLY Program

Listing 7-1 shows a program for evaluating a pol ynomni al expression
The program begi ns by reading three values, x, y, and z, fromthe
consol e, and then uses the values to evaluate the polynom a
expressi on:

p(X,y,z) = x>+ 2y + z

The main part of the programis bounded by a single DO group. On each
successive iteration, the programreads the values of x, y, and z from
the standard SYSIN, console, file. The programthen wites the val ue
produced by p(x,y,z) to the SYSPRINT file, again, the console file.
Finally, if all the input values are zero, the program executes the
STOP statenent and ends the indefinite | oop.

The program uses the YREPLACE statenent on line 8 to define the litera
value of true as the bit-string constant, '1'b. The conpiler
substitutes this val ue whenever it encounters the name true. Thus, the
conpiler interprets the DO group beginning on |ine 13 as,

do while ("1"b);
end, :

which | oops until it executes the contained STOP statenment. Using
UREPLACE statenents to define constants can inprove the readability of
your prograns.

a
a /* This program evaluates a polynomial expression
a /* using FLOAT BINARY data.

a

fltpoly:

procedure options(main);

%replace
true by "1%b;
10 bdeclare
11 b (x,y,z) float binary(24);

O©CO~NOUIAWNPE

COTCToTCTUTO9

13 cdo while(true);

14 c put skip(2) list("Type X,y,z: "};

15 c get list(x,y,z2);

16 c

17 c if x=0 & y=0 & z=0 then

18 ¢ stop;

19 c

20 c put skip list(" 2");

21 c put skip list(" X + 2y +z=",p(X,Y,2));
22 cend;

23 b

24 bP:

25 ¢ procedure (X,y,z) returns (float binary(24));

PL/1 Progranmer's CQuide 7.2 The DECPOLY Program

26 c declare

27 ¢ (x,y,z) float binary;
28 ¢ return (X * x + 2 *y + 7);
29 cend P;

30 b

31 b end Fltpoly;
Listing 7-1. Pol ynom al Eval uation Program (FLOAT Bl NARY)

Listing 7-2 shows the console interaction with the FLTPOLY program
The initial values for x, y, and z are: 1.4, 2.3, and 5.67, but on the
next |oop, the input takes the form

,4-5’ ’

This form changes the value of y only. Thus, on this |oop, the val ues
of X, y, and z are 1.4, 4.5, and 5.67. The third input line changes y
and z, while the fourth Iine changes x only.

A>Tltpoly
Type x,y,z: 1.4, 2.3, 5.67

2
X + 2y + z = 1.223000E+01

Type x,y,z: , 4.5,,

2
X + 2y + z = 1.663000E+01

Type x,y,z: , 4.0,-3.7

2

X + 2y + z = 1.427000E+01

Type x,y,z: 2.3,,,

2

X + 2y + z = 3.559999E+00

Type x,y,x: 0,0,0

A>
Listing 7-2. Interaction with FLTPOLY Program

7.2 The DECPOLY Program

Listing 7-3 shows the DECPOLY program which is essentially the sane
program as Listing 7-1. The difference between the two progranms is that
FLTPOLY uses FLOAT BI NARY data itens, while DECPOLY uses FI XED DECI MAL
itens. FLOAT BI NARY conputations execute significantly faster than
their FIXED DECI MAL equi val ents, but single-precision FLOAT Bl NARY
conputations involve truncation errors, and produce an answer with only
about 7 deci mal places of accuracy.

1a

2 a /* This program evaluates a polynomial expression
3 a /* using FIXED DECIMAL data.

4 a

PL/1 Progranmer's CQuide 7.2 The DECPOLY Program

decpoly:
procedure options(main);

%replace
true by "1%b;
10 bdeclare
11 b (x,y,z) fixed decimal(15,4);
b

13 cdo while(true);

14 ¢ put skip(2) list("Type X,y,z: ");
15 ¢ get list(x,y,z2);

16 c

17 c if x=0 & y=0 & z=0 then

18 ¢ stop;

19 c

20 c put skip list(" 2");
21 c put skip list(" X + 2y +z=",p(X,Y,2));
22 cend;

23 b

24 bP:

25 cprocedure (x,y,z) returns (fixed decimal(15,4));
26 cdeclare
27 ¢ (x,y,z) fixed decimal(15,4);

28 ¢ return (X * X + 2 * y + 2);
29 cend P;
30 b

31 b end decpoly;
Li sting 7-3. Pol ynom al Eval uati on Program (Fl XED DECI MAL)

Listing 7-4 shows the console interaction with the DECPOLY program
The initial input values for x, y, and z are: 1.4, 2.3, and 5.67.
These are the sane val ues used for the FLTPOLY program but notice the
difference in the output. The second | oop changes the values of y and
z, and the third | oop changes all three val ues.

A>decpoly
Type x,y,z: 1.4, 2.3, 5.67

2
X + 2y + z = 12.2300

Type x,y,z: , .0006, 7,

2
X + 2y + z = 8.9612

Type X,y,z: 723.445, 80.54, 0

2
X + 2y + z = 523533.7480

Type x,y,z: 0,0,0

A>
Listing 7-4. Interaction with DECPOLY Program

PL/1 Progranmer's CQuide 7.2 The DECPOLY Program

Experiment with these two prograns by conparing the results when you
enter the same values in each one. Understanding how PL/I internally
treats the different data types hel ps you choose the right type of data
to suit the application.

Ref erences: LRM Section 3.1, 11.1, Appendix A

End of Section 7

7-4

Section 8

8 STREAM and RECORD File Processing

The exanple programs in this section illustrate STREAM and RECORD fil e
processing using the various |I/0O statenents.

8.1 File Copy Program

Listing 8-1 shows a general purpose, file-to-file copy program The
program first defines and opens two file constants called input file
and output - file. It then begins executing a continuous |oop that
reads data frominput-file and copies it to output-file.

Both OPEN statenments define STREAMfiles with internal buffers of 8192
bytes each. In the first OPEN statenment, PL/I1 supplies the default
attribute INPUT, while the second OPEN statenment explicitly specifies
an QUTPUT file. Oherwise, it would also default to an I NPUT file.

This program shows the special use of READ and WRI TE statenents to
process STREAM files. The READ statenent on line 19 reads a STREAMfile
into buff, a character string of varying length. It reads each |line of

i nput up to and including the next carriage return line-feed into buff,
and sets the length of buff to the ambunt of data read, including the
carriage return line-feed character. The WRI TE statenent perfornms the
opposite action. It sends the data to a STREAMfile from buff. The
output file receives all characters fromthe first position through the
| engt h of buff.

The programterni nates by reading through the input file until it
reaches the end-of-file (CTRL-Z) character. PL/I automatically closes
all open files, and wites the internal buffers onto the disk, thus
preserving the newly created output file.

1la

2 a /* This program copies one file to another using
3 a /* buffered 1/0.

4 a

5 a copy:

6 b procedure options(main);

7Db declare

8 b (input_file,output_file) file;

9b

10 b open file (input_file) stream

11 b environment(b(8192)) title("$1.$17);

12 b

13 b open file (output_file) stream output
14 b environment(b(8192)) title("$2.$27);

15 b declare

16 b buff character(254) varying;

17 b

18 c do while ("1"b)

19 c read file (input_file) into (buff);
20 c write file (output_file) from (buff);
21 c end;

22 b end copy;

Listing 8-1. COPY (File-to-File) Program

Listing 8-2 shows a sanple execution of the copy programusing the
foll owi ng command |i ne:

PL/1 Progranmer's CQuide 8.1 File Copy Program

A>copy copy-pli $con

In this case, the input file is COPY.PLI the original source file,
while the output file is the system console. Thus, the program sinmply
lists COPY.PLI at the term nal

The TITLE options connect the internal filenanes to external devices
and files. The command |ine has two parts: the conmand itself, and the

conmand tail, which can contain two fil enanes.
C°‘“‘“i“d7 %
[copy copy pli] $con 1

Figure 8-1. Default Filenanes in the Command Tai

The OPEN statenent on line 10 takes the first default nanme, including
the drive in the command tail (denoted by $1.$l), and assigns it to the
internal file constant called input file. Simlarly, the second OPEN
statenent on line 13 takes the second default nane including the drive
in the conmand tail (denoted by $2.%$2) , and assigns it to the interna
file constant called output-file.

For exanple, the command,
A>copy a:x.dat c:u.new

copies the file X.DAT fromdrive a to the new file U NEWon drive c.
The input file nust exist, but PL/I erases the output file if it
exists, and recreates it.

A>copy copy.pli $con

la

2 a /* This program copies one file to another using
3 a /* buffered 1/0.

4 a

5 a copy:

6 b procedure options(main);

7Db declare

8 b (input_file,output_Tfile) file;

9b

10 b open file (input-file) stream

11 b environment(b(8192)) title("$1.$517);
12 b

13 b open file (output_file) stream output

14 b environment(b(8192)) title("$2.$27);
15 b declare

16 b buff character(254) varying;

17 b

18 c do while("I"b);

19 c read file (input_file) into (buff);
20 c write file (output_file) from (buff);
21 c end;

22 b end copy;

END OF FILE (3), File: INPUT=COPY.PLI
Traceback : 044B 03AF 0155
A>

Listing 8-2. Interaction with the COPY Program

8-2

PL/1 Progranmer's CQuide 8.2 Name and Address File

8.2 Name and Address File

The two prograns in Listings 8-3 and 8-6 namnage a sinple nanme and
address file. The CREATE program produces a STREAM fil e contai ni ng

i ndi vi dual nanes and addresses that are subsequently accessed by the
RETRI EVE program

8.2.1 The CREATE Program

The CREATE programin Listing 8-3 contains a data structure that
defines the nane, address, city, state, zip code, and phone nunber
format. This data structure is not in the source file CREATE. PLI. It
is contained in a separate file named RECORD. DCL, and CREATE uses an
% NCLUDE statenent to read and nerge this file with the source file.
Both files are on your sanple programdi sk. The + synbols to the right
of the source line nunber in the listing indicate that the code cones

froman A NCLUDE file. The actual line in the source program appears as
fol |l ows:
create:

procedure options(main);

%include "record.dcl”;

The file specified in the % NCLUDE statenment can be any valid fil enane.
The conpiler sinply copies the file at the point of the % NCLUDE
statenment, and then continues.

The OPEN statenent, line 29, does not specify the PRINT attribute.
This neans the output file is in a formsuitable for later input using
a GET LI ST statenent.

/* This program creates a name and address file. The
/* data structure for each record is in the %INCLUDE
/* file RECORD.DCL.

create:
procedure options(main);

O~NO U~ WNBE
TTO9L 992929

9+b declare

10+b 1 record,

11+b 2 name character(30) varying,
12+b 2 addr character(30) varying,
13+b 2 city character(20) varying,
14+b 2 state character(10) varying,
15+b 2 zip fixed decimal(6),

16+b 2 phone character(12) varying;
17 b %replace

18 b true by "1%b,

19 b false by "0"b;

20 b

21 b declare

22 b output file,

23 b filename character(14) varying,

24 b eofile bit(l) static initial(false);
25 b

26 b put list ("Name and Address Creation Program, File Name:
27 b get list (Filename);

28 b

PL/1 Progranmer's CQuide 8.2 Name and Address File

53
54 end create;

Li sting 8-3. CREATE Program

29 b open File(output) stream output title(filename);
30 b
31 c do while (Meofile);
32 ¢ put skip(3) list("Name:
33 ¢ get list(name);
34 c eofile = (name = "EOF%);
35 ¢ if ~eofile then
36 d do;
37 d /* write prompt strings to console
38 d put list("Address:
39d get list(addr);
40 d put list("City, State, Zip:
41 d get list(city, state, zip);
42 d put list("Phone:
43 d get list(phone);
44 d
45 d /* data in memory, write to output file
46 d put file(output)
47 d list(nhame,addr,city,state,zip,phone);
48 d put File(output) skip;
49 d end;
50 c end;
51 b put File(output) skip list("EOF");
52 b put File(output) skip;
b
b

Listing 8-4 shows the console interaction with the CREATE program You
specify the output file as nanes.dat in the first input line. The GET
LI ST statement, line 33, accepts input delinmited by blanks and conmas,
unless the delimters are included in single apostrophes. Thus, CREATE
takes the input line,

*John Robinson

as a single string value with PL/1 automatically inserting the inplied
cl osi ng apostrophe at the end of the line. The last entry includes the
t hree input val ues,

Unknown, "Can"t Find", 99999

t hat CREATE assigns to the variables city, street, and state. Because
the first value does not begin with an apostrophe, the |I/O system scans
the data itemuntil the next blank, tab, comma, or end of-line occurs.
The second data item begins with an apostrophe, and this causes the 1/0
systemto consune all input through the trailing bal anced apostrophe,
and reduce all enbedded doubl e apostrophes to a single apostrophe. The

| ast val ue, 99999, is assigned to a decinmal nunber, and rmust contain
only nuneric data. You can use the conmmand,

A>type names.dat

to display the STREAMfile that the programcreates. Listing 8-5 shows
the output resulting fromeach input entry.

A>create
Name and Address Creation Program, File Name: names.dat

Name: "Arthur Jackson*
Address: "100 W. 3rd St.*

8-4

PL/1 Progranmer's CQuide 8.2 Name and Address File

City, State, Zip: "Fresno®, "Ca.", 93706
Phone: "529-1277"

Name: "Donna Harris*®

Address: 12999 Sierra Rd."

City, State, Zip: "Chico", "Ca.", 95926
Phone: "635-3570*"

Name: "John Robinson

Address: 1805 Franklin St.*

City, State, Zip: "Monterey®, "Ca.", 93940
Phone: "649-1000*"

Name: "Virginia Wilson*®
Address: "?°
City, State, Zip: Unknown, "Can"t Find", 99999

Phone: "?*
Name: "EOF*®
A>

Listing 8-4. Interaction with the CREATE Program

A>type names.dat

"Arthur Jackson® "100 W. 3rd St." "Fresno" "Ca.- 93706 "529-1277" "Donna
Harris®™ "2999 Sierra Rd." "Chico" "Ca." 95926 "635-3570" "John Robinson”
"805 Franklin St." “"Monterey" "Ca.-” 93940 "649-1000" "Virginia Wilson® "?*
"Unknown® "Can”""t Find® 99999 ="?*

"EOF*

A>
Li sting 8-5. Qutput fromthe CREATE Program

8.2.2 The RETRIEVE Program

The RETRIEVE program shown in Listing 8-6 reads the file created by
CREATE, and di splays the nane and address data upon user request. The
conpiler includes the same RECORD.DCL file used in the CREATE program
shown in Listing 8-3.

The main DO-group in the RETRIEVE program between |ines 30 and 59,
reads two string values corresponding to the | owest and hi ghest nanes
to print on each iteration. The enbedded DO group between |ines 41 and
57 reads the entire input file and lists only those nanes between the
| ower and upper bounds.

The RETRIEVE program simlar to the CREATE program reads the nanme of
the source file fromthe console. However, RETRI EVE opens and cl oses
this source file each tine it receives a retrieval request fromthe
consol e.

The OPEN statenent on line 38 sets the internal buffer size of the
input file to 1024 bytes. After processing the file, RETRI EVE executes
the CLOSE statenent on line 58 and flushes all internal buffers. Thus,
RETRI EVE sets the input file back to the beginning on each retrieva
request.

1a retrieve:

PL/1 Progranmer's CQuide 8.2 Name and Address File

2b procedure options(main);

3b /* name and address retrieval program */

4 b

5+b dcl

6+b 1 record,

7+b 2 name character(30) varying,

8+b 2 addr character(30) varying,

9+b 2 city character(20) varying,

10+b 2 state character(10) varying,

11+b 2 zip fixed decimal(6),

12+b 2 phone character(12) varying;

13 b

14 b %replace

15 b true by "1%b,

16 b false by "0"b;

17 b

18 b dcl

19 b (sysprint, input) Ffile;

20 b

21 b dcl

22 b filename character(14) varying,

23 b (lower, upper) character(30) varying,

24 b eofile bit(l);

25 b

26 b open file(sysprint) print title("$con);

27 b put list("Name and Address Retrieval, File Name: *);
28 b get list(filename);

29 b

30 ¢ do while(true);

31 c lower = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT ;
32 ¢ uUpper = "zzzzzzzzz777777777777777777ZZZ";
33 ¢ put skip(2) list("Type Lower, Upper Bounds: *);
34 c get list(lower,upper);

35 ¢ if lower = "EOF" then

36 c stop;

37 c

38 ¢ open File(input) stream input environment(b(1024))
39 ¢ title(filename);

40 c eofile = false;

41 d do while (Meofile);

42 d get file(input) list(name);

43 d eofile = (name = "EOF");

44 d if ~eofile then

45 e do;

46 e get file(input)

47 e list(addr,city,state,zip,phone);
48 e if name >= lower & name <= upper then
49 f do;

50 f put page skip(3)

51 f list(name);

52 f put skip list(addr);

53 f put skip list(city,state);

54 f put skip list(zip);

55 f put skip list(phone);

56 f end;

57 e end;

58 d end;

59 c close file(input);

PL/1 Progranmer's CQuide 8.2 Name and Address File

60 c end;
61 b end retrieve;

Li sti ng 8-6. RETRI EVE Program

Listing 8-7 shows user interaction with the RETRI EVE program Again,
the input file is names.dat, and exists on the disk in the form
produced by CREATE. The input val ues,

B.E

set lower to B and upper to E and cause RETRIEVE to |ist only Donna
Harris. The second console input line sets |lower to B and upper to K
This causes RETRIEVE to |list Donna Harris and John Robi nson. The coma
in the next input value sets the |ower bound at AAA ... A and the upper
bound as K. Thus RETRIEVE lists Arthur Jackson, Donna Harris, and John
Robi nson. The |l ast entry consists only of a comma pair, |eaving the

| ower bound as the sequence AAA. ..A and the upper bound at zzz ... z.
These two bounds include the entire al phabetic range, so that RETRI EVE
di splays the entire list 'of nanmes and addresses. Finally, entering ECF
ends the program

Line 26 of Listing 8-6 opens the SYSPRINT file with the PRINT attribute
and title of CP/M It is good progranm ng practice to open all files
with explicit attributes. In this case the statenent is redundant
because when PL/| executes the PUT LIST statenment on line 27, it
supplies the sanme attributes to the file by default.

A>retrieve
Name and Address Retrieval, File Name: names.dat

Type Lower, Upper Bounds: B,E

Donna Harris
2999 Serra Rd.
Chico Ca.
95926
635-3570

Type Lower, Upper Bounds: B,K

Donna Harris
2999 Serra Rd.
Chico Ca.
95926
635-3570

John Robinson
805 Franklin St.
Monterey Ca.
93940
649-1000

Type Lower, Upper Bounds: K

Arthur Jackson
100 w. 3rd St.
Fresno Ca.
93706
529-1277

PL/1 Progranmer's CQuide 8.3 An Information Managenment System

Donna Harris
2999 Serra Rd.
Chico Ca.
95926
635-3570

John Robinson
805 Franklin St.
Monterey Ca.
93940
649-1000

Type Lower, Upper Bounds:

Arthur Jackson
100 W. 3rd St.
Fresno Ca.
93706
529-1277

Donna Harris
2999 Serra Rd.
Chico Ca.
95926
635-3570

John Robinson
805 Franklin St.
Monterey Ca.
93940
649-1000

Virginia Wilson

Unknown Can®"t Find
99999

Type Lower, Upper Bounds; EOF,,

A>
Listing 8-7. Interaction with the RETRI EVE Program

8.3 An Information Management System

The next four sanple prograns provide a nodel for an infornmation
managenent system These prograns nmanage a file of enployee nanes,

addr esses, wage schedul es, and wage reporting nechani sns. Each of these
prograns is sinple, but together they contain all the elenents of a
nore advanced data base managenment system They denonstrate the power
of the PL/I progranm ng system while providing the basis for custom
application prograns.

First, the ENTER program establishes the data base. A second program
call ed KEYFILE, reads this data base and prepares a key file for direct
access to individual records in the data base. A third program called
UPDATE, interacts with the user at the console and allows access to the

PL/1 Progranmer's CQuide 8.3 An Information Managenment System

data base for retrieval and update. Finally, the REPORT program reads
the data base to produce a report.

8.3.1 The ENTER Program

Li sting 8-8 shows the ENTER program The ENTER programinteracts with
the user at the console and constructs the initial data base. The
basi ¢ i nput | oop between lines 40 and 53 pronpts the user for an

enpl oyee name, age, and hourly wage. ENTER fills, the enpl oyee data
structure with this information. In the exanple, line 48 fills the
address fields with default values defined in the structure on lines 24
through 33. You can termnate the console input by entering EOF

The enpl oyee record contains several fields whose total length is 101
bytes. You can use the $S conpiler option to verify this value. The
OPEN statenent on line 37 specifies a fixed record size of 128 bytes,
so you can expand the records later. Each record of the enp file holds
exactly one enpl oyee data structure.

The OPEN statenent gives enp the KEYED attribute, and nakes each record
the fixed size specified in the ENVI RONMENT option. The OPEN st at enent
al so specifies the buffer size as 8000 bytes, which PL/I automatically
rounds off to 8192 bytes. The programfills each enployee record from
the console input and wites the record to the enployee file naned in
the conmand line, with the file type EMP, |ine 38.

The WRI TE statenent is in a separate subroutine, named WRI TEI T,
starting on line 55. Placing the code in a separate subroutine hel ps
reduce the size of the program because the programcalls WRITEIT at two
different points, lines 45 and 52.

Listing 8-9 shows the user interaction with the ENTER program as
several enployee records are entered. Entering EOF ends the program
closes the file plantl.enp, and records the data on the disk.

la enter:

2b proc options(main);

3b

4 b %replace

5b true by "1%b,

6 b false by "0"b;

7b

8 b dcl

9b 1 employee static,

10 b 2 name char(30) varying,
11 b 2 addr,

12 b 3 street char(30) varying,
13 b 3 city char(10) varying,
14 b 3 state char(7) varying,
15 b 3 zip fixed dec(b),

16 b 2 age fixed dec(3),

17 b 2 wage fixed dec(5,2),
18 b 2 hours fixed dec(5,1);
19 b
20 b dcl
21 b 1 default static,
22 b 2 street char (30) varying
23 b initial("(no street)"),
24 b 2 city char(10) varying
25 b initial("(no city)"),

PL/1 Progranmer's CQuide 8.3 An Information Managenment System

26 b 2 state char(7) varying
27 b initial("(no st)"),

28 b 2 zip fixed dec(b)

29 b initial (00000);

30 b dcl

31 b emp File;

32 b

33 b open File(emp) keyed output environment(f(100),b(8000))
34 b title ("$1.EMP");

35 b

36 c do while(true);

37 ¢ put list("Employee: *);

38 ¢ get list(name);

39 c if name = "EOF" then

40 d do;

41 d call write(Q);

42 d stop;

43 d end;

44 c addr = default;

45 ¢ put list (" Age, Wage: ");
46 c get list (age,wage);

47 c hours = 0;

48 ¢ call write(Q);

49 c end;

50 b

51 b write:

52 ¢ procedure;

53 ¢ write file(emp) from(employee);
54 ¢ end write;

55 b end enter;

Li sting 8-8. The ENTER Program

A>enter plantl

Employee: Jackson
Age, Wage: 25, 6.75
Employee: Harris
Age, Wage: 30, 9.00
Employee: Robinson
Age, Wage: 41, 15.00
Employee: Wilson
Age, Wage: 27, 7.50
Employee: Smith
Age, Wage: 25,
Employee: Jones
Age, Wage: F 1
Employee: EOF

A>

Listing 8-9. Interaction with the ENTER Program

8.3.2 The KEYFILE Program

Li sting 8-10 shows the KEYFILE program which constructs a key file by
readi ng the data base file created by ENTER The key file is a sequence
of entries consisting of an enpl oyee nane followed by the key nunber
corresponding to that name. In this case, the key file is also a STREAM
file, so you can display it at the console. Line 16 opens the $1. EMP
file with the KEYED attribute, specifies each record to be 128 bytes

8-10

PL/1 Progranmer's CQuide 8.3 An Information Managenment System

long, and sets a buffer size of 10000 bytes. Line 19 opens the key
file named keys as a STREAMfile with LINESI ZE(60) and a TITLE option
t hat appends KEY as the filetype.

On line 23, the KEYFILE programreads successive records, extracts the
key with the KEYTO option, and wites the nane and key to both the
console and to the key file. The sanple interaction in Listing 8-11
illustrates the output from KEYFILE using the plantl.enp data base.
Each key value extracted by the READ statement is the relative record
nunber corresponding to the position of the record in the file.

After executing the KEYFILE program you can use the comand
A>type plantl._key

to display the actual contents of the plantl.key file as shown in
Li sting 8-12.

1la keypr:

2b proc options(main);

3b

4 b /* create key from employee file */
5b

6 b dcl

7b 1 employee static,

8 b 2 name char(30) varying;

9b

10 b dcl

11 b (input, keys) file;

12 b

13 b dcl

14 b k fixed;

15 b

16 b open title("$1.emp”) keyed

17 b env(f(100),b(10000)) file(input);
18 b

19 b open file (keys) stream output

20 b linesize (60) title("$1l.key");
21 b

22 c do while("1%);

23 c read file(input) into(employee) keyto(k);
24 ¢ put skip list(k,name);

25 c put Ffile(keys) list(name,k);

26 c if name = "EOF" then

27 ¢ stop;

28 c end;

29 b end keypr;

Li sting 8-10. The KEYFILE Program
A>keyfile plantl

Jackson
Harris
Robinson
Wilson
Smith
Jones
EOF

ok wWNEFO

A>
Listing 8-11. Interaction with the KEYFI LE Program

8-11

PL/1 Progranmer's CQuide 8.3 An Information Managenment System

A>type plantl._key

Jackson” 0 "Harris 1 "Robinson® 2
"Wilson® 3 "Smith" 4 *"Jones” 5 1EOF*
A>

Listing 8-12. Contents of the Key File

8.3.3 The UPDATE Program

The UPDATE programin Listing 8-13 allows you to access the data base
created by ENTER and indexed through the file created by KEYFILE. The
UPDATE program first reads the key file, a STREAMfile, into a data
structure called keylist. Keylist cross references the enpl oyee nane
with the corresponding key value in the data base. Lines 20 to 23
declare the data structure that holds these cross-reference val ues, and
lines 37 to 40 fill in the data

Note: Line 39 is not a nultiple assignment statenent, but rather a
definition of a Bool ean expression for the variable, eolist.

UPDATE opens the enp file on line 31. The OPEN statenent assigns the
file the DIRECT attribute, that allows both READ and WRI TE operations
with the individual records identified by a key value. You then enter
an enpl oyee nane as natchnanme, and the DO group between |lines 47 and 61
directly accesses the individual records in the data base.

The direct access takes place as follows. Line 48 searches the |ist of
nanes read fromthe key file. If there is a match, the READ with KEY
statenent on line 50 brings the enpl oyee record into nmenory fromthe
enp file. The program displays and updates various fields fromthe
console, and then rewites the record to the data base with the WRI TE
wi th KEYFROM st atenent on |ine 58. UPDATE ends executi on when you enter
an ECF.

Li sting 8-14 shows three successive update sessions during which
various addresses and work tines are updated. |In each session, you
enter the enpl oyee nane, access and display the record, and optionally,
update the fields. The GET LI ST statenent is useful here. To change a
val ue, you sinply type the new value in the field position. If you do
not want to change a value, entering a comma delinmter |eaves the field
unchanged.

1la update:

2b proc options(main);

3b dcl

4 b 1 employee static,

5b 2 name char(30) var,

6 b 2 addr,

7b 3 street char(30) var,

8 b 3 city char(10) var,
9b 3 state char(7) var,
10 b 3 zip fixed dec(b),
11 b 2 age fixed dec(3d),
12 b 2 wage fixed dec(5,2),
13 b 2 hours fixed dec(5,1);
14 b dcl

15 b (emp, keys) file;

16 b dcl

17 b 1 keylist (100),

18 b 2 keyname char(30) var,

8-12

PL/ I

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Programmrer's Gui de 8.3 An Informati on Managenent

TOQDDDDDDDDDDDDALOIOOOOO0OTOOOO0TTCTCUTOTODTDTOTOTUTOT

2 keyval fixed binary;
dcl
(i, endlist) fixed,
eolist bit(l) static initial(*0"b),
matchname char(30) var;

open File(emp) update direct env(f(100))
title ("$1.EMP");

open file(keys) stream env(b(4000)) title("$1l.key");

do i =1 to 100 while(™eolist);

get file(keys) list(keyname(i),keyval(i));
eolist = keyname(i) = "EOF";

end;

do while("1"b);
put skip list("Employee: *);
get list(matchname);
if matchname = "EOF" then
stop;
do i =1 to 100;
if matchname = keyname(i) then
do;
read file(emp) into(employee)
key(keyval (i));
put skip list("Address: ",
street, city, state, zip);
put skip list(" ;
get list(street, city, state, zip);
put list("Hours:",hours,": *);
get list(hours);
write file(emp) from (employee)
keyfrom(keyval (i));
end;
end;
end;
end update;

Li sting 8-13. The UPDATE Program

A>update plantl

Employee: Jackson

Address: (no street) (no city) (no state)
"100 W. 3rd St.", "Fresno", "Ca.", 93706

Hours: 0.0 : 40.0

Employee: Harris

Address: (no street) (no city) (no state)
"2999 Serra Rd.", "Chico", "Ca.", 95926

Hours: 0.0 - 46.0

Employee: EOF

A>update plantl
Employee: Harris

Address: 2999 Serra Rd. Chico Ca. 95926
wool

System

8-13

PL/1 Progranmer's CQuide 8.3 An Information Managenment System

Hours: 46.0 - 48.0

Employee: Wilson

Address: (no street) (no city) (no state) O
sell

Hours: 0.0 : 35.5

Employee: EOF
A>update plantl

Employee: Wilson

Address: (no street) (no city) (no state) 0
1556 Palm Ave.", "Burbank®", "Ca.", 91L507

Hours: 35.5

Employee: ROF

A>

Listing 8-14. Interaction with the UPDATE Program

8.3.4 The REPORT Program

Li sting 8-15 shows the REPORT program The REPORT program uses the
updat ed enpl oyee file to produce a list of enployees along with their
paycheck val ues. The REPORT program al so accesses the enployee file,
but it reads the file sequentially to produce the desired output. The
mai n DO group between lines 35 and 51 reads each successive enpl oyee
record and constructs a title line of the form

[name]
followed by a dollar anpbunt. REPORT uses the STREAM form of the WRITE
statenent, lines 41 and 50, to produce the output line. Line 40

i ncl udes the enbedded control characters "M and ~J at the end of buff
to cause a carriage return and line-feed when witing the buffer. The
REPORT program then conputes the pay value and assigns it to the
CHARACTER VARYING string called buff, on line 44. In this assignnent,
PL/1 perfornms an automatic data conversion from FI XED DECI MAL to
CHARACTER, with |eading blanks. REPORT al so scans the |eading bl anks,
repl acing themby a dollar sign dash sequence to align the output, and
wites the data to the report file.

Li stings 8-16 and 8-17 show the output fromthe REPORT program In the
first case, the comand,

A>report plantl $con

sends the report to the console for review In the second case, the
conmmand,

A>report plantl plantl.prn

sends the output to the disk file plantl.prn. You can then exam ne the
contents of the file with the command

A>type plantl._prn

a report:
b procedure options(main);
b

WN P

8-14

PL/ I

©Coo~NOO1A

TTO0O00QQ220 000000000000 0D0C0D0D0D0D0DD0D0D0OD0ODD0OD0D0OD0DDUOD0D0OD0OD oD UODUODUODToDUODUODUODUoOTUTUOT

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Programmrer's Gui de 8.3 An Informati on Managenent

dcl
1 employee static,
2 name character(30) varying,
2 addr,
3 street character(30) varying,
3 city character(10) varying,
3 state character(7) varying,
3 zip fixed dec(b),
2 age fixed dec(3),
2 wage fixed dec(5,2),
2 hours fixed dec(5,1);
dcl
dashes character(15) static initial
S ",
buff character(20) varying;
dcl
i fixed,
(grosspay, withhold) fixed dec(7,2);
dcl

(repfile, empfile) file;

open File(empfile) keyed env(f(100),b(4000))
title ("$1.EMP™);

open file(repfile) stream print title("$2.$27)
environment(b(2000));

put list("Set Top of Forms, Type Return®);
get skip;

do while("1"b);
read file(empfile) into(employee);
if name = "EOF" then
stop;
put File(repfile) skip(2);
buff = "[" Il name 1! *]™"m?j~;
write file(repfile) from (buff);
grosspay = wage * hours;
withhold = grosspay * .15;
buff = grosspay - withhold;
doi=1to 15
while (substr(buff,i,l) = " *);
end;
i=1-1;
substr(buff,1,i) = substr(dashes,1,i);
write file (repfile) from(buff);
end;

end report;

Li sting 8-15. The REPORT Program

A>report plantl $con
Set Top of Forms, Press Return

(Jackson]

System

8-15

PL/1 Progranmer's CQuide 8.3 An Information Managenment System

$ ---- 229.50

[Harris]
$ ---- 351.90

[Robinson]
S 0.00

[Wilson]
$ -—-- 226.32

Li sting 8-16. REPORT Generation to the Consol e

A>report plantl plantl.prn
Set Top of Forms, Press Return

A>type plantl._prn

[Jackson]
$ -—-- 229.50

[Harris]
$---- 351.90

(Robinson]
$ ———- 0.00

(Wilson]
$ —-——- 226.32

[Smith]

Listing 8-17. REPORT Generation to a Disk File
Ref erences: LRM Sections 10.1, 10.8, 11.2, 12

End of Section 8

8- 16

Section 9

9 Label Constants, Variables, and Parameters

Each of the prograns presented so far ends execution either by
encountering an end-of-file condition with a correspondi ng ENDFI LE
traceback, or by using a special data value that signals the end-of
data condition. The EPOLY program detects the end-of-data condition by
checking for the special case where all three input values, xf Y, and
z, are zero.

Fortunately, PL/1 provides nore el egant ways to sense the end-of data
condition. In fact, sensing the end-of-data condition is just one of
many facilities under the general heading of condition processing. Mst
of ten, handling these conditions involves |abeled statenents. You need
sone background in | abel processing before you take up the genera
topic of condition processing in Section 10.

9.1 Labeled Statements

It is an axiomof progranming to avoid | abel ed statenments and GOTGs
because of the unstructured programs that result. Progranms containing
many | abel ed statements are often difficult for other programmers to
conprehend. Such prograns becone unreadable, even to the author, as the
program grows in size.

PL/1 encourages good structure by providing a conprehensive set of
control structures in the formof iterative DO groups with REPEAT and
VWH LE options. These control structures preclude the necessity for

| abel ed statenents in the general progranm ng schema. You shoul d use
these control structures whenever possible, and Iimt the use of

| abel ed statenents to condition processing and | ocal ly defined,
conput ed GOTGCs.

Judi ci ous use of |abeled statenments is appropriate in condition
processi ng. The occurrence of an error, such as a mistyped input data
line, is easily handled by transferring programcontrol to a label in
an outer bl ock, where recovery takes place. This nethod of

under standi ng the program flow is sinpler than the usual system of
flags, tests, and return statenents.

9.2 Program Labels

Program | abels, |ike other PL/| data types, fall into two broad
categories: |abel constants and | abel variables. A |abel constant
appears literally within the source program and its val ue does not
change when the programruns. A |label variable has no initial value,
and you rmust assign it the value of a |abel constant through a direct
assi gnment statenment, or through the parameter assignnent inplicit in a
subroutine call.

The foll owi ng code sequence is an exanple of a |abel constant precedi ng
a PL/1 statenent.

on error(l)

begin;

put skip list("Bad Input, Try Again®);
goto retry;

end;

PL/1 Progranmer's CQuide 9.3 Conput ed GOTO

retry: get list(name);

The statenent on error(l) sets a trap for a particular condition. |If
the condition arises due to an invalid input, then control transfers to
the BEG N bl ock, which outputs an error nessage, and then transfers
control back to the | abeled statenent. If there is no error on input,
control transfers to the next statenent followi ng the GET LIST

st at ement .

9.3 Computed GOTO

In PL/1, a |abel constant can contain a single positive or negative
literal subscript. A subscripted |abel constant corresponds to the
target of an n-way branch, that is, a conputed GOTO. The follow ng code
sequence shows a specific exanple.

get list(X);

goto q(X);
a(-D:

y = fI(X);

goto endq;
a(0):

y = f2(xX);

goto endq;
a(2):;
a(3):

y = £3(x);
endq:

put skip list("f(x)=",y);

This code inplicitly defines four |abel constants: q(-1), q(0), q (2) ,
and q(3). The conpiler automatically defines an internal |abel constant
vect or,

g(-1:3) label constant
to hold the values of these |abel constants.

The preceding statenent is not a valid PL/I statement, but indicates
what the conpiler does internally when it encounters such statenents in
the source code. Al so, when using such constructs, do not transfer
control to a subscript that does not have a corresponding | abel -
constant value. In the preceding case, a branch to g(l) produces
undefined results.

9.4 Label References

A reference to a | abel constant can be either local or nonlocal. A

|l ocal reference to a | abel constant neans that the | abel occurs as the
target of a GOTO statenent only in the PROCEDURE or BEG N bl ock that
contains the GOTO A nonlocal reference to a | abel constant neans that
the | abel occurs on the right side of an assignment to a | abe
variable, as an argunent to a subroutine, or as the target of a GOTO
statenent in an i nner nested PROCEDURE or BEGQ N bl ock.

Al t hough there is no functional difference between processing a | oca
ly-r eferenced and nonl ocal | y-referenced | abel constant, a nonl oca
reference requires additional space and tinme. For this reason, PL/I
assunes that a subscripted | abel constant will be only locally

PL/1 Progranmer's CQuide 9.5 Exanpl e Program

referenced. If programcontrol transfers to a subscripted | abe
constant from outside the current environnment, undefined results can
occur.

As an exanple, consider the follow ng code sequence:

main:
procedure options(main);
P1:
procedure;
goto labl;
goto lab2;
P2:
procedure;
goto lab2;
end P2;
labl:;
lab2:;
end P1;
end main;

The | abel constant labl is only locally referenced in the procedure P1
while lab2 is the target of both a local reference in Pl and a nonl oca
reference in P2.

9.5 Example Program

Listing 9-1 shows a nonfunctional programthat illustrates the use of
various | abel constants and variables. The |abel constants in the
LABELS programare c(l), c(2), c(3), labl, and | ab2. They are defined
by their literal occurrence in the program The |abel variables are x,
y, z, and g, and are defined by the declarations on lines 10 and 38.

At the start of execution, the |abel variables have undefined val ues.
The program first assigns the constant value |labl to the variable x.
Label variable y then indirectly receives the constant value |abl

t hrough the assignnment on line 12. As a result, all three GOTO
statenents on lines 14, 15, and 16 are functionally equival ent. Each
statenent transfers control to the null statenment follow ng the |abe
[abl on Iine 32.

The subroutine call on line 18 shows a different formof variable
assignment. Lab2 is an argunent sent to the procedure P, and assigned
to the formal | abel variable g. In this program the subroutine cal
transfers programcontrol directly to the statement |abeled |abl

The DO-group beginning on line 20 initializes the variable |abel vector
z to the correspondi ng constant |abel vector values of ¢c. Due to this
initialization, the two conputed GOTO statenents, starting on |ine 25,

have exactly the sane effect.

1la

2 a /* This is a nonfunctional program. lts purpose is
3 a /* to illustrate the concept of label constants and
4 a /* variables.

5a

6 a Labels:

7b procedure options(main);

8 b declare

9b i fixed,

10 b x, ¥y, z(3)) label;

PL/1 Progranmer's CQuide

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Li sting 9-1.

CTO0O0O0O00O000C0TC0D0D0ODOTCOoDUoDOoDOoCToTooOOOTUODUODUoODUTUODUOTUOTOT

Ref er ences:

End of Secti

9-4

X
y

labl;
X;

goto labl;
goto X;
goto Y;

call P(lab2);

do 1 0

n ot

1 3;
Z(i) = c(i);

end;

~

i=2;
goto Z(i);
goto c(i);

c()
c(2):;
c(3):;

labl:;
lab2:;

P:
procedure (g);
declare
g label;
goto g;
end P;

end Labels;

An |l lustration of Label
LRM Sections 3.3, 8.5, 8.6

on 9

9.

5

Exanpl e Program

Vari abl es and Constants

Section 10

10 Condition Processing

Condition processing is an inportant facility of any production
progranmm ng | anguage. The | anguage should allow a programto intercept
and handle run-tine error conditions with programdefined actions, and
t hen conti nue.

For exanple, a conmon condition occurs when a programis reading input
data froman interactive console, and you inadvertently enter a val ue
that does not conformto the data type of the input variable. The PL/I
run-tinme systemsignals a conversion error, and in the absence of any
program defined action, ends the programw th a traceback. If this
premature termination occurs after hours of data entry, it causes a
consi derabl e ambunt of wasted effort. This is unacceptable in a
producti on environnent.

10.1 Condition Categories
PL/1 provides nine categories of conditions. They are

* ERROR

* FI XEDOVERFLOW
* OVERFLOW

* UNDERFLOW

* ZERODI VI DE

* ENDFILE

* UNDEFI NEDFI LE
* KEY

* ENDPACE

The first five categories include all arithmetic error conditions and
m scel | aneous conditions that can arise during 1/0O setup and
processi ng. They al so include conversion errors between the various
data types. The last four categories apply to a specific file that the
I/ O systemis accessing. Each condition has an associ ated subcode that
provi des information about the source of the condition

10.2 Condition Processing Statements

The ON, REVERT, and SIGNAL statenents inplenent condition processing in
PL/1. The ON statenent defines the actions that take place upon
encountering a condition. The REVERT statenent disables the ON
statenment. The SI GNAL statenment allows your programto signal various
condi tions.

10.2.1 ON and REVERT

The foll owi ng code sequence illustrates the ON and REVERT statenents
i nside a DO group

10-1

PL/1 Progranmer's CQuide 10. 2 Condition Processing Statenents

do while(“EOF);
on endfile(sysin)
EOF = "1%b;

revert endfile(sysin);
end;

Here, both the ON and the REVERT statenment execute on each iteration
Processing the ON and REVERT statenments involves run tinme overhead. To
avoid this, code the sane DO - group as foll ows:

on endfile(sysin)
EOF = “true”;

EOF = "false”;

do while(“EOF);

end;"

PL/1 automatically executes the REVERT statenent for any ON conditions
that you enable inside a procedure bl ock when control passes outside

the bl ock. The program shown in Listing 10-1 illustrates this concept.

1la

2 a /* This program is nonfunctional. Its purpose is to
3 a /* illustrate how PL/I executes the ON and REVERT
4 a /* statements.

5a

6 a auto-revert:

7b procedure options(main);

8 b declare

9b i fixed,

10 b sysin file;

11 b

12 ¢ do i = 1 to 10000;

13 c call P(i,exit);

14 ¢ exit:

15 ¢ end;

16 b

17b P

18 c procedure (index,lab);

19 ¢ declare

20 c (t, index) fixed,

21 c lab label;

22 ¢

23 c on endfile(sysin)

24 ¢ goto lab;

25 ¢

26 c put skip list(index,":");

27 ¢ get list(t);

28 c if t = index then

29 c goto lab;
30 ¢ end P; /* implicit REVERT supplied here
31 b

b

32
Li sting 10-1. The REVERT Program

end auto-revert;

In the REVERT program line 13 calls the procedure P and passes to it
the actual paraneters i, the DO group index, and the | abel constant

10-2

PL/1 Progranmer's CQuide 10.3 Exanpl es of Condition Processing

exit. The ON statenment inside P executes every tine the procedure is
call ed. Thus, REVERT has three possible ways to exit the procedure P

If you enter an end-of-file character, CTRL-Z, REVERT executes the
enabl ed ON condition and sends control through the | abel variable |ab
to the statenment | abeled exit. PL/I deactivates the procedure and
executes the REVERT statenment because the GOTO statenent transfers
control outside the environnent of P

The second possible exit follows the test on line 28. If you enter a
val ue equal to the index, then the GOTO statenent on |ine 29 executes
and agai n sends control outside the environnent of P

Finally, if control reaches the end of P, PL/I executes the REVERT
statement and di sables the ON condition set on line 23. No matter how
control |eaves the environment of the procedure, PL/I always disables
the ON condition.

10.2.2 SIGNAL

The SI GNAL statenent activates the ON-body, the body of statenents
corresponding to a particular ON statenent. Thus, processing a Sl GNAL
statenent has the sane effect as when the run-tinme system signals the
condi tion.

The foll owi ng code sequence illustrates the SIGNAL statenent.

on endfile(sysin)
stop;

do while ("1"b)
get list(buff);
if buff = "END" then
signal endfile(sysin);
put skip list(buff);

This code executes the SIGNAL statenent whenever the GET LI ST statenent
reads the value END fromthe file SYSIN. Thus, the ON condition
receives control on a real end-of-file, or when the value END i s read.

10.3 Examples of Condition Processing

The following two progranms, FLTPCLY2 and COPYLPT, incorporate somne
condition processing, so you can see how t hese concepts are
i mpl enent ed.

10.3.1 The FLTPOLY2 Program

Listing 10-2 shows the FLTPOLY2 program This is essentially the sane
programlisted in Section 7-1. The only difference is that it

i ncorporates condition processing to intercept the end-of-file
condition for the file SYSIN. If you run this program you will see how
you can stop it with a CTRL-Z character. Unlike FLTPCOLY, if you enter
all zeros, FLTPOLY2 sinply evaluates the polynonial and pronpts you for
nore input.

1la

2 a /* This program evaluates a polynomial expression */
3 a /* using FLOAT BINARY data. It also traps the */

4 a /* end-of-file condition for the file SYSIN. */

10-3

PL/1 Progranmer's CQuide 10.3 Exanples of Condition Processing

5 a

6 a fltpoly2:

7 b procedure options(main);

8 b Y%replace

9b false by "01b,

10 b true by 111b;

11 b declare

12 b (x,y,z) float binary(24),

13 b eofile bit(l) static initial(false),
14 b sysin file;

15 b

16 b on endfile(sysin)

17 b eofile = true;

18 b

19 ¢ do while(true);

20 c put skip(2) list("Type X,y,z:
21 c get list(x,y,z2);

22 ¢

23 c if eofile then

24 ¢ stop;

25 ¢

26 c put skip list(® 21);

27 ¢ put skip list(" x + 2y +z =",P(X,Y,2));
28 ¢ end;

29 b

30 b P:

31 c¢c procedure (X,y,z) returns (float binary(24));
32 c declare

33 ¢ (x,y,z) float binary(24);
34 ¢ return (X * X + 2 * y + 2);
35 ¢ end P;

36 b

37 b end fltpoly2;
Li sting 10-2. The FLTPOLY2 Program

10.3.2 The COPYLPT Program

Li sting 10-3 shows an exanple of 1/0O processing using ON conditions.
The COPYLPT program copies a STREAMfile fromthe disk to a PRINT file,
while properly formatting the output Iine with a page header and |ine
nunmbers. The program accepts console input to obtain the paranmeters for
t he copy operation, and provides error exits and retry operations for
each i nput value. COPYLPT sets up various ON units to intercept errors
during the copy operation that takes place in the iterative DO group
between lines 71 and 76. The foll ow ng sections discuss the individua
parts of the program

la

2 a /* This program copies a STREAM file on disk to a

3 a /* PRINT file, and formats the output with a page

4 a /* header, and line numbers.

5 a

6 b copy: procedure options(main);

7b

8 b declare

9b (sysin, sourcefile, printfile) file,

10 b (pagesize, pagewidth, spaces, linenumber) fixed,
11 b (line character(14), buff character(254)) varying;

10-4

PL/ I

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Programmrer's Gui de

TOO0O0O0O0TTO0O0O00T0TO0O000O0000D0D0DTOOO0O0D0CU0D0OD0OD0TDDUOD0OD0ODToDTDUoDoDOOOODD D ODODUODUODUODUODUODODUTCTUTDUOTUT

put list(""z File to Print Copy Program®);

on endfile(sysin)
go to typeover;

typeover:
put skip(5) list("How Many Lines Per Page?");
get list(pagesize);

put skip list(*How Many Column Positions?");
get skip list(pagewidth);

on error(l)
begin;
put list("Invalid Number, Type Integer");
go to getnumber;
end;
getnumber:
put skip list("Line Spacing (1=Single)? ");
get skip list(spaces);
revert error(l);

put skip list("Destination Device/File: ;
get skip list(line);

open File(printfile) print pagesize(pagesize)
linesize(pagewidth) title(line);

on undefinedfile(sourcefile)
begin;
put skip list(""",line,"" isn""t a Valid Name");
go to retry;
end;
retry:
put skip list("Source File to Print?
get list(line);
open File(sourcefile) stream environment(b(8000))
title(line);
on endfile(sourcefile)
begin;
put File(printfile) page;
stop;
end;

on endfile(printfile)
begin;
put skip list("-g”~g”g™g Disk is Full®);
stop;
end;

on endpage(printfile)
begin;
put File(printfile) page skip(2)
list("PAGE" ,pageno(printfile));
put File(printfile) skip(4);
end;

10.3 Exanpl es of Condition Processing

10-5

PL/1 Progranmer's CQuide 10.3 Exanples of Condition Processing

70 b signal endpage(printfile);

71 c do linenumber = 1 repeat(linenumber + 1);

72 c get file (sourcefile) edit(buff) (a);

73 c put file (printfile)

74 c edit(linenumber, " | " ,buff) (Ff(5),.x(1),a(2),a);
75 c put file (printfile) skip(spaces);

76 ¢ end;

77 b

78 b end copy;
Li sting 10-3. The COPYLPT Program
The COPYLPT program begins by reading five val ues:

* the nunber of |ines on each page

* the width of the printer line

* the line spacing, normally single- or double-spaced out put
* the destination file or device

* the source file or device

Wil e entering these paraneters, you can type an end-of-file CTRL-Z
character and restart the pronpting.

The Put LIST statement on line 13 wites the initial sign-on nessage.
Recall that PL/I allows control characters in string constants. Here,
the first character of the nessage is a CIRL-Z, which clears the screen
if you are using an ADM 3A TM CRT device. |If you are using sonme other
device, you can substitute the proper character and reconpile the
program

The ON statement of line 15 traps the ENDFILE condition for the file
SYSIN, so that execution begins at typeover whenever the consol e reads
an end-of-file character.

Lines 19 through 23 read the first two paranmeters with no error
checki ng other than detecting the end-of-file. Line 25 however,

i ntercepts conversion errors for all operations that follow If the GET
statenent on line 32 reads a nonnuneric field, control passes to the
on-body between lines 26 and 29 that wites an error message, branches
to getnunber, and retries the input operation. Follow ng successful

i nput of the paraneter spaces, the REVERT statenment on |ine 33 disables
t he conversion error handling.

COPYLPT opens the input and output files between Iines 38 and 50. The
program assunes that the output file can al ways be opened, but detects
an UNDEFI NED i nput file, so you can correct the fil enane.

The program executes two ON ENDFI LE statenents between |lines 51 and 61.
The first statenent traps the input end-of-file condition and performs
a page eject on the output file. This ensures that the printer output
is at the top of a new page after conpleting the print operation. The
STOP statement included in this ONunit conpletes the processing with
an exit.

The second ON-unit intercepts the end-of-file condition on the print
file. This can only occur if the disk file fills, so the unit prints
t he nessage,

Disk is Full

10-6

PL/1 Progranmer's CQuide 10.3 Exanpl es of Condition Processing

and ends execution. The CTRL-G character sends a series of beeps to the
CRT as an alarm The run-tine systemcloses all files upon termination
so that the print file is intact to the full capacity of the disk.

Li ne 63 begins an ON ENDPAGE unit that intercepts the end-of - page
condition for the print file. Wenever the run-tinme systemsignals this
condition, the ON-unit noves to the top of the next page, skips two
lines, prints the page nunber, and skips four nore lines before
returning to the signal source. The SIGNAL statenent on line 70 starts
the print file output on a new page by sending control to the ONunit
defined on line 63. Al subsequent ENDPAGE signals are generated by the
run-tinme systemat the end of each page

The DO group beginning on line 71 initializes and increments a line
counter on each iteration. The GET EDIT statement on |line 72 specifies
an A al phanuneric, format. This fills the buffer with the next input
line up to, but not including, the carriage return/line-feed sequence.
The PUT EDIT statenent on line 73 wites the line to the destination
file with a preceding |ine nunber, a blank, a vertical bar, and another
bl ank, resulting fromthe A(2) field. if the run-tine systemsignals

t he ENDPAGE condition while executing the PUT statenment on line 75, the
format item SKI P(spaces) night not be processed.

Li sting 10-4 shows the user interaction with the COPYLPT program
Here, the source file is the LABELS. PLI program and $LST, the physica
printer, is the destination

A>copylpt
File to Print Copy Program
How Many Lines Per Page? 20

How Many Column Positions? 80

Line Spacing (1=Single)? Yes
Invalid Number, Type Integer

Line Spacing (1=Single)? 1
Destination Device/File: $lIst
Source File to Print? copy.pil

copy.pil isn"t a Valid Name
Source File to Print? copy.pli

Listing 10-4. Interaction with COPYLPT
Listing 10-5 shows two pages of output produced by the program
PAGE 1

1]

2 | /* This program copies one file to another using
3 | /* buffered 1/0.

41

5 | copy:

6 | procedure options(main);

7 | declare

8 | (input-file,output_file) file;

9 |

10 | open File (input_file) stream

10-7

PL/1 Progranmer's CQuide 10.3 Exanples of Condition Processing

11 | envirorLment(b(8192)) title("$1.$1");
12 |
13 | open file (output_file) stream output
14 | envirorunent(b(8192)) title("$2.$2");
15 | declare
16 | buff character(254) varying;
17 |
18 | do while("I"b);
19 | read file (input_file) into (buff);
20 | write file (output_file) from (buff);
PAGE 2
21 | end;

22] end copy;
Li sting 10-5. Qutput from COPYLPT

Thi s exanpl e shows how you can incorporate error handling in your
prograns to nmake themeasier to use. In fact, you could enhance the
COPYLPT programto handle errors in the first two input |ines, or
errors in the destination fil enane.

To gain further experience, you could go back over all the previous
exanpl es and add ON-units to trap invalid input data and end-of-file
conditions. Mdifying these small prograns gives you a good foundation
in condition processing.

Ref erences: LRM Section 9.1 to 9.3, 10.5, 11.3

End of Section 10

10-8

Section 11

11 Character String Processing

PL/1 provides powerful character-string handling capabilities essential
in a comrercial production |anguage. This section presents two sanple
prograns that illustrate the use of some PL/I character-string
functions. After you read the text and study the sanple progranms, you
can make changes in the prograns to expand your know edge of PL/I.

11.1 The OPTIMIST Program

Qur first exanple of string processing is a programcalled the
OPTI M ST. The OPTIM ST programturns a negative sentence into a
positive sentence. The OPTIM ST performs this task by using the
character-string facilities of PL/I.

Listing 11-1 shows the OPTIM ST program The first segment, between
lines 12 and 23, defines the data itens used in the program The
remai ning portion reads a sentence fromthe console, ending with a
peri od, and retypes the sentence in its positive form Listing 11-2
shows a sanple console interaction with the OPTIM ST. The OPTIM ST
works well if sentences are sinple, but conplicated sentences confuse
t he program

Li ne 13 gives the OPTIM ST vocabul ary of negative words, with the
correspondi ng positive words on |line 15. Thus, never becones al ways,
and none becones all. OPTIM ST replaces the word not with an enpty
string. Lines 17 through 20 declare the upper- and | ower case al phabets
for case translation in the sentence processing section

OPTI M ST constructs each successive input sentence between |ines 28 and
32, where the DO group reads another word, and concatenates the word on
the end of the sentence. The SUBSTR test in the DO WH LE headi ng checks
for a period at the end.

Note: OPTIM ST can only accept a sentence whose nmaxi num |l ength is 254
characters. PL/I1 discards any additional characters.

After reading the conplete sentence, OPTIMST translates all upper case
characters to | ower-case to scan the negative words. It perforns this
case translation on line 33 by using the built-in TRANSLATE function
OPTIM ST uses the built-in VERIFY function on line 34 to ensure that
the sentence consists only of letters and a period.

If the sentence consists of characters other than letters or a period,
the VERIFY function returns the first nonzero position that does not
mat ch, and the OPTIM ST responds wth:

Actually, that"s an interesting idea.

If the VERIFY function returns a zero value, then the sentence contains
only translated |l ower-case letters and a period. In this case, control
transfers to the DO group between lines 36 and 42. On each iteration
OPTIM ST uses the built-in INDEX function to search for the next
negative word, given by negative (i). If found, it sets j to the
position of the negative word, and in the assignnent statenment on |ine
39, replaces it with the corresponding positive word. In this
assignment, the portion of the sentence that occurs before the negative
word is given by,

substr(sent,l,j-1)

11-1

PL/1 Progranmer's CQuide 11.1 The OPTIM ST Program

whil e the replacenent value for the negative word is given by,
positive(i)

and the portion of the sentence that follows the negative word being
replaced is given by:

substr(sent, j+length(negative(i)))

The OPTIM ST concatenates these three segnents to produce a new
sentence with the negative word replaced by the positive word. It then
sends the resulting sentence to the console, and | oops back to read
anot her input. Because all negative words have a | eading bl ank, the
negative portion is always found at the beginning of a word. Thus,
OPTI M ST replaces neverm nd with alwaysnmi nd. This can produce
interesting results.

You coul d nake at |least three inprovenents to the OPTIMST. First, if
the sentence exceeds 254 characters, the input scan never stops,
because the period is not found. You could include a check to ensure
that the newly appended word does not exceed the maxi num si ze.

Second, there is no condition processing in the DO group between Iines
25 and 45, so the OPTIM ST never stops talking. It ends only through

i nput of a CTRL-Z, end-of-file, or CTRL-C, systemwarmstart. You could
i nclude an ON-unit to detect an end-of-file to end the programin a
reasonabl e fashi on.

Finally, you could try to nake the OPTIM ST snarter!

a
a /* This program demonstrates PL/Il character string
a /* processing by turning a negative sentence into a
a /* positive one.

optimist:
procedure options(main);
%replace
true by "1%b,

OCoO~NOOUTAWNPE
o]

a
b
b
b
10 b false by "0"b,
11 b nwords by 5;
12 b declare
13 b negative (1:nwords) character(8) varying static initial
14 b ("never®," none"," nothing®," not"," no"),
15 b positive (1:nwords) character(10) varying static initial
16 b (falways"," all®," something®,""," some"),
17 b upper character(28) static initial
18 b ("ABCDEFGHIJKLMNOPQRSTUVWXYZ*®);
19 b lower character(28) static initial
20 b ("abcdefghi jkImnopgrstuvwxyz®);
21 b sent character(254) varying,
22 b word character(32) varying,
23 b (i,J) fixed;
24 b
25 ¢ do while(true);
26 c put skip list("What""s up?");
27 ¢ sent = * °;
28 d do while
29 d (substr(sentrlength(sent))
30d get list (word);
d

31 sent = sent word;

11-2

PL/1 Progranmer's CQuide 11.1

32d end;

33 ¢ sent = translate(sent, lower ,upper);

34 c if verify(sent,lower) ~= 0 then

35 ¢ sent = " that""s an interesting idea.";
36 d do i = 1 to nwords;

37 d J = index(sent,negative(i));

38 d if j ~= 0 then

39d sent = substr(sent,l,j-1)

40 d positive(i) !!

41 d substr(sent, j+length(negative(i)));
42 d end;

43 ¢ put list("Actually, "!lsent);

44 c put skip;

45 ¢ end;

46 b

47 b end optimist;

Listing 11-1. The OPTIM ST Program
A>optimist

What"s up? Nothing is up.
Actually, something is up.

What"s up? This is not fun.
Actually, this is fun.

What"s up? Programs like this never make sense.
Actually, programs like this always make sense.

What"s up? Nothing is easy that is not complicated.
Actually, something is easy that is complicated.

What"s up? Nobody cares and its none of your business.
Actually, somebody cares and its all of your business.

What"s up? The price of everything.
Actually, the price of everything.

What"s up? Boy are you stupid.
Actually, boy are you stupid.

What"s up? Dont get smart with me.
Actually, dont get smart with me.

What"s up? You started it | didnt.
Actually, you started it i didnt.

What"s up? No 1 did not.
Actually, some i did.

What"s up? Thats better.
Actually, thats better.

What"s up? You are hard to talk to.
Actually, you are hard to talk to.

What"s up? There you go again.
Actually, there you go again.

The OPTIM ST Program

11-3

PL/1 Progranmer's CQuide 11.2 A Parse Function

What"s up? Thats it I quit.
Actually, thats it i quit.

What"s up? Stop that.
Actually, stop that.

What"s up? If you dont stop I will pull your plug.
Actually, if you dont stop i will pull your plug.

What®"s up? You can not pull my plug.
Actually, you can pull my plug.

What"s up? 1 know.
Actually, 1 know.

What"s up? ~Z

END OF FILE (1), File: SYSIN=CON
Traceback: 09C5 0970 0157 4100 # 0909 0529 8090 0157
A>

Listing 11-2. Interaction with the OPTIM ST

11.2 A Parse Function

This section presents a nore practical application of string
processing. It is often useful to have a separate subroutine in a
programthat reads a line of input and separates it into individua
nunbers and characters. Such a subroutine is called a parser, or a
free-field scanner. The FSCAN program shown in Listing 11-3, gives an
exanpl e of a parser.

FSCAN denonstrates the enbedded subroutine called GNT, Get Next Token
whi ch parses an input line into separate itens called tokens. Once you
test ONT, you can extract it fromthis programand put it into a
producti on program where required. Section 13.4 uses GNT to conpute

val ues of arithnetic expressions.

Listing 11-4 shows interaction with the FSCAN program FSCAN reads a
line of input, parses the line into separate tokens, and then wites
the tokens back to the console, with surroundi ng apostrophes. The
tokens are just nuneric values, such as 1234.56, or individual letters
and special characters. GNT bypasses all intervening blanks between the
tokens in the token scan

The FSCAN program has three parts. The first part, lines 10 to 12,
defines the gl obal data area called token, used by the GNT procedure.
The second part, lines 14 to 42, is the GNT procedure itself. The third

part is the DO group between lines 44 and 47 that perforns the test of
the GNT function procedure.

o)}

/* This program tests the procedure called GNT, a */
/* free-field scanner, parser, that reads a line */
/* of input and breaks it into individual parts. */

fscan:
proc options(main);
%replace

O~NO O~ WNPE
TTO O OD

11-4

PL/1 Progranmer's CQuide 11.2

9b true by "1%b;
10 b dcl
11 b token char(80) var
12 b static initial("");
13 b
14 b gnt:
15 c proc;
16 c dcl
17 c i fixed,
18 c line char(80) var
19 c static initial("");
20 c
21 c line = substr(line, length(token)+1);
22 d do while(true);
23 d if line = " then
24 d get edit(line) (d);
25 d i = verify(line," %);
26 d if i = 0 then
27 d line = *7;
28 d else
29 e do;
30 e line = substr(line,i);
31 e i = verify(line,"0123456789.");
32 e if 1 =0 then
33 e token = line;
34 e else
35 e if 1 =1 then
36 e token = substr(line,1,1);
37 e else
38 e token = substr(line,l1,i-1);
39 e return;
40 e end;
41 d end;
42 ¢ end gnt;
43 b
44 c do while(true);
45 ¢ call gnt;
46 c put edit(""""Iltoken!!*""") (x(1),a);
47 ¢ end;
48 b end fscan;
Li sting 11-3. The FSCAN Program
A>fscan
88+9.9
8g8 "+* "9.9"
1234567 89.10
"1234567" "89.10"
1,2,3,4,5,6,7
T N T LR BNV L UYL ST C R SIS 1
.... 666 ... 7.7.7.
e et Tt 777"
~Z

End of File (7), File: SYSIN=CON
Traceback: 08al 23D1 0143 OOFF # 0O8AB 06B9 0143 01F5
A>

Listing 11-4. Interaction with the FSCAN Program

A Parse Function

11-5

PL/1 Progranmer's CQuide 11.2 A Parse Function

11.2.1 The GNT Procedure

GNT stores the input line in the character variable called Iine that is
initially enpty due to the declaration on line 18. On the first call,
GNT extracts the first portion of line and places it in token, which
beconmes the next input item On each successive call, GNT renopves the
previ ous token value fromthe beginning of a |ine before scanning the
next item

For exanple, suppose the input line is,
~~~88*9.9

where ~ represents a blank character. On the first call to GNT, both
token and line are enpty strings. The assignment on line 21 renoves the
previ ous value of token and | eaves line as an enpty string. The DO
group between lines 22 and 41 ensures that the line buffer is always
filled. If GNT encounters an enpty buffer, the GET EDI T statenent, line
24, imediately refills it. The call to the built-in VERI FY function on
line 25 returns the first position in line that is not blank

If VERIFY returns a 0, then the entire line is blank and nust be
cleared. The refill operation takes place on the next iteration. |If
the line is not entirely blank, then control transfers to the DO group
begi nning on |ine 29.

11.2.2 The DO-Group

Processing in the DO group takes place as follows. On entry, the value
of i is the first nonblank position of the line buffer. Thus, the
statenment on line 30 renpves the preceding blanks fromline, so the
next token starts at the first position. GNT then calls the VERI FY
function to deternmine if the next itemin line is a number

The assignnent statenment on line 31 sets i to O if the entire buffer
consi sts of nunbers and decinal points. Line 31 sets i to 1 if the
first itemis not a nunber or period. It sets i to a larger value than
1if the first itemis a nunber that does not extend through the entire
line buffer. Thus, this sequence of tests, starting at line 32, either
extracts the entire line (i=0) , the first character of the line (i=1),
or the first portion of the line (i>1).

In the preceding exanple input line, on the first iteration GNT sets
line to,

~ ~ ~ 8 8 * 9 . 9
1 2 3 4 5 6 7 8 9

where the index 1 through 9, in line, is shown bel ow each character
On Iine 30, GNT renopves the initial blanks, |leaving |line as:

8 8 * 9 . 9
1 2 3 4 5 6

Line 31 calls the VERI FY function that |ocates the first position
containing a nondigit or period character. In this case, VERI FY returns
the value 3, which corresponds to the * in position 3. As a result of
the tests, FSCAN executes |ine 38 and produces the equival ent of:

substr("88*9.97,1,2)

This results in a token value of 88, which is the next nunmber in |ine.

11-6



PL/1 Progranmer's CQuide 11.2 A Parse Function

On the next call, GNT renoves token fromline using the SUBSTR
operation on line 21 and | eaves |ine as:

* 9 . 9
1 2 3 4

The VERIFY function on line 31 returns the value 1, because the |eading
position of line is not a digit or a period. Line 36 extracts and
returns the first character of line as the value of token

The third call to GNT gets the last token in line by first extracting
the first character of the line. This | eaves |line as:

9 . 9
1 2 3

This time, because all characters are either digits or periods, the
VERI FY function returns a 0 and GNT executes |line 33. This results in a
t oken value of 9.9, which is the renmni nder of I|ine.

The fourth call to GNT clears the previous value of token fromline, so
that line is the enpty string. This causes GNT to execute the GET EDIT
statement, line 24, and refill line fromthe console. FSCAN proceeds
in this manner until you stop it with a CTRL-Z or CTRL-C input.

This sinple parser has sonme obvious flaws. It does not trap the end-of-
file condition. You could include an ONunit to detect this condition
and return a null token value to indicate there is no nore input.

Furt hermore, GNT does not detect multiple period characters. This woul d
cause a subsequent conversion signal (ERROR(1)) if you attenpt to
convert to a decinmal value.'

These enhancenments give you an inproved version of GNT that you can
i ncorporate into any of your prograns.

Ref erences: LRM Sections 3.2, 6.4, 6.8, 13.7

End of Section 11

11-7






Section 12

12 List Processing

For some programs it is difficult to determ ne the exact menory

requi renents before the programruns. List processing is an exanpl e of
this kind of program because the nunber of data el ements can vary
consi derably while the programis running.

PL/1 has subroutines in the Run-time Subroutine Library (RSL) that
dynam cal | y nanage storage allocation. Wen the operating system | oads
a PL/1 programinto the Transient Program Area (TPA) or partition, PL/I
first initializes all the remaining free nenory as a linked list. The
list elements contain information fields and pointers to other I|ist

el ements. A programdynamically allocates nmenory by using the ALLOCATE
statenent and rel eases nmenory using the FREE statenment. PL/I
continuously keeps all nmenory segnents connected to one another by
using the |inked-1ist nmechani sm

The progranms in this section illustrate list processing in two cases
where it is not easy to predeterm ne the anmpount of storage required.

12.1 Based and Pointer Variables

You can visualize a based variable as a tenplate that fits over a
regi on of nenory but has no storage directly allocated to it. A pointer
variable is just a two-byte value that holds the address of a variable.
Wien you use a pointer variable, you are programmatically placing this
based variable tenplate over a particul ar piece of nenory. The nethod
depends on the form of the based variabl e declaration

If the based variable declaration does not include an inplied base,
then you nust qualify any reference to the based variable with a
pointer. |If the based variable declaration includes an inplied base,
then you can include a pointer qualifier in any reference to the based
variable, or you can sinply use the inplied pointer given in the

decl arati on as a base.

Consi der the follow ng exanpl e decl arati on:

declare
i fixed,
mat(0:5) fixed,
(p, q) pointer,
x Fixed based,
y Ffixed based(p),
z fixed based(f());

PL/1 allocates storage for the two variables i and mat because they are
not based variables. PL/I also assigns storage |ocations for the two
poi nter variables p and q. However, the three variables x, y, and z are
decl ared as based variables, and they have no storage | ocations prior
to execution. Instead, PL/I determ nes their actual storage addresses
as the programruns. The variable x has no inplied base, so every
reference to x nust have a pointer qualifier such as:

p->X = 5;
or,
g->x = 6;

12-1



PL/1 Progranmer's CQuide 12.1 Based and Poi nter Vari abl es

The first statenent assigns the value 5 to the FI XED Bl NARY two- byte
variable at the nenory |ocation given by p. The second st atenent
assigns the value 6 to the location given by g.

The variable y, on the other hand, has an inplied base, and you can
reference it with or without a pointer qualifier. The reference

y = 5;
equal s
p->y = 5;

and thus, y = 5; and g->y = 6; have exactly the same effect as the two
precedi ng assignments to x.

The variable z, like the variable y, has an inplied base. In this case,
the base is an invocation of a pointer-valued function with no
argunents. For exanple, the function f can take the form

T:
procedure returns(pointer);
return (addr(mat(i)));
end f;

Using this definition of f, you can reference z as:
p->z = 5;

or
z = 6;

The first formis equivalent to those shown above, with the | ocation
derived fromthe pointer variable p. The second form however, is an
abbreviation for:

fO -> z = 6;

In this case, PL/| evaluates the function f to produce the storage
address for the based variable z. This formhas a twofold advant age.
First, the pointer-val ued expression can be conpl ex, and not restricted
to a sinple pointer variable. Second, the code for function f appears
only once, rather than being duplicated at each variabl e reference.
This can save a consi derabl e anount of space in a program

Note: The inplied base nust be in the scope of the declaration for the
based vari abl e.

The follow ng incorrect code sequence illustrates this concept:

main:
procedure options(main);
declare
X based(p),
y based(q),
p pointer;
begin;
declare

(p,q) pointer;
" ;

y

10;

end;
declare

12-2



PL/1 Progranmer's CQuide 12.2 The REVERSE Program

g pointer;
end main;

Because the variables x and y are based on p and g, the pointers p and
g nmust be in the same or enconpassing scope. Here the pointers p and q
are declared in the enbedded BEG N bl ock that is a different

envi ronnent .

12.2 The REVERSE Program

Qur first exanple of list processing is a programcalled REVERSE. The
OPTIM ST programin Section 11 can accept a sentence with a nmaxi num of
254 characters, the maxi mum string | ength. REVERSE, however, accepts
sentences of virtually any length by using a list structure instead of
a single character string. Instead of perform ng word substitution
REVERSE si nply reverses the input sentence

Listing 12-1 shows the REVERSE program which is divided into three
parts. The first part, lines 12 through 17, reads a sentence fromthe
console and wites the sentence back to the console in reverse order
Each i nput sentence consists of a sequence of words up to 35 characters
in length. This is sufficient to hold,

supercalifragilisticexpialidocious
one of the longest words in the English | anguage.

To sinplify the input processing, REVERSE requires a space before the
period that ends the sentence. REVERSE al so ends execution when you
type an enpty sentence

The second part of REVERSE is a separate subroutine, called read - it,
which starts on line 19. The third part is a subroutine called wite
it, which begins on line 37. Making these functions separate
subroutines in the main programsinplifies the overall structure.

Listing 12-2 shows the console interaction with REVERSE

22
23

newword character(35) varying,
newnode pointer;

1a
2 a /* This program reads a sentence and reverses it.
3 a
4 a reverse:
5b procedure options(main);
6 b declare
7b sentence pointer,
8 b 1 wordnode based (sentence),
9b 2 word character(35) varying,
10 b 2 next pointer;
11 b
12 c do while("I"b);
13 ¢ call read it(Q);
14 ¢ if sentence = null then
15 ¢ stop;
16 c call write-it(Q);
17 ¢ end;
18 b
19 b read-it:
20 c procedure;
21 c declare
c
c

12-3



PL/ I

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Programmrer's Gui de 12.2

TTO0O0O0Qa000000000T0TOOQOO0O0O0O000O0OQ0O0

sentence = null;

put

skip list("What""s up? ");

do while("I"b);

end;
end

write-it

get list(newword);
it newword then

return;
allocate wordnode set (newnode);
newnode->next = sentence;
sentence = newnode;
word = newword;

read-it;

procedure;

decl

put

are
p pointer;
skip list(TActually, *);

do while (sentence "= null);

end;
put
put
end

end reverse;

put list(word);

p = sentence;
sentence = next;
free p->wordnode;

list(".");
skip;
write-it;

Li sting 12-1. The REVERSE Program

A>reverse

What"s up? North is up

Actually, up is North

What"s up? The rain in Spain falls mainly in the plain

Actually, plain the in mainly falls Spain in rain The

What"s up? 3 + 5 =8

Actually, 8 =5 + 3

What"s up?

A>

Li sting 12-2.

Interaction with the REVERSE Program

The REVERSE Program

The REVERSE program stores each word in a separate area of nenory,
obt ai ned using the ALLOCATE statenent on line 30. On each iteration of

t he DO group,

t he ALLOCATE statenent obtains a unique section of the

free menory space sufficiently large to hold the wordnode structure
defined on line 8. The wordnode el enents are |inked together through

the next field of each allocation
given by the value of the sentence pointer variable.

12-4

and the beginning of the list is



PL/1 Progranmer's CQuide 12.2 The REVERSE Program

Each all ocation consunes 38 bytes. You can verify this by exami ning the
Synbol Tabl e. The wordnode structure is 38 bytes | ong because word is
decl ared as CHARACTER(35) VARYING and requires one byte to hold the
current length, 35 bytes to hold the string itself, and is foll owed by
a two-byte pointer val ue.

For exanple, given the input sentence,
I SHALL RETURN .

REVERSE executes the ALLOCATE statenent three tinmes, once for each word
in the |ist.

Suppose that these three nenory allocations are found at addresses
1000, 2000, and 3000. The REVERSE program begi ns by reading the
sentence in the main DO-group in the read it procedure. It initializes
the sentence pointer to the null address (0000). Upon entering the DO
group at line 26, the value of sentence appears as foll ows:

SENTENCE: 0000

REVERSE reads the first word with the GET statenment on line 27, and
because the value is not a period, it allocates the first 38-byte area
to hold the word. As it constructs the sentence, REVERSE pl aces the

poi nter value of the sentence variable into the next field, and the
input word into the word field. The nobst recently read word then
beconmes the new head of the list. After processing the word I, the |ist
appears as shown:

SENTENCE: 1000
1000:

REVERSE t hen proceeds through the |oop again. This tine, it reads the
word SHALL and all ocates the second 38-byte area. The newly allocated
area becones the new head of the list, with the resulting pointer
structure:

SENTENCE: 2000
2000: 1000:
X

REVERSE repeats the | oop once again and processes the |ast word,
RETURN, and all ocates the final 38-byte area, placing it at the head of
the list that results in the foll owi ng sequence of nodes:

SENTENCE: 3000
3000: 2000: 1000:

The programfollows the pointer structure fromthe sentence variable to
the node for RETURN, then to the node for SHALL, and finally to the
node for |, where it encounters an end-of-list value 0000.

REVERSE actually builds the list in reverse order. The DO-group in the
wite it procedure, lines 42 to 47, sinply searches through the Iist,
starting at the sentence pointer, and prints each word it encounters.
As soon as the word is witten, the FREE statenment on line 46 rel eases
the 38-byte area allocated to it. The wite it procedure noves the
sentence pointer variable to the next itemin the list before it
executes the FREE statenent to free the current el enent.

Note: Storage does not remain intact after it is released.

12-5



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

The advantage of the list structure is that the sentence can be
arbitrarily long, linmted only by the size of available nmenory. The
di sadvant age, of course, is that there is considerably nore storage
consuned for sentences that could be represented by a 254-character
string.

12.3 A Network Analysis Program

The next exanple is extensive and illustrates two points. First, it
denonstrates the power of PL/I |ist-handling constructs. Second, it
shows how to divide a large, conplex programinto small, logically

distinct units, and thereby sinplify the coding task.

The NETWORK program shown in Listing 12-4 perforns a network anal ysis.
That is, it finds the shortest path between nodes in a network. The
user enters a network of cities and di stances between the cities. Then
NETWORK constructs a connected set of nodes using Iist processing
structures. Upon demand fromthe user, NETWORK conputes the shortest
path fromall cities in the network to the assigned destination, and
then sel ectively displays particular optinmal paths through the network.

It is easier to understand how the programoperates if you first

exam ne the console interaction shown in Listing 12-3. First, you enter
alist of cities and distances between the cities, ending the entry
with a CTRL-Z. Entering a CTRL-Z triggers a display of the entire
network to aid in detection of input errors. NETWORK then pronpts you
for a destination city, in this case, Tijuana, and a starting city, in
this case, Boise

NETWORK t hen di spl ays a best route. There can be several of equa

| ength. Next, NETWORK pronpts for another starting city. If you enter a
CTRL-Z. NETWORK reverts to another destination pronpt, |eaving the
network intact. Interaction continues in this manner until you enter a
CTRL-Z in response to the destination pronpt. Wen this occurs,
NETWORK cl ears the network and returns to accept an entirely new
network of cities and distances. The entire programends if you enter
an enpty network at this point, for exanple, a CTRL-Z.

A>network

Type "Cityl, Dist, City2"
Seattle, 150, Boise

Boise, 300, Modesto
Seattle, 400, Modesto
Modesto, 150, Monterey
Modesto, 50, San-Francisco
San-Francisco, 200, Las-Vegas
Las-Vegas, 350, Monterey
Los-Angeles, 400, Las-Vegas
Bakersfield, 300, Monterey
Bakersfield, 250, Las-Vegas
Los-Angeles, 450, Tijuana
Tijuana, 700, Las-Vegas
Las-Vegas, 920, Boise
Pacific-Grove, 5, Monterey
~Z

Pacific-Grove
5 miles to Monterey

12-6



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

Tijuana :
700 miles to Las-Vegas
450 miles to LoS-Angeles
Bakersfield :
250 miles to Las-Vegas
300 miles to Monterey
Los-Angeles :
450 miles to Tijuana
400 miles to Las-Vegas
Las-Vegas :
920 miles to Boise
700 miles to Tijuana
250 miles to Bakersfield
400 miles to Los-Angeles
350 miles to Monterey
200 miles to San-Francisco
San-Francisco :
200 miles to Las-Vegas
50 miles to Modesto
Monterey :
5 miles to Pacific-Grove
300 miles to Bakersfield
350 miles to Las-Vegas
150 miles to Modesto
Modesto :
50 miles to San-Francisco
150 miles to Monterey
400 miles to Seattle
300 miles to Boise
Boise :
920 miles to Las-Vegas
300 miles to Modesto
150 miles to Seattle
Seattle :
400 miles to Modesto
150 miles to Boise

Type Destination Tijuana
Type Start Boise

1250 miles remain, 300miles to Modesto
950 miles remain, 50 miles to San-Francisco
900 miles remain, 200 miles to Las-Vegas
700 miles remain, 700 miles to Tijuana
Type Start ~Z
Type Destination Pacific-Grove
Type Start Seattle
555 miles remain, 400 miles to Modesto
155 miles remain, 150 miles to Monterey
5 miles remain, 5 miles to Pacific-Grove
Type Start ~Z
Type Destination ~Z
Type "Cityl, Dist, City2"
4
A>

Listing 12-3. Interaction with the NETWORK Program

12-7



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

12.3.1 NETWORK List Structures

NETWORK uses two data structures as list elenents. The first structure
is called a city_node and corresponds to a particular city. It is
defined on line 16 of Listing 12-4. The foll owi ng exanpl e shows the
city node structure:

CITY_NODE: city name
total-distance
investigate
city-list
route head

The city _nane field holds the character-string value of the city's
nane, while the total distance and investigate fields are used by the
shortest-di stance procedure. The city list and route — head pointer
values link together all the cities in the network

The second structure is called a route node, and is defined on |line 23.
A route - node establishes a single connection between a city and one
of its neighbors. You allocate several route - nodes for a city,
corresponding to the nunber of connections to its neighboring cities.
The route-node structure is shown bel ow

ROUTE-NODE: next city
route-distance
route-list

The list of route - nodes associated with a particular city begins at
the pointer value called route head that is a part of the city_node
structure. The route is determned by following the route |list pointer
to additional route - nodes, until you encounter a route node with a
null entry in the route Iist. Each route node al so has a pointer val ue,
denoted by next_city, that |eads to a neighboring city_node, along with
a route-distance field that gives the nileage to the next city.

The following exanple illustrates this concept. Assune Monterey is 350
mles fromLas Vegas. NETWORK nust all ocate two city nodes and two
route nodes with sanple addresses to the left of each allocation as
follows. You can tenporarily ignore the fields marked x in the di agram

CITY-NODE CITY-NODE

1000 Monterey 2000 Las Vegas

XXXXXXX XXXXXXX
XXXXXXX XXXXXXX
XXXXXXX XXXXXXX
3000 4000
ROUTE-NODE ROUTE_NODE

3000 2000 4000 1000
350 350

A linked list, starting at city_head, leads to all cities in the
network. G ven the preceding two cities, the list of cities appears as
fol | ows:

12-8



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

CITY-HEAD

F-1 o-0 T_~

CITY-NODE CITY-NODE

1000 Monterey 2000 Las Vegas

XXXXXXX XXXXXXX
XXXXXXX XXXXXXX
2000 0000

XXXXXXX

12.3.2 Traversing the Linked Lists

Several of the procedures in NETWORK use one particular formof an
iterative DO group to traverse the linked lists. The statenent on |line
95 is typical

do p = city_head repeat (p->city_list) while (p"=null);

The DO group header successively processes each el enment of the |inked
list starting at city_head until it encounters a null [ink, 0000. On
the first iteration, the DO group sets the pointer variable p to the
val ue of the pointer variable city head. In the exanple above, this
results in the assignnment p = 1000.

On the next iteration, p takes on the value of the city_list field at
1000 that addresses Las Vegas. This results in the value p = 2000. on
the last iteration, p takes on the value of the city list field based
at 2000, resulting in p = 0000. The DO group then stops executing
because p is equal to null.

12.3.3 Overall Program Structure

Keeping in mind the preceding discussion, |ook at the overall program
structure. The top-level programcalls occur in the DO group between
lines 31 and 38. The renai nder of the program consists entirely of
nest ed subroutines.

NETWORK is logically divided into four parts:

* The input section constructs and echoes the network of cities,
consi sting of four procedures beginning on |ine 45: setup, connect,
find, and print_all.

* The analysis of the shortest path between the cities takes place in
the shortest-distance procedure starting on |line 164.

* The shortest path display operations are split between the two
procedures print_paths and print_route, respectively.

12-9



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

* The free all procedure clears the old network before | oading a new
net wor k.

Begi nning on line 32, the main programcalls setup to read the network.
If the city list is enpty, then NETWORK stops. Otherwise, it calls
print_all to display the network, and then calls print-Paths to pronpt
and di splay the shortest routes. Upon return, NETWORK calls free - al
to rel ease storage. This process continues until you enter an enpty

net wor k.

12.3.4 The Setup Procedure

The main loop in setup occurs between |ines 54 and 58. On each
iteration, the GET LIST statenment, line 55, reads a pair of cities with
a connecting di stance. Next, setup calls the connect subroutine tw ce
to establish the connection in both directions between the cities. The
ON-unit on line 50 intercepts the CTRL-Z

12.3.5 The Connect Procedure

The connect procedure establishes a single routenode to connect the
first city to the second city. The connect procedure does this by
calling the find procedure twi ce, once for the first city and once for
the second city. The find procedure locates a city if it exists in the
network, or creates the city node if it does not yet exist. upon
return fromfind, the connect procedure creates and fills in the route-
node, lines 79 to 82.

In the previous exanple, the first call to connect establishes the
city_nodes for Mnterey and Las Vegas, indirectly through the find
procedure, and then produces the route - node under Monterey only. The
second call to connect establishes the route-node under Las Vegas.

12.3.6 The Find Procedure

The find procedure, starting at |ine 89, searches the city |ist,

begi nning at city_head, until it finds the input city or exhausts the
city_ list. If the input city does not exist, find creates it between
lines 100 and 105. In any case, find returns a pointer to the requested
city node.

12.3.7 The Print-All Procedure

The print_all procedure appears between lines 113 and 127. NETWORK
calls print_all after creating the network. This procedure starts at
city - head and displays all the cities in the city list. As it visits
each city, print all also traverses and displays the route - head. Upon
conpl ~-tion of the print_all procedure, all city-nodes and route-nodes
have been visited and displ ayed.

12.3.8 The Print-Paths Procedure

The print_paths procedure reads a destination city on Iine 143 and
sends it to the shortest distance procedure. Upon return, print_paths
sets the total - distance field of each city node to the total distance
fromthe destination city. You enter the starting city on |ine 148, and

12-10



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

print_paths sends it to the print_route procedure for the display
operati on.

12.3.9 The Print-Route Procedure

The print_route procedure at |line 214 displays the best route fromthe
input city to the destination. The procedure finds the best route as
follows: The total distance fromthe input city to the destination has
al ready been conputed and stored in the total distance field. The
procedure obtains the first I eg of the best route by finding a

nei ghboring city whose total distance field differs by exactly the

di stance to the neighbor. |I-E then displays the neighbor, nmoves to the
nei ghboring city, and repeats the sane operation. Eventually, it
reaches the destination city and conpl etes the di splay operation

Line 221 finds the original city_node. Line 231 displays the remaining

di stance, and the search for the first or next |leg occurs between |ines
233 and 244. On each iteration, line 236 tests to deternine if a

nei ghbor has been found whose total distance plus the |eg distance

mat ches the current city. If so, line 238 displays the | eg distance and
the search terninates by setting q to null.

12.3.10 The Shortest-Distance Procedure

This procedure takes an input city, called the destination, and
conputes the mininumtotal distance fromevery city in the network to
the destination. It then records this total at each city _node in the
total distance field. In calculating the mninumtotal distance, Fhe
procedure inplenents the follow ng al gorithm

1. Initially mark all total - distance fields with infinity (32767 in
PL/1) to indicate that the node currently has no connecti on.

2. Set the investigate flag to false for each city. The investigate
flag marks a city _node that needs further processing.

3. Set the total distance to the destination at zero; all others are
currently set to infinity, but change during processing.

4. Set the investigate flag to true for the destination only.

5. Examine the city list for the city node that has the | east total-
di stance, and whose investigate flag is true. At first, only the
destination is found. Wen no city_node has a true investigate flag,
all processing is conplete and all mininumtotal-distance fields
have been comput ed

6. Clear the investigate flag for the city found in 4, and extract the
current value of its total distance field. Exam ne each of its
nei ghbors; if the current Total distance field plus the |eg distance
is less than the total -distance field marked at the neighbor, then
repl ace the neighbor's total-distance field by this sum Then nark
t he nei ghbor for processing by setting its investigate flag to true.
After processing each neighbor, return to step 4.

The al gorithmthus proceeds through the network, devel oping the
shortest path to any node, and as a result, visiting each city exactly
once. This is because the process is linear, and any additional nodes
do not significantly effect the tinme to analyze the network.

12-11



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

12.3.11 The Free-All Procedure

The final procedure, free all starting at line 251, returns the network
storage at the end of processing each network. The procedure visits and
then discards each city_node and the entire |list of route-node

connecti ons.

12.3.12 NETWORK Expansion

You can expand NETWORK in several ways. First, you can open a STREAM
file and read the graph fromdi sk, because it is inconvenient to type
an entire network each tine you run the program You can al so store
several networks on disk and retrieve themon conmand fromthe consol e.

1a

2 /* This program finds the shortest path between nodes */
3 /* in a network. It has 8 internal procedures: */
4 /* SETUP, CONNECT, FIND, PRINT_ALL, PRINT_PATHS, */
5 /* SHORTEST_DISTANCE, PRINT_ROUTE, and FREE_ALL. */
6

7 network:

8 proc options(main);

9 %replace

10 true by "1b,

11 false by "07"b,

12 citysize by 20,

13 infinite by 32767;

14 dcl

15 sysin file;

16 dcl

17 1 city_node based,

18 2 city_name char(citysize) var,
19 2 total _dist fixed,
20 2 investigate bit,
21 2 city_list ptr,
22 2 route_head ptr;
23 dcl

24 1 route_nhode based,

25 2 next_city ptr,
26 2 route_dist fixed,
27 2 route_list ptr;
28 dcl

29 city head ptr;

30

31 do while(true);

32 call setup();

33 if city_head = null then
34 stop;

35 call print_all();

36 call print_paths();

37 call free_all();

38 end;

39

40 setup:

41 proc;

42 dcl

43 dist fixed,

44
45

(cityl, city2) char(citysize) var;
on endfile(sysin) go to eof;

O0O0O0O0OTTO0O0000000 0000000000000 0D00C0TC0o0o0oCTCoO 2290

12-12



PL/ I

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

62
63
64
65
66

68
69
70
71
72
73
74
75
76
77
78

80
81

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

Programmrer's Gui de 12. 3

DD DAOOOO0OO0OTTOOOOO0000QO220O000000TTOOOOOOO0O0O0O0O00O0O0O0O0TTOODOOOOOO0O00O0

city head = null;

put
put

eof:
end

connect:

skip list("Type "Cityl, Dist, City2"");
skip;

do while(true);

get list(cityl, dist, city?2);

call connect(cityl, dist, city?);

call connect(city2, dist, cityl);

end;

setup;

proc(source_city, dist, dest_city);

dcl

dcl

s
d

source_city char(citysize) var,
dist fixed,
dest city char(citysize) var;

(r, s, d) ptr;
find(source_city);
find(dest_city);

allocate route_node set (r);

r->route _dist = dist;
r->next _city = d;
r->route_list = s->route_head;
s->route_head = r;
end connect;
find:

proc(city) returns(ptr);
dcl

city char(citysize) var;
dcl

(p, ) ptr;

do p = city_head
repeat(p->city_list) while(p”™=null);
if city = p->city_name then

return(p);
end;
allocate city_node set(p);
p->city_name = city;
p->city_list = city_head;
city head = p;
p->total_dist = infinite;
p->route_head = null;
return(p);
end find;
print_all:
proc;
dcl
(p, Q) ptr;

do p = city_head

put

repeat(p->city_list) while(p”=null);
skip list(p->city_name,":");
do g = p->route_head

repeat(g->route_list) while(g™=null);

put skip list(g->route_dist, "miles to",

A Network Anal ysis Program

12-13



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

104 e g->next_city->city_name);
105 e end;

106 d end;

107 c end print_all;

108 b

109 b print_paths:

110 c proc;

111 ¢ dcl

112 ¢ city char(citysize) var;

113 ¢ on endfile(sysin) go to eof;

114 d do while(true);

115 d put skip list("Type Destination ");
116 d get list(city);

117 d call shortest dist(city);

118 d on endfile(sysin) go to eol;

119 e do while(true);

120 e put skip list("Type Start *);
121 e get list(city);

122 e call print_route(city);

123 e end;

124 d eol: revert endfile(sysin);

125 d end;

126 ¢ eof:

127 ¢ end print_paths;

128 b

129 b shortest_dist:

130 c proc(city);

131 ¢ dcl

132 ¢ city char(citysize) var;

133 ¢ dcl

134 ¢ bestp ptr,

135 ¢ (d, bestd) fixed,

136 ¢ (p, g, r) ptr;

137 d do p = city_head

138 d repeat(p->city_list) while(p”=null);
139 d p->total_dist = infinite;

140 d p->investigate = false;

141 d end;

142 c p = find(city);

143 c p->total_dist = 0;

144 c p->investigate = true;

145 d do while(true);

146 d bestp = null;

147 d bestd = infinite;

148 e do p = city_head

149 e repeat(p->city_list) while(p~=null);
150 e if p->investigate then

151 f do;

152 f if p->total_dist < bestd then
153 ¢ do;

154 ¢g bestd = p->total_dist;
155 ¢ bestp = p;

156 ¢ end;

157 f end;

158 e end;

159 d if bestp = null then

160 d return;

161 d bestp->investigate = false;

12-14



PL/ I

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Programmrer's Gui de 12. 3

OO DDODdDDODOAALOOOO0OTTOODD=h==h=hDdDDDDAOAOOODDDDAALOOOOOOOOOTTOOD=h=h=h=hdDDDD D

do g = bestp->route_head
repeat(g->route_list) while(g™=null);
g->next_city;
bestd + g->route_dist;
f d < r->total_dist then
do;
r->total _dist
r->investigate
end;
end;
end;
end shortest _dist;

r
d
i

d;
true;

print_route:
proc(city);
dcl
city char(citysize) var;
dcl
(p, q) ptr,
(t, d) fixed;
p = find(city);
do while(true);
t = p->total_dist;
if t = infinite then
do;
put skip list("(No Connection)");
return;
end;
if t = 0 then
return;
put skip list(t,"miles remain,");
g = p->route_head;
do while(g™=null);
g->next_city;
g->route_dist;
f t =d + p->total_dist then
do;
put list(d,"miles to",p->city_name);
g = null;
end; else
g = g->route_list;
end;
end;
end print_route;

p
d
i

free_all:
proc;
dcl
(p, @) ptr;
do p = city_head
repeat(p->city_list) while(p”™=null);
do g = p->route_head
repeat(g->route_list) while(g™=null);
free g->route_node;
end;
free p->city_node;
end;
end free_all;

A Network Anal ysis Program

12-15



PL/1 Progranmer's CQuide 12. 3 A Network Anal ysis Program

220 b
221 b end network;

Li sting 12-4. The NETWORK Program
Ref erences: LRM Sections 3.4, 7.1-7.8, 8.2

End of Section 12

12-16



Section 13

13 Recursive Processing

Recursive processing occurs when an active procedure calls itself, or
is called by another active procedure. There are nmany progranmn ng
probl ens that |lend thenselves to this kind of construct. This section
has three such problenms. The first two illustrate the basic concepts,
and the |last one uses recursion in a practical problem

In a recursive procedure, a CALL statenent, or function reference
contained in the procedure itself, reinvokes the procedure before
returning to the first level call. Therefore, you nust declare all such
procedures with the RECURSI VE attribute so PL/I can properly save and
restore the |local data areas at each |evel of recursive call

Note: To nmmintain conpatibility with full PL/I, you should not use
formal paraneters on the left of an assignment statenent in a PL/I
RECURSI VE procedure.

PL/1 does not allow BEG N bl ocks in RECURSI VE procedures. However , it
does al |l ow nested procedures and DO groups. The exanples that foll ow
illustrate the proper formulation of RECURSI VE procedures.

13.1 The Factorial Function

The cl assic exanple of recursion is evaluation of the Factorial
function. This function, used throughout nmathenmatics, is a good
illustrati on because you can define it by iteration and recursion

The iterative definition of the Factorial function is
nt = (MM-DH(-2) ... (2QD)

where n! is the Factorial function, and n is a nonnegative integer
Ther ef or e:

(-D! = (-1)(n-2) ... D@D
You can define the Factorial function using the recursive relation:
n! = n(n-1)! (by definition, 0! = 1)

Eval uating the Factorial function using either iteration or recursion
produces the follow ng val ues:

o1 =1
1 @) =1
21 @ @ =2

3 (3 (2 (1) =6

4r (4 3 (@ (1) =24

st (B3 (4 (3 (2 (1) =120

61 (6) (5) (4 (3) (&) (1) =720

(1) (6) (5) () (3) (2) (1) = 5040

g8l (@) (M) (6) (53) (4) (3) (&) (1) = 40320

9 (9 (B (M () (3) (4 (3) (2) (1) = 362880

100 (10) (D) B (M B) B) D B (@ (1) = 3628800
Listing 13-1 shows a program called | FACT that conputes val ues of the
Factorial function using iteration. The variable F is declared as a

FI XED BI NARY data itemthat accunul ates the value of the factorial up
to a maxi num of 32767.

13-1



PL/1 Progranmer's CQuide 13.1 The Factorial Function

Listing 13-2 shows the output from I FACT. | FACT gives the proper val ue
for the Factorial function up to 71, 5040. At this point, the variable
F overflows and produces inproper results, but the output continues.

Note: PL/1 does not signal FIXEDOVERFLOW for binary conputations

Li sting 13-3 shows the program RFACT that perforns the equival ent

eval uation of the Factorial function using recursion. For conparison,
RFACT uses the REPEAT formof the DO-group to control the test. RFACT
declares factorial as a RECURSI VE procedure, and calls the procedure at
the top level in the PUT statenent on line 10. Line 19 contains an
enmbedded recursive call in the RETURN statenent. Factorial returns when
the input value is zero. Al other cases require one or nore recursive
eval uations of factorial to produce the result. For exanple, 3!
produces the sequence of conputations,

factorial (3) = 3*factorial (2)
factorial (2) = 2*factorial(l)
factorial (1) = 1*factorial (0)
factorial(0) =1

1 1

2 1 1

3 2 1 1

produci ng the value 6. Listing 13-4 shows the output for the recursive
factorial evaluation produced by RFACT. The val ues again overfl ow
beyond 5040 due to the precision of the conputations.

1la
2 a /* This program evaluates the Factorial
3 a /* function (n!) using iteration.
4 a
5 a ifact:
6 b procedure options(main);
7b declare
8 b (i, n, ) fixed;
9b
10 c do i 0 by 1;
11 c f=1;
12 d don=1itol by -1;
13 d fact = n * f;
14 d end;
15 ¢ put edit("factorial(",i,")=",fact)
16 c (skip, a,f(2), a, £(7)):
17 c end;
18 b end ifact;

Listing 13-1. The | FACT Program

A>ifact

factorial( 0)= 1

factorial( 1)= 1

factorial( 2)= 2

factorial( 3)= 6

factorial( 4)= 24

factorial( 5)= 120

factorial( 6)= 720

factorial( 7)= 5040

factorial( 8)= -25216 the values are incorrect
factorial( 9)= -30336 from this point on

13-2



PL/1 Progranmer's CQuide 13.1 The Factorial Function

factorial (10)= 24320
factorial(1l)= 5376
factorial(12)= -1024
factorial (13)=  -13312
factorial (14)= 10240
factorial (15)= 22528
factorial (16)=  -32768
factorial (17)=  -32768
factorial(18)= O
factorial(19)= O

Listing 13-2. Qutput fromthe | FACT Program

1a

2 a /* This program evaluates the Factorial
3 a /* function (n!) using recursion.

4 a

5 a rfact:

6 b procedure options(main);

7b declare

8 b i fixed;

9c do 1 = 0 repeat(i+l);

10 c put skip list("factorial(",i,")=",factorial(i));
11 c end;

12 b stop;

13 b

14 b factorial:

15 ¢ procedure(i) returns(fixed) recursive;
16 ¢ declare

17 ¢ i fixed;

18 c if i = 0 then return (1);

19 c return (i * factorial(i-1));
20 c end factorial;
21 b
22 b end rfact;

Li sting 13-3. The RFACT Program

A>fact

factorial( 0)= 1

factorial( 1)= 1

factorial( 2)= 2

factorial( 3)= 6

factorial( 4)= 24

factorial( 5)= 120

factorial( 6)= 720

factorial( 7)= 5040

factorial( 8)=  -25216 the values are incorrect
factorial( 9)= -30336 from this point on
factorial (10)= 24320

factorial(11)= 5376

factorial (12)= -1024

factorial (13)=  -13312

factorial (14)= 10240

factorial (15)= 22528

factorial (16)=  -32768

factorial (17)=  -32768

factorial(18)= O

factorial(19)= O

13-3



PL/1 Progranmer's CQuide 13. 2FI XED DECI NAL and FLOAT BI NARY Eval uati on

Listing 13-4. Qutput fromthe RFACT Program

13.2 FIXED DECINAL and FLOAT BINARY Evaluation

The Factorial evaluation progranms here illustrate an inportant point
about arithnetic calculations using different data types. Listing 13-5
shows a programcalled DFACT. It is the sanme recursive eval uation of
the Factorial function found in RFACT, but it uses FIXED DECI MAL data
wi th the maxi mum al | owabl e precision. Listing 13-6 shows the out put
from DFACT. The | argest val ue produced by the programis

Factorial (17) = 355,687,428,096,000

At this point, the run-tine system signals FI XEDOVERFLOWto indicate
that the decimal conputation has overfl owed the naxi mum 15 digit val ue.

Listing 13-7 shows the program FFACT t hat eval uates the Factori al
function using FLOAT BINARY data. Listing 13-8 shows the output from
FFACT. FFACT can conpute the value of the function beyond 17. PL/I
truncates the nunmber of significant digits on the right to

approxi mately 7 equival ent decinmal digits. Again, FFACT ends when the
run-tinme systemsignals the OVERFLOW condi ti on because the program
produces an exponent val ue that cannot be maintained in the floating-
poi nt representation.

1a
2 a /* This program evaluates the Factorial function
3 a /* (n!) using recursion and FIXED DECIMAL data.
4 a
5 a dfact:
6 b procedure options(main);
7b declare
8 b i fixed;
9C do 1 = 0 repeat(i+l);
10 c put skip list("Factorial(",i,")=",factorial(i));
11 c end;
12 b stop;
13 b
14 b factorial:
15 ¢ procedure(i) returns(fixed decimal(15,0))
16 c recursive;
17 c declare
18 c i fixed;
19 c
20 c if i = 0 then return (1);
21 c return (decimal(i,15) * factorial(i-1));
22 c end factorial;
23 b
24 b end dfact;
Li sting 13-5. The DFACT Program

A>dfact

Factorial( 0)= 1
Factorial( 1)=1
Factorial( 2)= 2
Factorial( 3)= 6
Factorial( 4)= 24
Factorial( 5)= 120

13-4



PL/ I

Factorial(
Factorial(
Factorial(
Factorial(
Factorial(
Factorial(
Factorial(
Factorial(
Factorial(
Factorial(
Factorial(
Factorial(
Factorial(

Programmrer's Gui de

6)= 720
7)= 5040
8)= 40320
9)= 362880

10)=3628800
11)=39916800
12)=479001600
13)=6227020800
14)=87178291200
15)= 1307674368000
16)=20922789888000
17)=355687428096000
18)=

FIXED OVERFLOW (1)
Traceback: 0007 019F 0018 0000 # 2809 6874 0355 0141

A>

13. 2FI XED DECI NAL and FLOAT BI NARY Eval uation

Listing 13-6. Qutput fromthe DFACT Program

/* This program evaluates the Factorial function
/* (n!) using recursion and FLOAT BINARY data.

put skip list("Factorial(",i,")=",Ffactorial(i));

procedure(i) returns(float) recursive;

return (i * factorial(i-1));

1la
2 a
3 a
4 a
5 a pfact:
6 b procedure options(main);
7b declare
8b i fixed;
9c do i = 0 repeat(i+l);
10 c
11 ¢ end;
12 b stop;
13 b
14 b factorial:
15 c
16 ¢ declare
17 ¢ i fixed;
18 c if i = 0 then return (1);
19 c
20 c end factorial;
21 b
22 b end pfact;
Li sting 13-7. The PFACT Program
A>pfact
Factorial( O 1.000000E+00
Factorial( | 1.000000E+00
Factorial( 2 2.000000E+00
Factorial( 3 0.600000E+01
Factorial( 4 2.400000E+01
Factorial( 5 1.200000E+02
Factorial( 6 0.720000E+03
Factorial( 7 0.504000E+04
Factorial( 8 4_.032000E+04
Factorial( 9 3.628799E+05
Factorial( 10 3.628799E+06
Factorial( 11 3.991679E+07
Factorial( 12 4.790015E+08
Factorial( 13 0.622702E+10

13-5



PL/1 Progranmer's CQuide 13.3 The Acker mann Function

Factorial( 14 0.871782E+11
Factorial( 15 1.307674E+12
Factorial( 16 2.092278E+13
Factorial( 17 3.556874E+14
Factorial( 18 0.640237E+16
Factorial( 19 1.216450E+17
Factorial( 20 2.432901E+18
Factorial( 21 0.510909E+20
Factorial( 22 1.124000E+21
Factorial( 23 2.585201E+22
Factorial( 24 0.620448E+24
Factorial( 25 1.551121E+25
Factorial( 26 4_.032914E+26
Factorial( 27 1.088887E+28
Factorial( 28 3.048883E+29
Factorial( 29 0.884176E+31
Factorial( 30 2.652528E+32
Factorial( 31 0.822283E+34
Factorial( 32 2.631308E+35
Factorial( 33 0.868331E+37

Factorial( 34

OVERFLOW (1)

Traceback: 006C 13CB 019B 0000 # 8608 OB15 FB51 0141
A>

Listing 13-8. Qutput fromthe FFACT Program

13.3 The Ackermann Function

The PL/1 run-tinme system maintains a 512-byte stack area to hold
subroutine return addresses and sone tenporary results. Under nornal
circunstances, this stack area is sufficiently [arge for nonrecursive
and nost sinple recursive procedure processing. The programin this
section, however, illustrates nultiple recursion using a stack depth
that can exceed the 512-byte default val ue.

The Ackernmann function, denoted by A(mn) , conmes from Nunber Theory
and has the follow ng recursive definition

A(m,n+1) if m=0, otherwise
A(m,n)=A(m-1,1) if n=0, otherwise
A((m_l) 1A(m ’ n_l))

Li sting 13-9 shows the ACK programthat reads two val ues for the
maxi rum mand, n on line 11, and then evaluates the function for these
val ues. Listing 13-10 shows the programinteraction. Although the
Ackermann function returns a FI XED Bl NARY val ue, the program uses the
built-in DECIMAL function to control the size of the converted field in
the PUT statenments on lines 12, 15, and 17.

In this exanple, ACK uses the STACK option on line 7 to increase the
size of the run-tinme stack fromits default value, 512 bytes, to 2000
byt es.

Note: The STACK option is only valid with the MAIN option. You mnust
determ ne the value of the STACK option enpirically, because the
conpi |l er cannot compute the depth of recursion. If the allocated stack
size is too small and the stack overflows during recursion, the run-
time system out puts the nessage

FREE SPACE OVERWRITE

13-6



PL/1 Progranmer's CQuide 13.4An Arithnetic Expression Eval uator

and then ends the program

This kind of nultiple recursion processing is CPU intensive. You should
experinment with sone different values for max, and see if you can
det erm ne how nuch stack is being used.

1la

2 a /* This program evaluates the Ackermann function
3a /* A(m,n), and increases the size of the stack

4 a /* because of the large number of recursive calls.
5a

6 a ack:

7b procedure options(main,stack(2000));

8 b declare

9b (m,maxm,n,maxn) Fixed;

10 b put skip list("Type max m,n: ");

11 b get list(maxm,maxn);

12 b put skip

13 b list(" *,(decimal(n,4) do n=0 to maxn));
14 ¢ dom =0 to maxm;

15 c put skip list(decimal(m,4),":");

16 d do n = 0 to maxn;

17 d put list(decimal (ackermann(m,n),4));
18 d end;

19 ¢ end;

20 b stop;

21 b

22 b ackermann:

23 ¢ procedure(m,n) returns(fixed) recursive;
24 ¢ declare (m,n) fixed;

25 c if m = 0 then

26 c return(n+l);

27 c if n = 0 then

28 c return(ackermann(m-1,1));

29 c return(ackermann(m-1,ackermann(m,n-1)));
30 ¢ end ackermann;
31 b
32 b end ack;

Li sting 13-9. The ACK Program

A>ack

Type max m,n: 3,5

0 1 2 3 4 5
0: 1 2 3 4 5 6
1: 2 3 4 5 6 7
2: 3 5 7 9 11 13
3: 5 13 29 61 125 253
A>

Li sting 13-10. Interaction with the ACK Program

13.4 An Arithmetic Expression Evaluator

One of the practical uses of recursion is the translation of statenents
in a high-level programm ng | anguage. This is because npbst | anguages
are defined recursively. In block-structured | anguages like PL/I for
exanpl e, DO groups and BEG N and PROCEDURE bl ocks can all be nested,

13-7



PL/1 Progranmer's CQuide 13.4An Arithnetic Expression Eval uator

and the resulting structure lends itself easily to recursive
processi ng.

The next exanple illustrates how you can use recursion to evaluate
arithnmetic expressions. Here is a sinple, recursive definition of an
arithnmetic expression: An expression is a sinple nunber, or a pair of
expressions separated by a +, -, *, or /, and enclosed in parentheses.

Using this definition, the nunber 3.6 is an expression because it is a
si npl e nunber. Cearly,

(3.6 + 6.4)

is an expression because it consists of a pair of expressions that are
both sinple nunbers, separated by a +, and encl osed in parentheses.
Al so,

(1.2 * (3.6 + 6.4))

is a valid expression because it contains the two valid expressions 1.2
and (3.6 + 6.4), separated by a * and enclosed in parentheses Using the
definition given above, the sequences,

3.6 + 6.4
(1.2 + 3.6 + 6.4)

are not valid expressions because the first is not enclosed in
par ent heses, while the second is not a pair of expressions in
par ent heses.

The preceding definition of an expression is somewhat restricted. Once
a definition is established, it is easy to expand it to include nore
conpl ex expressions.

Listing 13-11 shows an expression eval uation programcalled EXPRL. The
mai n processing takes place between lines 27 and 31 where EXPR1 reads
an expression fromthe console and types the evaluated result back to
you. Listing 13-12 shows the console interaction with EXPRL where the
user enters several properly and inproperly forned expressions.

1a

2 a /* This program evaluates an arithmetic expression */
3 a /* using recursion. It contains two procedures. GNT */
4 a /* obtains the input expression consisting of separate */
5a /* tokens, and EXP that performs the recursive */
6 a /* evaluation of the tokens in the input line. */
7 a

8 a expression:

9b proc options(main);

10 b dcl

11 b sysin file,

12 b value float,

13 b token char(10) var;

14 b

15 b on endfile(sysin)

16 b stop;

17 b

18 b on error(l)

19 b /* conversion or signal */

20 c begin;

21 c put skip list("Invalid Input at ",token);

22 ¢ get skip;

13-8



PL/1 Progranmer's CQuide 13.4An Arithnetic Expression Eval uator

23 ¢ go to restart;

24 ¢ end;

25 b

26 b restart:

27 c do while("1"b);

28 c put skip(3) list("Type expression: ");
29 c value = exp(Q);

30 ¢ put skip list("Value is:",value);
31 c end;

32 b

33 b gnt:

34 c proc;

35 ¢ get list(token);

36 ¢ end gnt;

37 b

38 b exp:

39 ¢ proc returns(float binary) recursive;
40 ¢ dcl x float binary;

41 c call gnt(Q;

42 ¢ if token = (" then

43 d do;

44 d x = expQ;

45 d call gnt(Q);

46 d if token = "+ then
47 d x = x + expQ;
48 d else

49 d if token = "-" then
50 d x = x - expQ;
51d else

52 d if token = "*" then
53 d x = x * expQ;
54 d else

55 d if token = */" then
56 d x = x / expQ;
57 d else

58 d signal error(l);

59 d call gnt(Q;

60 d if token "= ")*" then
61 d signal error(l);
62 d end;

63 C else

64 c X = token;

65 c return(x);

66 c end exp;

67 b

68 b end expression;

Li sting 13-11. The EXPRESSI ON Program usi ng Eval uat or EXPR1

13.4.1 The Exp Procedure

The heart of the expression analyzer is the RECURSI VE procedure exp.
This procedure inplenments the recursive definition given above and
deconposes the input expressions piece by piece. The GNTI, Get Next
Token, procedure reads the next el enent or token, a left or right
parenthesis, a nunmber, or one of the arithmetic operators, in the input
l[ine. GNT uses a GET LIST statenent, so you nust separate each token
with a blank or end-of-line character.

13-9



PL/1 Progranmer's CQuide 13.4An Arithnetic Expression Eval uator

On line 41, exp calls GNT. GNT places the next input token into the
CHARACTER( 10) variable called token. If the first itemis a nunber

then the series of tests in exp sends control to line 64. The
assignment to x autonatically converts the value of token to a
floating-point value. Then exp returns this converted value to |ine 29,
where EXPRL stores it into value, and subsequently wites it out as the
result of the expression

If the expression is nontrivial, then exp scans the l[eading |eft
parenthesis on line 42, and enters the DO group on line 43. EXPR1l

i medi ately evaluates the first subexpression no matter how
conplicated, and stores it into the variable x on line 44. EXPRl then
checks token for an occurrence of +, -, *, or /. Suppose, for exanple,
token contains the * operator. The statement on |line 53 recursively

i nvokes the exp procedure to evaluate the right side of the expression
Upon return, it nmultiplies this result by the value of the |left side
that was previously conputed. EXPRL then checks the bal ancing, right
parenthesis starting on Iine 60, and returns the resulting product as
the value of exp on line 64.

13.4.2 Condition Processing

EXPR1 perforns condition processing in three places. The first ON unit,
line 15, intercepts an end-of-file, CTRL-Z, condition on the input

file, and executes a STOP statement. The second ON-unit, l|ine 18,
receives control if an error occurs during conversion fromcharacter to
floating-point representation at the assignnent on [ine 64. The ON-unit
di splays the token in error, and then executes a GET SKIP statenment to
clear the data to the end of the line. It then transfers control to the
restart | abel, which pronpts for another input expression

EXPRL signals a condition when it encounters an invalid operator or an
unbal anced expression. If the operator is not a +, -, *, or /, then
EXPR1 executes line 58 and signals the ON-unit, line 18. Again, the
ON-unit displays the error and transfers control to the restart | abel
Simlarly, a missing right parenthesis on line 60 signals the ERROR(I)
ON-unit to report the error and restart the program Wen the program
restarts, PL/I discards the information on the current |evel of
recursion.

A>exprl

Type expression: (4 + 5.2 )

Value is: 0.920000E+01

Type expression: 4.5e-1

Value is: 4.499999E-01

Type expression: (4 & 5)

Invalid input at &

Type expression: ( (3 +4) * (10/78))
Value is: 0.875000E+01

Type expression: ( 3 * 4)

13-10



PL/1 Progranmer's CQuide 13.4An Arithnetic Expression Eval uator

Value is: 1.200000E+01
Type Expression: ~Z

A>
Listing 13-12. Interaction with EXPRL

13.4.3 Improvements

The expression anal yzer requires spaces between tokens in the input
line. Recall that Section 11.2 contains a nore advanced version of GNT

W incorporate this expanded version of GNT into the expression

anal yzer, and al so change the error recovery mechani smso that now |ine
27 discards the remmi nder of the current input when restarting the
program Listing 13-13 shows the inproved version called EXPR2, and

Li sting 13-14 shows the console interaction with this inmproved
expressi on eval uat or

Even in EXPR2 there is roomfor expansion. First, you can add nore
operators to expand upon the basic arithnetic functions. Al so, you can
add operator precedence and elininate the requirement for explicit

par ent heses. Beyond that, you can add variabl e nanes and assi gnnment
statenents to turn the programinto a BASIC interpreter!

1la /*
2 a /* This program evaluates an arithmetic expression
3 a /* using recursion. It contains an expanded version
4 a /* of the GNT procedure that obtains an expression
5a /* containing separate tokens. EXP then recursively
6 a /* evaluates the tokens in the input line.
7 a */
8 a
9 a expression:
10 b proc options(main);
11 b
12 b %replace
13 b true by "1%b;
14 b
15 b dcl
16 b sysin file,
17 b value float,
18 b (token char(10), line char(80)) varying
19 b static initial("");
20 b
21 b on endfile(sysin)
22 b stop;
23 b
24 b on error(l) /* conversion or signal */
25 c begin;
26 c put skip list("Invalid Input at *,token);
27 c token = *"; line = "7;
28 ¢ go to restart;
29 c end;
30 b
31 b restart:
32 b
33 ¢ do while("1"b);

13-11



PL/ I

34 c put skip(3) list("Type expression: -
35 ¢ value = exp(Q);
36 c put edit("Value is: ",value) (skip,a,f(10,4));
37 ¢ end;
38 b
39 b gnt:
40 c proc;
41 c dcl
42 ¢ i fixed;
43 c
44 c line = substr(line, length(token)+1);
45 d do while(true);
46 d if line = " then
47 d get edit(line) (d);
48 d i = verify(line," %);
49 d if 1 = 0 then
50 d line = *7;
51d else
52 e do;
53 e line = substr(line,i);
54 e i = verify(line,"0123456789.");
55 e if 1 =0 then
56 e token = line;
57 e else
58 e if 1 =1 then
59 e token = substr(line,1,1);
60 e else
61 e token = substr(line,l1,i-1);
62 e return;
63 e end;
64 d end;
65 c end gnt;
66 b
67 b exp:
68 c proc returns(float binary) recursive;
69 c dcl x float binary;
70 c call gnt(Q;
71 c if token = (" then
72 d do;
73 d x = expQ;
74 d call gnt();
75 d if token = "+" then
76 d X = x + exp(Q;
77 d else
78 d if token = "-" then
79 d X = x - expQ;
80 d else
81d if token = "*" then
82 d X = xX * expQ;
83 d else
84 d if token = */" then
85 d x = x / exp(Q;
86 d else
87 d signal error(l);
88 d call gnt(Q);
89 d if token = ")*" then
9 d signal error(l);
d

91

13-12

Programmrer's Gui de 13.4An Arithnetic Expression Eval uator

end;



PL/1 Progranmer's CQuide 13.4An Arithnetic Expression Eval uator

92 c else

93 c X = token;
94 c return(x);

95 ¢ end exp;

96 b

97 b end expression;

Li sting 13-13. Expression Eval uator EXPR2
A>expr2

Type expression: (2 * 14.5)
Value is: 29.0000

Type expression: ((2*3)/(4.3-1.5))
Value is: 2.1429

Type expression: zot
Invalid Input at z

Type expression: ((2*3)-5)
Value is: 1.0000

Type expression: (2 n5)
Invalid Input at n

Type expression: ~Z
A>

Listing 13-14. Interaction with EXPR2

Ref erences: LRM Sections 2.8 to 2.9, 3.1 to 3.2,

End of Section 13

4.2, 9.1to 9.4

13-13






Section 14

14 Separate Compilation

Al'l of the prograns presented so far are single, conplete units,

al t hough many contain one or nore internal procedures. It is often
useful to break larger prograns into distinct nodules to be
subsequently linked with one another and with the PL/1 Run-tine
Subroutine Library (RSL).

There are two reasons for separately conpiling and |inking programs in
this manner. First, large prograns take |onger to conpile. Snaller
segnments can be independently devel oped, tested, and integrated,
requiring less overall conpilation tinme for the entire project. A large
program can al so overrun the nmenory space avail able for the Synbo

Tabl e.

Second, particular subroutines are useful for your own application
progranm ng. You can build your own |ibrary of subroutines and
selectively link themto your programs. Having such a library of conmon
subroutines greatly reduces the overall devel opment tine for any
particul ar program

This section presents basic information required to |link program
segnents. It also presents an exanple of a programthat is conpiled as
two separate nodul es and then Iinked together

14.1 Data and Program Declarations

You can direct separate nodules to share data areas by including the
EXTERNAL attribute in the declaration of the data item For exanpl e,
t he statenent,

declare x(10) fixed binary external;

defines a variable nanmed x occupying 10 FI XED BI NARY | ocations, 20
conti guous bytes, that is accessible by any other nodul e that uses the
same decl aration

Simlarly, the statenent,

declare
1 s external,
2 y(10) bit(8),
2 z character(9) varying;

defines a structure naned s, occupying a 20-byte area that is
accessi bl e by any other nodul es that use the sane decl aration.

The following Iist summarizes basic rules that apply to the declaration
of external data:

* EXTERNAL data itens are accessible in any block in which you declare
them The EXTERNAL attribute overrides the scope rules for interna
dat a.

* Initialize an EXTERNAL data itemin only one nodule. Oher nobdul es
can then reference the item

Declare all EXTERNAL data areas with the same length in all nodules in
whi ch they appear.

In 8-bit inplenmentations, EXTERNAL data itens must be unique in the
first six characters because the |inkage editing format truncates from

14-1



PL/1 Progranmer's CQuide 14. 2 ENTRY Dat a

the seventh character on. In 16-bit inplenentations, there are no
restrictions.

Avoid using ? synbols in variable nanes, because this character is used
as a prefix for names in the RSL.

Remenber that PL/| automatically assigns the STATIC attribute to any
EXTERNAL data item

14.2 ENTRY Data

ENTRY constants and ENTRY variables are data itens that identify
procedure names and describe their paraneter val ues. ENTRY constants
correspond to external procedures, or procedures defined in the nain
procedure.

ENTRY vari abl es take on ENTRY constant val ues when the programruns
through a direct assignment statenent, or an argunent- to-par aneter
assignment inplicit in a subroutine call

You invoke a procedure directly through a call to an ENTRY constant, or
indirectly by calling a procedure constant value held by an ENTRY
variable. As with |abel variables, you can al so subscript ENTRY
vari abl es.

The program shown in Listing 14-1 illustrates ENTRY data. The ENTRY
variable f declared on line 8 is an array containing three ENTRY
constants. Starting on line 12, the programinitializes the subscripted
el ements to the constants a, b, and c respectively. Note that the
constant a corresponds to an externally conpiled procedure (see Listing
3-1a).

On line 16, the DO group pronpts for input of a value to send to each
function, and then on line 19 calls each function once with the
i nvocati on,

O
where the first parenthesis pair defines the subscript, and the second
encl oses the list of actual arguments.

The decl aration of ENTRY constants and ENTRY variables is simlar to
FILE constants and FILE variables. PL/lI assunes all fornal paraneters
decl ared as type ENTRY to be entry variables. In all other cases, an
entry is constant unless you declare it with the VAR ABLE keyword.

The following rules apply to external procedure declarations:

* You can access data itens with the EXTERNAL attribute in any
procedure where they are decl ared EXTERNAL.

* |In 8-bit inplenentations, you nust nake external procedure nanes
unique in the first six characters (see Section 14.1). In 16-bit
i npl enentations, there are no restrictions.

* Avoid using the ? synbol in procedure nanes.

Note: In addition, you nust ensure that each paraneter exactly matches
the procedure declaration, and that the RETURNS attri bute exactly
mat ches the formreturned for function procedures.

1la /*
2 a /* This program illustrates ENTRY variables and

14-2



PL/1 Progranmer's CQuide 14. 3An Exanpl e of Separate Conpil ation

3 a /* constants.

4 a */

5a call:

6 b proc options(main);

7b dcl

8 b T (3) entry (float) returns (float) variable,
9b g entry (float) returns (float);
10 b dcl

11 b i fixed, x float;

12 b

13 b (1) = sin;

14 b f(2) = g;

15 b f(3) = h;

16 b

17 ¢ doi =1 to 3;

18 c put skip list("Type x *);

19 c get list(X);

20 c put list("f(",i,")=",F()X));
21 c end;

22 b stop;

23 b

24 b h:

25 ¢ proc(x) returns (float);

26 c dcl x float;

27 ¢ return (2*x + 1);

28 c end h;

29 b end call;

Listing 14-1. An Illustration of ENTRY Constants and vari abl es

14.3 An Example of Separate Compilation

This section presents an exanpl e program consisting of two nodul es that
are conpil ed separately and then |inked together. The two nodul es are
call ed MAI NI NVT and | NVERT, and are shown in Listings 14-2 and 14-3,
respectively. Compiling each of these nmodul es and then |inking them
toget her produces a programthat interacts with the console to produce
the solution set for a system of sinultaneous equations.

To understand how the prograns work, first consider the foll ow ng
system of equations in three unknowns:

a-b+c=2 a-b+c=3.5
a+b-c=0 a+b-c=1
2a—b =0 2a — b = -1

The val ues,

a=1 a=2.25
b=2 b =5.50
c=3 c =6.75
constitute valid solutions to this system of equations, because:
1-2+3=2 2.25 - 5.50 + 6.75 = 3.50
1+2-3=0 2.25 + 5,50 - 6.75 = 1
2*1 -2 =0 2*2.25 - 5.50 = -1

14-3



PL/1 Progranmer's CQuide 14. 3An Exanpl e of Separate Conpil ation

The values 2,0,0 and 3.5,1,-1 are called solution vectors for the
matri x. The coefficients of the matrix are

1 -1 1
1 1 -1
2 -1 0

The MAI NINVT nmodul e interacts with the console to read the coefficients
and the solution vectors for a system of equations. The | NVERT nodul e
perforns the actual matrix inversion that solves the system of

equati ons.

The essential difference between these two nodules is found in the
procedure headi ng. The MAI NI NVT procedure is the main program because
it is defined with the MAIN option. The invert procedure is a
subroutine called by the nmain program In Listing 14-2, the declaration
starting on line 15 defines invert as an EXTERNAL entry constant that
is then called on Iine 49.

On line 21, MAININVT declares the paraneters for the invert procedure
as a matrix of floating-point nunmbers denoted by maxrow and maxcol
Invert is defined with two additional FIXED(6) paraneters, but does not
return a val ue.

The invert procedure, shown in Listing 14-3 has three fornal paraneters
called a, r, and c. They are defined on line 2 and declared in lines 7
and 8. | NVERT takes the actual values of maxrow and maxcol
corresponding to the |largest possible row and colum value, froma

% NCLUDE file, as indicated by the + synbols follow ng the |ine nunber
at the left of both Iistings.

After you conpile both of the nodules, link themtogether with the
conmmand:

A>link invmat=maininvt,invert

The |inkage editor conmbines the two nodul es, selects the necessary
subroutines fromthe RSL, and creates the conmand file, named | NVNMAT.

Listing 14-4 shows the interaction with INVMAT. In this sanple
interaction, the user first enters the identity matrix to test the
basi ¢ operations. The inverse matrix produced for this input value is
also the identity matri x.

The user then enters the precedi ng system of equations, together with
two solution vectors. The output values for this systemare shown under
Sol utions: and match the previously shown val ues. The second set of

sol utions corresponds to the second sol ution vector input.

Finally, the user tests INVMAT with an invalid input nmatrix size, and
then ends the program by entering a zero row size

1la /*

2 a This program is the main module in a program that
3 a performs matrix inversion. It calls the entry

4 a constant INVERT which does the actual inversion.
5 a */

6 a maininvt:

7b procedure options(main);

8 b %replace

9b true by "1%Db,

10 b false by "0%b;

14-4



PL/1 Progranmer's CQuide

11+b
12+b
13+b
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

TOQDDDDDAODDDDDALOAODDDDALOODDDDAIOOOOOO0O0O0O0O0O0T0TCTCTCTDUTODODTCUTDUTUOTOT

14. 3An Exanpl e of Separate Conpil ation

%replace

dcl
dcl

dcl

dcl

put

maxrow by 26,
maxcol by 40;

mat(maxrow,maxcol) float (24);
(i,j,n,m) fixed(6);

var char(26) static initial
("abcdefghi jklmnopgrstuvwxyz*®);

invert entry
((maxrow,maxcol) float(24), fixed(6), Fixed(6));

list("Solution of Simultaneous Equations®);
do while(true);
put skip(2) list("Type rows, columns: *);
get list(n);
if n = 0 then

stop;

get list(m);
if n > maxrow ! m > maxcol then
put skip list("Matrix is Too Large®);

else
do;
put skip list("Type Matrix of Coefficients");
put skip;
doi =1 ton;
put list("Row",i,":");
get list((mat(i,j) do j =1 to n));
end;

put skip list("Type Solution Vectors");
put skip;
doj =n+1tom;
put list("Variable®,substr(var,j-n,1),":");
get list((mat(i,j) do i =1 to n));
end;

call invert(mat,n,m);
put skip(2) list("Solutions:");
doi =1 ton;
put skip list(substr(var,i,l),"=");
put edit((mat(i,j) do j = 1 to m-n)
((8.2)):

end

put skip(2) list("Inverse Matrix is");
doi =1 to n;
put skip edit
((mat(i,j) do j = m-n+l to m))
(x(3),61(8,2),skip);
end;
end;
end;

end maininvt;

Listing 14-2. MAININVT - Matrix Inversion Main Program Nodul e

14-5



PL/1 Progranmer's CQuide

25 end;

14. 3An Exanpl e of Separate Conpil ation

1la invert:
2b proc (a,r,c);
3+b %replace
4+b maxrow by 26,
5+b maxcol by 40;
6 b dcl
7b (d, a(maxrow,maxcol)) float (24),
8 b (i,j,k,1,r,c) fixed (6);
9c doi=1tor;
10 c d = a(i,l);
11 d doj=1toc - 1;
12 d a(i,j) = a(i,j+1)/d;
13 d end;
14 ¢ a(i,c) = 1/d;
15 d do k=1 tor;
16 d if kK ~= i then
17 e do;
18 e d = a(k,1);
19 f dol =1t%oc - 1;
20 f a(k, D) = atk,1+1) - a(i, ) * d;
21 T end;
22 e a(k,c) = - a(i,c) * d;
23 e end;
24 d end;
c
b

26 end invert;
Li sting 14-3.

A>invmat
Solution of Simultaneous Equations

Type rows, columnst 3,3

Type Matrix of Coefficients

Row 1 1 0 0
Row 2 :0 1 0
Row 3 0 O 1

Type Solution Vectors

Solutions:

a=

b=

C=

Inverse Matrix is
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

Type rows, columns: 3,5

Type Matrix of Coefficients

I NVERT Matrix | nversion Subroutine

Row 1:1-11
Row 2 11 -1
Row 3:2-10

Type Solution Vectors
Variable a :2 00

14-6



PL/1 Progranmer's CQuide 14. 3An Exanpl e of Separate Conpil ation

Variable b :3.5 1 -1

Solutions:

a = 1.002.25

b = 2.005.50

C = 3.006.75
Inverse Matrix is

0.50 0.500.00

1.00 1.00-1.00

1.50 0.50-1.00
Type rows, columns: 41,0
Matrix is Too Large

Type rows, columns: 0

A>
Listing 14-4. Interaction with the | NVMAT Program
Ref erences: LRM Sections 3.3.2, 5.1 to 5.4, 8.2

End of Section 14

14-7






Section 15

15 Decimal Computations

This section explains how PL/I handl es deci mal conputations, stores
deci nal data, and converts data types. Study this material thoroughly
because it is vital to understanding conmercial processing.

15.1 A Comparison of Decimal and Binary Operations

The arithnmetic with which we are nost faniliar uses the deci mal nunber
system All operations, such as addition and nultiplication, are based
on the nunber ten, and involve the digits zero through nine. Conputers,
however, performarithnmetic operations using binary, or base 2,
nunbers. Conputers use binary nunbers because the I's and Gs can be
directly processed by the on-off electronic switches found in
arithmetic processors.

Most progranmi ng | anguages allow you to wite prograns that process
base 10 constants and data items in sinple and readable forms. Because
the prograns process decimal values, it is necessary to convert val ues
into a binary formon input and back to a decimal formon output. This
conversion fromone type to another can introduce truncation errors
that are unacceptable in conmercial processing. Thus, decinal
arithnmetic is often required to avoid propagating errors throughout
conput ati ons.

In nobst programm ng | anguages, you have no control over the interna
format used for nuneric processing. Specifically, two of the nost
popul ar BASIC interpreters for nicroprocessors differ primarily in the
i nternal nunber formats. One uses floating-point binary, while the

ot her perforns cal cul ati ons using decimal arithnetic.

PASCAL conpil ers generally use floating- and fixed-point binary formats
with inplenmentation-defined precision, while FORTRAN conpil ers al ways
use floating- or fixed-point binary.

However, COBCOL was designed for use in comercial applications where
exact dollars and cents nust be nmaintained throughout conputations.
Therefore, COBOL processes data itenms using decimal arithnetic.

PL/1 gives you a choice between representations, so that you can tailor
the data in each programto the exact needs of the particular
application. PL/l uses FI XED DECI MAL data itenms to perform comerci al
functions, and FLOAT BINARY itens for scientific processing where
conputation speed is the nost inportant factor, and truncation errors
are insignificant or ignored altogether

The following two prograns illustrate the essential difference between
the two data types:

Tabl e 15-1. Difference of Decinal and Binary Data

decimal_comp: binary_comp:

procedure options(main); procedure options(main);

declare declare
i fixed, i fixed,
t fixed decimal(7,2); t float binary(24);

t =0; t =0;

do i = 1 to 10000; do i =1 to 10000;
t=1t+ 3.10; t =t + 3.10;

15-1




PL/1 Progranmer's CQuide 15.2 Deci mal Representation

end; end;
put edit(t) (f(10,2)); put edit(t) (f(10,2));
end decimal_comp; end binary_comp;

Both of these prograns sumthe value 3.10 a total of 10,000 times. The
only di fference between these prograns is that DECI MAL_COWP conput es
the result using a FI XED DECI MAL vari abl e, Wil e BI NARY_COWP perforns

t he conputati on usi ng FLOAT BI NARY.

DECI MAL_COWP produces the correct result 31000. 00, while BI NARY_COW
produces the approxi mati on 30997.30. The 2.70 difference is due to the
i nherent truncation errors that occur when PL/I converts certain

deci mal constants, such as 3.10, to their binary approximtions.

DECI MAL_COWP produces the exact result because no conversion occurs
when using FI XED DECI MAL vari abl es.

These two prograns illustrate a nore general problem Suppose that
during a particul ar day, Chase Manhattan Bank processes 10,000 deposits
of $3.10. Using a programw th FLOAT BI NARY data, $3.10 cannot be
represented as a finite binary fractional expansion. Therefore it is
approxi mated i n FLOAT BI NARY form as 3.099999E+00. Each addition
propagates a small error into the sum resulting in an extra $2.70
unaccounted for at the end of the day.

There are also situations where decimal arithnetic produces truncation
errors that can propagate throughout conputations. For exanple, the
fraction 1/3 cannot be represented as a finite decinmal fraction, and
thus is approxi mated as

0.3333333 ...

to the maxi mum possible precision. Such errors only occur when explicit
di vi si on operations take place.

The difficulty with FLOAT BI NARY representations is that sonme deci nal
constants expressed as finite fractional expansions in FIXED DECI MAL
cannot be witten as finite binary fractions. PL/l necessarily
truncates these during conversion to FLOAT BI NARY form

There are both advantages and di sadvantages in selecting FlI XED DEClI MAL
arithnmetic instead of FLOAT BI NARY. One advantage of FI XED DECI MAL
arithnmetic is that it guarantees there is no |oss of significant
digits. Al digits are considered significant in a conputation, so that
mul tiplication, for exanple, does not truncate digits in the |east
significant positions. Another advantage is that FIXED DECI MAL
arithnmetic precludes the necessity for exponent manipul ati on, and the
operations are relatively fast when conpared to alternative deci nal
arithmetic formts.

The di sadvantage is that you nust keep track of the range of val ues
that arithnetic operands can assune because all digits are considered
significant.

15.2 Decimal Representation

Deci mal variabl es and constants have both a precision and scale factor
The precision is the nunber of digits in the variable or constant,
while the scale factor is the nunber of digits in the fractional part.
For FI XED DECI MAL vari abl es and constants, the precision cannot exceed
15, and the scale factor cannot exceed the precision

15-2




PL/1 Progranmer's CQuide 15.2 Deci mal Representation

You can define the precision and scale factor of a variable in the
vari abl e decl arati on. For exanpl e,

declare x fixed decimal (10,3);

decl ares the variable x to have precision 10 and scale factor 3. The
conpil er automatically derives the precision and scale factor of a
constant by counting the nunmber of digits in the constant, and the
nunber of digits follow ng the decimal point. For exanple, the constant

-324.76
has precision 5 and scale factor 2.

Internally, PL/I stores FIXED DECI MAL variabl es and constants as Packed
Bi nary Coded Decimal (BCD) pairs, where each BCD digit occupies either
the high or |oworder four bits of each byte. The nobst significant BCD
digit defines the sign of the number. A zero denotes a positive nunber,
and a nine denotes a negative nunber in the 10's-conplenent form as
descri bed bel ow. Because PL/| always stores nunbers into 8-bit byte

| ocations, there can be an extra pad digit at the end of the nunber to
align it to an even byte boundary. For exanple, PL/| stores the nunber
83.62 as

where each digit represents a 4-bit half-byte position in the 8-bit
value. PL/| stores the |leading BCD pair |owest in nmenory.

PL/1 stores negative nunbers in 10's-conplenent formto sinplify
arithnmetic operations. A 10's-conplenment nunber is simlar to a 2's-
conpl ement binary representation, except the conpl enent val ue of each
digit x is 9-x.

To derive the 10' s-conpl enent value of a nunber, formthe conpl ement of
each digit by subtracting the digit from9, and add 1 to the fina
result. Thus, the 10's conplenent of -2 is forned as foll ows:

©-2)+1=7+1=8

PL/1 adds the sign digit to the nunmber that then appears as the single-
byte val ue:

Look at an exanple. Suppose you want to add -2 and +3. PL/I represents
t hese nunbers as foll ows:

+ FO 3]

PL/1 ignores the integers beyond the preceding sign digit, and produces
the correct result 01. In the follow ng discussion, we show negative
nunbers with a leading - sign, with the assunption that the interna
representation is in 9 s-conplenent form Thus, we wite the nunber -2
as

F- 2~
There is no need to explicitly store the decimal position in nenory,
because the conpiler knows the precision and scale factor for each
vari abl e and constant. Before each arithnetic operation, the conpiled

code causes the necessary alignnment of the operands. In |ater exanples,
we show a deci mal point position to enphasize the effect of alignnent.

For exanpl e, the nunber -324.76 appears as

15-3



PL/1 Progranmer's CQuide 15. 3 Addi tion and Subtraction

312 47:F~

When PL/| prepares this value for arithnetic processing, it first |oads
it into an 8-byte stack frane, consisting of 15 BCD digits with a high-
order sign. In this case, the -324.76 is shown as

0100100100100103124176

In ordinary arithnmetic, when beginning each operation you nust properly
align the operands for that operation and, upon conpletion, you nust
deci de where the resulting decimal point appears.

In PL/I, the conpiler perforns the alignnent and accounts for the

deci mal point position, but it is useful for you to inmagine what is
taki ng place, so you can avoid overflow or underflow conditions. In
sone cases, you might want to force a precision or scale factor change
during the conputation using the DECIMAL or DIVIDE built-in functions.
The sanpl e prograns discussed in the follow ng sections give exanpl es
of these functions.

15.3 Addition and Subtraction

In PL/1, addition and subtraction are functionally equivalent. In
subtraction, PL/I first forms the 10's conpl ement of the subtrahend and
then perforns the addition. G ven two nunbers x and y, with precision
and scale factor (p,q) and (p2,92), respectively, the addition
operation proceeds as foll ows.

First, PL/I loads the two operands onto the stack and then aligns them
by shifting the operand with the smaller scale factor to the left until
the deci mal positions are the sane. G ven that the scale factor of x is
greater than the scale factor of y, y is shifted q, - g2 positions to
the left, with zero values introduced in the |east significant

posi tions.

After alignnent, y has precision p,+(q,-9g2) and scale factor q,. PL/I
signals a FI XEDOVERFLOW condition if significant digits are shifted
into the sign position during the alignnent process.

Here is a specific exanple. Suppose x = 31465.2437 and y = 9343.412 so
that x has precision p, = 9 and scale q, = 4, while y has precision p
= 7 and scale factor @2 3. Before alignnent, the nunbers appear as

9 ——————- 4w

X + 00000031465A2437
-4-4 -—- 4~
7.

y + 000000009343M12
--&-3-w-

PL/1 aligns y with x by shifting gql-q2 = 4-3 1 positions to the left,
produci ng

X=+00000031465A2437
4

y=+000000093434120

15-4



PL/1 Progranmer's CQuide 15. 3 Addi tion and Subtraction

The nunber of digits in the whole part of x is p,-q,, while the whole
part of y contains P2-gq2 digits,

-*pl -ql1l-~5--1.,
31465

-0-P 2 - 092 ~ 4-p
9343
so the sum nmust contain p,-gql = 5 digits in the whole part:
31465
+9343

4 0808
_*_ 5

There is a possibility that sone val ues could produce an overfl ow,
requiring one extra digit in the whole part:

9 9999
+99999
F119 9 9 9 8

(P, - aJ) + = 6-p-

The total nunber of digits in the sumof x and y is the nunber of
digits in the whole part, (pl-q,)+1=6, plus the nunber of digits in the
fraction, given by gj, resulting in a precision of

(pi-q,) +1+q, =p, +1

G ven two values x and y, of arbitrary precision and scale factor, you
can use the specific case shown above to derive the formof the
resulting precision and scale factor. First, the scale nust be the
greater of g, and g21 given by,

max (ql,q2)
and the resulting precision nmust have max(q, ¢g2) fractional digits.

Second, the whole part of x contains pj-qgj digits, while the whole part
of y contains P2-g2 digits. The result contains the |larger of pi-q, and
P2-g2 digitsr plus the fractional digits, along with one overflow
digit, for a total of

max (pl-q,fP2-g2) + max (ql,q2) + 1
digit positions.

Because the precision cannot exceed 15 digits, the resulting precision
nmust be the follow ng:

min(15,max(p, -9, ,p,-q,)+max(ql,q2)+")
digits.

The precision and scale factor of the resulting addition or subtraction
witten as a pair (p',ql) is the follow ng:

15-5



PL/1 Progranmer's CQuide 15. 4 Mul tiplication

P 1

IN

min(15,max(pl-q, ,p~-g2)+max(q, ,q2)+1), max(q,.qd,)
Usi ng the precedi ng exanpl e:

o W
* - 4
X + 00000031465A2437
y + 00000009343A41420
p, +(qz - q1l 8
X +y +00000040808A6557
——*_ 4

The precision (10,4) shown in the diagramis derived using the
Expr essi on

pf ql
min(15,max(9-4,7-3)+max(4,3)+1), max(4,3)
or
min(15,max(5,4)+4+1), 4 (min(15,10),4) (10,4)

15.4 Multiplication

Eval uating the precision and scale factor for nmultiplication is sinpler
than addition and subtraction because PL/| does not have to align the
deci nal point before the nultiplication. Gven tw operands x and y

wi th precision and scale factor (pl,q,) and (p,, q2) respectively, PL/I
mul tiplies the two operands digit by digit to produce the result.

Just as in ordinary hand cal cul ati ons, the nunber of decinal places in
the result is the sumof the scale factors q, and P2. The total nunber
of digits in the result is the sumof the precisions of the tw
operands. To conformto the PL/|I Subset G standard, PL/I includes one
additional digit position in the final precision. The precision and
scal e factor of the result (pl,q') is given by the follow ng:

plal
(min(15rp,+P2+1)tql+qg2)

Suppose that x = 924.5 and y = 862.33, with the precision and scal e
factor values (4,1) and (5,2):

X+00000000000924A5
y+0000000000862A33

The product of the digits of x and y is shown with the resulting
preci sion and scal e factor

"0
X*y=+000000797224A085
L Qe

where PL/1 conputes the precision and scale factor as

15-6



PL/1 Progranmer's CQuide 15.5 Di vi si on

(min(15,4+5+1),1+2) = (min(15,10),3) = (10,3)

PL/1 signals the FI XEDOVERFLOW condition if the product contains nore
than 15 significant digits. In the previous section, where x =

31465. 2437 and y = 9343.412, the product x*y has precision 17, causing
FI XEDOVERFLOW

In this particular case, you nust apply the DECI MAL function to reduce
the nunber of significant digits in either x or y. The conputation is
carried out as

DECIMAL(X,9,3) * y

whi ch | oads the stack with the two follow ng val ues before the
nmul tiplication takes place:

DECIMAL(X%,9,3) +000000031465A2143

y +000000009343A412

The precision and scale factor of the product is the foll ow ng:
X*y=+293992729A029116
6
PL/1 first conputes the precision as p,+p,+l = 16, and then reduces
this to the maxi mum 15 digit precision by the follow ng:
min(15,pl+p2+1) = min(15,16) = 15
Wien performing nmultiplication, it is your responsibility to ensure
that the precisions of the operands involved do not produce overfl ow
You can explicitly declare the precision and scale factor of the

vari ables involved in the conputation, or apply the DECI MAL function to
reduce the precision of a tenporary result.

15.5 Division

Division is the only one of the four basic arithnmetic operations that
can produce truncation errors. Therefore each division operation
produces a nmaxi mum preci sion val ue consisting of 15 decinmal digits, and
a resulting scale factor that depends upon the scale factors of the two
oper ands.

Assunming that x and y have precision and scale factor (pllgl) and (P2
g,) respectively, and that x is to be divided by y, the division
operation takes place as foll ows.

First, PL/l shifts x to the extreme |eft by introducing 15-p, zero
values on the right, leaving the dividend on the stack as

- P 1 *-15-P1 -
XX . . . XX 00.. .00
A _*-gq, ---S.

PL/1 then shifts the decimal point of x right by an anmbunt g2 to
properly align the decinmal point in the result, producing the follow ng
oper ands:

-*-P1 - -.*- 15 - p,
XX . . . XX 00.. .00
"J'q, - g2~

15-7



PL/1 Progranmer's CQuide 15.5 Di vi si on

0 000yyyyvy
A
,002"-
The significant digits of y then continuously divide the significant
digits of x until the operation generates 15 decimal digits.

In the preceding diagram the nunber of fractional digits produced by
the division is determ ned by the placenment of the adjusted decim
point in x. The field follow ng the decinmal point contains (ql-qg.) plus
(15-p, ) positions, yielding the follow ng precision and scal e factor
for the result of the division

(15, (q1-g2)+(15-p1)) or (15,15-p1+ql-qg2)

Suppose x = 31465.243, and y = 9343.41, have precision and scale factor
val ues of (8,3) and (6,2), respectively. The value x when | oaded on the
stack appears as the follow ng:

8
X=4+000000031465A243

PL/I then shifts the value of x to the extrene |left and | oads the val ue
of y, producing the val ues:

-W- 8
g-3 15 -8 =7
X + 31465A2430000000
y+000000000093 4 30 1
A*- 2 -0

-W- 6

The inmagi nary decimal points are shifted to the right by two positions
to properly align the decimal point in the result, producing

8 —————- 7

X+31465 2430000000
~_f)

y+00000 0000934341A

—*_ 6

The six significant digits of y divide the significant digits of x with
the follow ng result:

15 --
x/y =+0000003A36764018
-..*~- 8
In this case, the precision and scale factor of the result is given by
(15, (15-pl+gl-qg,) = (15,15-8+3-2) = (15,8)

The nost inportant consideration in decinal division is generating
enough digits in the fractional part for the conputation being
performed. This is done in tw ways.

15-8



PL/1 Progranmer's CQuide 15.5 Di vi si on

First, when aligning the dividend, PL/l pads with zeros and provides
15-p, fractional digits. Thus, dividend values with small precision
generate nore fractional digits.

Second, if q, is greater than g2, then PL/| generates (ql,-q2)
additional fractional digits as shown above. If on the other hand, the
di vidend contains fewer fractional digits than the divisor, then q, is
less than g2 and (g2-qgl) fractional digits are consuned.

The case of g, = g2 occurs quite often. In this particular situation
t he nunber of fractional digits depends entirely upon the precision of
the divisor, and results in 15-p, fractional digits.

You m ght also want to truncate or extend the result with zeros using
the DIVIDE built-in function during a particular conputation (see the
PL/1 Language Reference Manual, Section 4.2.5) The function has the
form

DIVIDE (X,Y,p.qd)

where p and g are literal constants. They can appear as an expression
or subexpression in an arithnetic conputation, and have the sane effect
as the statenent:

DECIMAL (x/y,p.q)

As before, y divides x, but the precision and scale factor values are
forced to (p,q) . PL/I carries out the conputation as described, and
then shifts the resulting value by the appropriate nunber of digits to
obtain the desired precision and scale factor

Ref erences: LRM Sections 3.1.2, 4.2

End of Section 15

15-9






Section 16

16 Commercial Processing
Conmmer ci al applications of PL/I use decimal calculations. The four

prograns in this section illustrate PL/I built-in functions, EDI T
formats including picture, and the nethod of breaking down a conpl ex
programinto small, logically distinct procedures.

16.1 A Simple Loan Program

Listing 16-1 shows the LOANL programthat conputes a | oan paynent
schedul e using three input values corresponding to the | oan principa
(P) , the yearly interest rate (i) , and nonthly paynent (PMI) . LOAN1
continuously applies the following algorithmuntil the remaining
princi pal reaches zero, and the loan is paid off.

The algorithmis

1. Each nonth, increase the starting principal P by an amount fixed by
the interest rate.
P=P+ (i *P)

2. Each nonth, reduce the remaining principal by the paynent anount.
P=(C+ (i *P)) - PMT

LOANL assunes that the principal does not exceed $999, 999, 999. 99. Thus,
the declaration on line 12 defines P as a FI XED DECI MAL variable with
precision 11 and scale factor 2. The paynent does not exceed $9, 999-99,
so PMI is declared as FI XED DECI MAL with precision 6 and scal e factor
2. Finally, LOANl1 defines the interest rate i as FlI XED DECI MAL(4, 2),
all owi ng nunbers as large as 99.99% The two variables mand y
correspond to the nonth and year, beginning at the first nonth of the
first year.

LOANL reads the initial values between lines 17 and 22. In this
exanpl e, LOANL does not perform any range checking. Thus it can accept
negative val ues, and can process paynent val ues that cannot pay off the
| oan. These checks woul d have to be nade in a real application

envi ronnent .

On each iteration, LOANL increases the nonth until it reaches the 12th
nonth, at which point the built-in MOD function, line 26, increnents
the year. LOANL then displays the current principal P on line 32, and
adds the nmonthly interest on the follow ng Iine.

LOANL perforns the conputation on line 33. The variable i has precision
and scale factor (4,2) , while the variable P has precision and scal e
factor (11,2). Therefore, the nmultiplication i * P yields a tenporary
result with precision and scale factor (15,4).

Next, the division by the literal constant 1200 is required because the
interest rate is expressed as a percentage (division by 100) over a
one-year period (division by 12). The result of the division (i *

P)/ 1200 has precision 15, because the constant 1200 has precision and
scale factor (4,0). PL/I conputes precision and scale factor in

di vision as (15,15-15+4-0). Finally, LOANL uses the built-in function
ROUND to round the second decinal place, the cents position

In the last nonth, if the remaining principal is |less than the paynent,
LOAN1 perforns the test on line 34. if the test is true, line 35
changes the paynent to equal the principal. Line 36 prints the paynent,

16-1



PL/1 Progranmer's CQuide 16. 1 A Sinpl e Loan Program

and finally, line 37 reduces the principal by the paynent using the
assi gnnent statemnent:
P =P - PMT;

Listing 16-2 shows the output fromLOAN using an initial l[oan of $500,
interest rate of 14% and paynent of $22.10 per nonth.

1la
2 a /* This program produces a schedule of loan payments
3 a /* using the following algorithm: if P = loan payment,
4 a /* I = interest, and PMT is the monthly payment then
5a /*P=C+ {1 *P) - PMT).
6 a
7 a loanl:
8 b procedure options(main);
9b declare
10 b M fixed binary,
11 b Y fixed binary,
12 b P fixed decimal(11,2),
13 b PMT fixed decimal(6,2),
14 b I fixed decimal(4,2);
15 b
16 c do while("1"b);
17 c put skip list("Principal 1);
18 c get list(P);
19 c put list("Interest
20 c get list(l);
21 c put list("Payment
22 ¢ get list(PMT);
23 ¢ M = 0;
24 c Y = 0;
25 d do while (P > 0);
26 d if mod(m,12) = 0 then
27 e do;
28 e Y=Y+ 1;
29 e put skip list("Year",y);
30 e end;
31 d M=M+ 1;
32d put skip list(M,P);
33 d P=P + round(l * P / 1200, 2);
34 d if P < PMT
35 d then PMT = P;
36 d put list(PMT);
37 d P =P - PMT;
38 d end;
39 c end;
40 b
41 b end loanl;
Listing 16-1. The LOANL1 Program
A>loanl
Principal 500
Interest 14
Payment 22.10
Year 1l
1 500.00 22.10

16-2



PL/1 Progranmer's CQuide 16. 2 O dinary Annuity

2 483.73 22.10
3 467.27 22.10
4 450.62 22.10
5 433.78 22.10
6 416.74 22.10
7 399.50 22.10
8 382.06 22.10
9 364.42 22.10
10 346.57 22.10
11 328.51 22.10
12 310.24 22.10
Year 2
13 291.76 22.10
14 273.06 22.10
15 254.15 22.10
16 235.02 22.10
17 215.66 22.10
18 196.08 22.10
19 176.27 22.10
20 156.23 22.10
21 135.95 22.10
22 115.44 22.10
23 94.69 22.10
24 73.69 22.10
Year 3
25 52.45 22.10
26 30.96 22.10
27 9.2222.10
Principal ~C

A>
Listing 16-2. Qutput fromthe LOANL Program

16.2 Ordinary Annuity

Listing 16-3 shows the ANNU TY program G ven the interest rate (i) and
two of three values, ANNU TY conmputes either the present value (PV)

the paynent (PMI), or the nunber of pay periods (n) for an ordinary
annuity.

ANNUI TY contains one main | oop between |ines 35 and 80 which reads the
present val ue, paynent, and yearly interest fromthe console. On each
iteration, you enter two nonzero val ues and one zero val ue, then
ANNUI TY conputes the value of the variable that you enter as zero.
ANNUI TY retains the values on each | oop so that you can enter a comma
if you do not want to change the value. In this exanple, ANNU TY does
not check that the input values are in the proper range.

la

2a  /* This program computes either the present value(PV),
3a /* the payment(PMT), or the number of periods in an
4a /* ordinary annuity.

5a

6a annuity:

7b procedure options(main);

8b %replace

9b clear by AZ,,

10b true by 111b;

11b declare

16-3



PL/1 Progranmer's CQuide 16. 2 O dinary Annuity

12b PMT fixed decimal(7,2),

13b PV  fixed decimal(9,2),

14b IP fixed decimal(6,6),

15b x  Ffloat binary,

16b yi float binary,

17b i float binary,

18b n fixed;

19b

20b declare

21b ftc entry(float binary(24))

22b returns(character(17) varying);
23b

24b put list (clear, A IMiORD I NARY ANNUTITTYLD

25b put skip(2) list
26b ("~iEnter Known Values, or 0, on Each Iteration®);

27b

28b on error

29c begin;

30c put skip list("~ilnvalid Data, Re-enter");
3lc goto retry;

32c end;

33b

34b retry:

35c¢ do while (true);

36¢C put skip(3) list(""iPresent Value®);
37c¢c get list(PV);

38¢c put list("~iPayment®);

39c get list(PMT);

40c put list("~ilnterest Rate");

41c get list(yi);

42c i =vyi / 1200;

43c put list("~iPay Periods");

44c get list(n);

45c

46 ¢ if PV O PMT = O then

47c x=1-1/7 + i) * n;

48c

49c

50c /* compute the present value

51c

52c¢ if PV = 0 then

53c do;

54d PV = PMT * dec(ftc(x/1),15,6);
55d put edit("~iPresent Value is ",PV)
56d (a,p"$%3,$3$,$8$V.997) ;
57d end;

58c

59c

60c /* compute the payment

61lc

62c if PMT = O then

63d do;

64d PMT = PV * dec(ftc(i/x),15,8);
65d put edit(1™iPayment is ",PMT)
66d (a,p"$%,$$3,$$$V.997);
67d end;

68c

69c

16-4



PL/ I

70cC
71c
72cC
73d
74d
75d
76d
77d
78d
79d
80c
81b

end;

ifn=20
do;

end;

82b end annuity;
Li sting 16-3. The ANNUI TY Program
Listing 16-4 shows an interaction with the ANNUI TY programin which

sever al
A>annuity

ORDINARY

Programmrer's Gui de 16. 2

/* compute number of periods

then

IP ftc(i);

X = char(PV * IP / PMT);

n = ceil ( - log(I-x)/log(1+1)

put edit("-i",n," Pay Periods"®)
(a,p"27279" ,a);

di fferent values are used as input.

ANNUITY

Enter Known Values, or 0, on Each Ilteration

Present Value
Payment O
Interest Rate
Pay Periods
Payment is
Present Value
Payment O
Interest Rate
Pay Periods
Payment is
Present Value
Payment
Interest Rate
Pay Periods
Present Value

Present Value
Payment
Interest Rate
Pay Periods

1S

32000

0

240 Pay Periods

Present Value
A>

Listing 16-4

~C

32000
8.75

360
$251.74

240
$282.78

$31,998.87

. Interaction with the ANNU TY Program

16.2.1 Mixed Data Types

ANNUI TY uses both FLOAT BI NARY and FlI XED DECI MAL data because it
arithmetic cal culations and anal ytic
The vari abl es used throughout the program are

performa mixture of deci mal
function eval uati ons.

defi ned between lines 12 and 18 as foll ows:

* PMI hol ds the paynent val ue,

and can be as |large as $99, 999. 99.

O dinary Annuity

must

is declared as FI XED DECI MAL (7,2) ,

16-5



PL/1 Progranmer's CQuide 16. 2 O dinary Annuity

* PV holds the present value, is declared as FI XED DECI MAL (9, 2) and
can be as large as $99, 999, 999. 99.

e The variable IP holds the interest rate for a one nmonth period, and
is declared as FI XED DECI MAL with six deci mal pl aces.

* The variable n holds the nunber of paynent periods, is declared as
FI XED BI NARY, and can range from1l to 32767.

* The variables x, yi, and i are FLOAT BI NARY nunbers used during the
conput ations to approxi mate deci mal nunbers with 7 decimal places.

ANNUI TY conput es the unknown val ue using the equations shown bel ow,
rather than the iteration. ANNUI TY assunes the interest rate is greater
t han zero.

First, the present value is given by:

1

1 n
+ i)

PV PMT

Transposi ng equation (1) gives:

PMT PV
1
1 n
a + 1) @
Finally, solving for n gives:
| Log (1 - PV -— )
PMT
n ©))

Log + 1)
The foll owi ng expression appears in both equations (1) and (2):
1 -1/ + i) *™n

Therefore, ANNU TY stores this value in the variable x, line 47, and
uses it when evaluating PV and PMI. x is only an approxi mati on of the
deci mal val ue given by this expression

16.2.2 Evaluating the Present Value PV

If you enter a zero value for PV, then ANNU TY executes the DO group
bet ween Iines 53 and 57, and conputes PV as:

PV = PMT * dec(ftc(x/i),15,6);

Li ne 20 declares ftc as an external subroutine. It is part of the PL/I
Run-time Subroutine Library (RSL), so ANNU TY only needs to declare it
as an entry constant to use it.

16-6



PL/1 Progranmer's CQuide 16. 2 O dinary Annuity

The division x/i produces a FLOAT BINARY tenporary result that ftc then
converts from FLOAT to CHARACTER form For exanple, suppose that x/i
produces the val ue 3.042455E+01. Then ftc(x/i) returns 30.42455 which
is acceptable for conversion to decinal. If PL/I cannot convert the
floating-point argunent to a 15-digit decimal nunber, ftc signals the
ERROR(I) condition indicating a conversion error

Finally, the built-in DECI MAL function is applied to the character
string to convert it to a specific precision and scale factor (15,6).
When this is done, the nultiplication and subsequent assignment to PMI
t akes pl ace.

How is this particular value for precision and scale factor decided? To
answer the question, first consider a restricted formof the sane
pr ogr am

declare
PMT fixed decimal(7,2),
PV fixed decimal(9,2),
Q fixed decimal (u, Vv)
PV = PMT * Q;

where you nust decide on the appropriate constant values for u and V.

PV has precision and scale factor (9,2) , and thus there nmust be seven
digits in the whole part and two digits in the fraction. PL/l generates
the full seven digits in the whole part if the product PMI Qresults in
any of the precision and scale factor val ues:

(9.2) (10,3) (11,4) (12,5) (18,6) (14,7) (15,8)

The assignnent to PV truncates any fractional digits beyond the second
deci mal place. Because PMI has precision and scale factor (7,2) , you
can choose Qwith a precision and scale factor of (15,6). Then the

mul tiplication produces a result with precision and scale factor

(min(15,7+15+1),2+6) = (15,8)
according to the rules stated previously.

G ven an expression with precision and scale factor values as shown
bel ow,

a b c

(pl,q1) 2, q2) (3, g3)

where pl, ql, p2, and g2 are constants, you can set the precision and
scale factor of c to

p3 = 15 a3 =15 - (p+q-79)

Thus, using the val ues shown in the original program the precision and
scal e factor of Q becones

g3 =15 - (9 +2 - 2) =8, or (p3,93) = (15,6)

16.2.3 Evaluating the Payment PHT

If you enter a nonzero present value for PV and a zero value for the
paynment PMI, then ANNU TY enters the DO group beginning at |line 63 and
conputes the val ue of PMI as:

16-7



PL/1 Progranmer's CQuide 16. 2 O dinary Annuity

PMT = PV * dec (ftc(i/x),15,8);

The conputation uses essentially the same techni que as shown in the
previ ous exanple. You nust decide the precision and scale factor of the
second operand in the nultiplication. You are really concerned only
with the value of the scale factor because the precision can be taken
as 15. Using the preceding anal ysis, evaluate the form

a b c

(7.2) (9.2) (15.93)
and determ ne the value for q3:
g3 =15 - (pl + gl -g2) =15 (7 +2 -2) =28

16.2.4 Evaluating the Number of Periods n

When you enter nonzero values for PV and PMI, but set the nunber of
periods to zero, ANNU TY executes the DO group beginning on line 73 to
conpute n. The assignment on line 74 first changes the interest for a
nonthly period from FLOAT Bl NARY to FI XED DECI MAL. Next, the assignnent
on line 75:

X = char(PV * IP / PMT);

first conputes the partial decimal result PV * IP/ PMI, then converts
the result to CHARACTER, and then to FLOAT BI NARY t hrough the
assignment to x.

The multiplication PV * I P produces a tenporary result with the
preci sion and scale factor

PV 1P
0.2 7.2)
1 11
(15,4)

The tenporary result is now divided by PMI and results in anot her
tenporary result with the follow ng precision and scale factor

PV * IP PMT
(15,4 (7.2)
1 11
(15.2)

because, according to the rules for division:
(15,15-pl+gl-g2) = (15,15-15+4-2) = (15,2)
thus providing two deci mal places in the conputation.

The internedi ate conversion to CHARACTER formis necessary because
otherwi se PL/I would first convert the intermediate result to FIXED
BI NARY, and then to FLOAT BINARY, resulting in truncation of the
fraction. This sequence of conversions is necessary to maintain
conpatibility with the full |anguage.

If required, you could generate additional fractional digits by
applying the DECIMAL built-in function following the nultiplication

x = char( dec( PV*P, 11,4 ) / PNT);

16-8



PL/1 Progranmer's CQuide 16. 3 Loan Paynent Schedul e For mat

and produce a quotient with precision and scale factor
(15,15-11+4-2) = (15,6)

ANNUI TY uses the value x in the expression on line 76 to conpute the
nunber of paynent periods, and applies the CEIL function to the result
so that any partial nonth is treated as a full nonth in the paynent
peri od anal ysi s.

Finally, ANNU TY uses the picture edit fornat to wite out the val ues
of PV, PMI, and n.

16.3 Loan Payment Schedule Format

The LOAN2 program shown in Listing 16-5 is essentially the sane as that
presented in Section 16.1, but it has a nore el aborate analysis and
display format. LOAN2 uses an algorithmsimlar to that described in
Section 16.1. The nmin processing occurs between |lines 101 and 136,
where the programincreases the initial principal by the nonthly
interest, and reduces it by the nmonthly payment until the principa
becones zero

The four listings that follow the discussion of the program show
several exanples of interaction with LOAN2.

Listing 16-6 shows a nmininal display corresponding to a | oan of $3000
at a 14%interest rate with a paynment of $144.03. Assune an inflation
rate of 0% with a starting payment on 11/80, and end-of year taxes due
i n Decenber.

The di splay shows the principal, interest in Decenber, nonthly paynent,
amount paid toward principal in Decenmber, and anount of interest paid
in the last nonth of the fiscal year

Li sting 16-7 shows another execution using the sanme values as the first
tinme, but using a display level of 1. The output also contains the
yearly interest paid on the |Ioan for each fiscal year that woul d be
deducted fromthe taxable incone.

Listing 16-8 uses the sane initial values of the previous exanples, but
provides a full display of the nonthly principal, interest, nonthly
paynment, paynent applied to the principal, and interest payment.

Listing 16-9 al so shows the sane loan and interest rate with an

adj ustnent in dollar value due to inflation. This exanple assunes the
inflation rate of 10% so that all anpbunts are scaled to the val ue of
the dollar at the time the loan is issued.

For tax reporting purposes, the display showing the total interest paid
at the end of each year is not scaled, and thus does not match the sum
of the interest paid during the year. If we assume a 0% inflation rate,
the total |oan paynent is 3,456.97, taken fromthe previous output.

But if we assune an inflation rate of 10% the total cost of the |oan
in dollars today is

2,457.00
+ 374.25

2,831.25

16-9



PL/1 Progranmer's CQuide 16. 3 Loan Paynent Schedul e For mat

resulting in a net gain of 68.75 over a two year period!

la

2a  /* This program computes a schedule of loan payments
3a /* using an elaborate analysis and display format.
4a /* It contains five internal procedures: DISPLAY,
5a  /* SUMMARY, CURRENT YEAR, HEADER, and LINE.

6a

7a loan2:

8b procedure options(main);

9b %replace

10b trueby "1%b,

11b false by "0%b,

12b clear by *~z®;

13b

14b declare

15b end bit(l),

16b m fixed binary,

17b sm Ffixed binary,

18b y  fixed binary,

19b sy Fixed binary,

20b fm fixed binary,

21b dl fixed binary,

22b P fixed decimal (10,2),
23b PV  fixed decimal (10,2),
24b PP  fixed decimal (10,2),
25b PL fixed decimal (10,2),
26b PMT fixed decimal (10,2),
27b PMV fixed decimal (10,2),
28b INT fixed decimal (10,2),
29b YIN fixed decimal (10,2),
30b IP fixed decimal (10,2),
31b yi  Ffixed decimal(4,2),
32b i fixed decimal(4,2),
33b INF fixed decimal(4,3),
34b ci fixed decimal(15,14),
35b fi  fixed decimal(7,5),
36b ir fixed decimal(4,2);
37b

38b declare

39b name character(14) varying static initial("$con®),
40b output file;

41b

42 b put list(clear," " i"iSUMMARY 0F PAYMENT S");
43b
44b on undefinedfile(output)

45¢c begin;

46¢ put skip list("~i“icannot write to",name);
47c goto open_output;

48c end;

49b

50b open_output:

51b put skip(2) list("*i*iOutput File Name
52b get list(name);

53b  if name = "$con" then

54b open file(output) title("$con®) print pagesize(0);
55b else

56b open File(output) title(name) print;

57b

16-10



PL/ I

58b
59c
60c
6lc
62cC
63b
64b
65c
66C
67cC
68cC
69c
70c
71c
72c
73c
74cC
75c¢C
76¢C
77cC
78c¢c
79c
80c
8lc
82c
83c
84c
85c
86¢C
87c
88c
89c
90c
91c
92c
93c
94c
95c
96cC
97c
98c
99c
100c
101d
102d
103d
104d
105d
106d
107d
108d
109d
110d
111d
112d
113d
114 e
115e

Programmrer's Gui de 16. 3
on error
F begin;
put skip list("~i”iBad Input Data, Retry");
goto retry;
end;
retry:

do while(true);

put skip(2) list(**i?iPrincipal

get list(PV);

P = PV;

put list("~i“ilnterest

get Ilst(yl)

i =yi;

put list("~i“iPayment

get list(PMV);

PMT = PMV;

put list("*i“i%Inflation

get list(ir);

fi I + ir/1200;

ci 1.00;

put list("~i“iStarting Month

get list(sm);

put list("~i“iStarting Year

get list(sy);

put list("~i“iFiscal Month

get list(fm);

put edit("~i~iDisplay Level
"AINMYr Results @ 0
"AINMYr Interest: 1
"Ai~ALL Values @ 2
(skip,a);

get list(dl);

if dl <0 | dl > 2 then

signal error;
m = sm;
y = sy;
IP = 0;
PP = 0;
YIN = 0;

if name then
put Ffile(output) page;

call header();
do while (P > 0);
end = false;
INT = round ( 1 * P / 1200, 2
IP = IP + INT;
PL = P;
P =P + INT;
if P < PMT then
PMT P;
P=P PMT;
PP = PP + (PL - P);
INF = ci
ci = ci fi;
ifP=0]dl >1 ] mfm then

do;
put File(output) skip

Loan Paynent

Schedul e For mat

16-11



PL/1 Progranmer's CQuide 16. 3 Loan Paynent Schedul e For mat

116e edit("11,100*m+y) (a,p"99/99%);
117e call display(PL * INF, INT * INF,

118e PMT * INF, PP * INF, IP INF);
119e end;

120d ifm="fm & dl > 0 then
121d call summary()
122d m m+ 1;
123d if m> 12 then

124e do;

125e m=1;

126e y =y + 1;
127e if y > 99 then
128e y = 0;

129e end;

130d end;

131c if dl = 0 then

132c call line(Q;

133c else

134c if ~end then

135c call summary(Q);

136¢ end retry;

137b

138b /* This procedure performs the output of the actual
139b /* parameters passed to it by the main part of the
140b /* program.

141b

142b display:

143c procedure(a,b,c,d,e);

144 ¢ declare

145c (a,b,c,d,e) fixed decimal(10,2);
146 ¢

147c put Ffile (output) edit

148c¢ (11, a,"j",b,"j",c,"j",d,"1%1e,"j1)
149c (a,2(2(p1%$zz,22zz,2z9v.99" ,a),

150c pl$zzz,zz9.v991,a));

151c end display;

152b

153b

154b /* This procedure computes the summary of yearly
155b /* interest.

156b

157b summary:

158c procedure;

159¢c end = true;

160c call current_year(1P-YIN);

161c  YIN = IP;

162c end summary;

163b

164b

165b /* This procedure computes the interest paid during
166b /* current year.

167b

168b current_year:

169c procedure(l);

170c declare

171c yp fixed binary,

172c I fixed decimal(10,2);

173c  yp ~y;

16-12



PL/1 Progranmer's CQuide 16. 3 Loan Paynent Schedul e For mat

174c if fm < 12 then

175¢ yp =yp - 1;

176c call line(Q);

177c put skip file(output) edit

178c ("1°,"Interest Paid During -",yp,"-111,y,1 is
179¢c (a,x(15),2(a,p"99%),a,p"$$$,$$$, $$9v.991,x(16) ,a);
180c call line(Q);

181c end current-year;

182 b

183b

184b /* This procedure defines and prints out an elaborate
185b /* header format.

186 b

187b header:

188c procedure;

189c put File(output) list(clear);

190c call line(Q;

191c put File(output) skip edit

192¢c (111,1L O AN PAYMENT SUMMARY","J%)
193c (a,x(19));

194c call line(Q;

195c put File(output) skip edit

196¢c ("1°,"Interest Rate",yi,"%","Inflation Ratel,ir,"%","1%)
197c (a,x(15),2(a,p"b99v.99" ,a,x(6)),x(9),a);

198c call line(Q;

199c put File(output) skip edit

200c ("IDate 1", "Principal 1", "Plus Interestl”," Payment 1=,
201c "Principal Paidy", "Interest Paid I") (a);

202c call line(Q;

203c end header;

204 b

205b

206b /* This procedure prints out a series of dashed lines.
207b

208b line:

209c procedure;

210c declare

211c i fixed bin;

212c put File(output) skip edit

213c¢ —mm——- ", —————————

214c 000 e do il to 4)) (a);

215c end line;

216b

217b

218b end loan2;

Li sting 16-5. The LOAN2 Program

16.3.1 Variable Declarations
Starting on line 14, LOAN2 decl ares several data itemns:

* PV present value, initial principa
* vyi yearly interest rate
s PW nont hl y paynent

* ir yearly inflation rate

16-13



PL/1 Progranmer's CQuide 16. 4Conput ati on of Depreciation Schedul es

* smstarting nonth of paynent (1-12)
* sy starting year of paynment (0-99)
 fmfiscal nonth, end of fiscal year (1-12)

* dl display level (0-2)

16.3.2 Program Execution
M ssi ng pages 16-19 through 16-20

16.3.3 Display Formats
M ssi ng pages 16-20 through 16-26

Listing 16-6. First Interaction with LOAN2
Li sting 16-7. Second Interaction with LOAN2
Listing 16-8. Third Interaction with LOAN2
Listing 16-9. Fourth Interaction with LOAN2

16.4 Computation of Depreciation Schedules
M ssi ng pages 16-26 through 16-26

16.4.1 General Algorithms
M ssi ng pages 16-26 through 16-34

16.4.2 Selecting the Schedule
M ssi ng pages 16-34 through 16-34

Li sting 16-10. The DEPREC Program

16-14



PL/1 Progranmer's CQuide 16. 4Conput ati on of Depreciation Schedul es

is equivalent to:
call schedule (index(syd,select-sched));

and for the valid inputs s, y, or d, produces 1, 2, or 3 respectively.
Thus, if select-sched is s, the call statement eval uates to:
call schedule(l);

which calls the subroutine straight line. Simlarly, an input of y or d
eval uates to

call schedule(2); or call schedule(3);
producing a call to sumof _years or doubl e-declining respectively

If the value of select sched is not s, y, or d, then the I NDEX function
returns a zero value. Al invalid character input val ues produce the
fol | owi ng:

call schedule(0);

which calls the error subroutine and prints the error nessage.

16.4.3 Displaying the Output

Anot her construct of DEPREC is the output file variable, defined on
line 39. During the paraneter input phase, DEPREC pronpts you wth:

List? (yes/no)

A yes response sends the output fromthe programto both the console
and the |ist device.

Line 40 declares two file constants, sysprint and list, to address the
consol e and the list device. DEPREC first opens the console file, line
51, using an infinite page length to avoid formfeed characters.

On any iteration of the main DO-group, if you give an affirmative

response on line 77, DEPREC subsequently opens the |ist device, line
78. This statenent can be executed several tinmes during a particular
execution of the program but only the first OPEN statenment has any
effect; PL/I ignores the OPEN statenent if the file is already open

Line 91 calls the display subroutine to conpute and display the output
report for a specific set of input values. Display has a single actua
paranmeter consisting of the file constant sysprint that is defined as
the formal paraneter f on line 104. Line 107 assigns the fornmal
paraneter to the gl obal variable output. Subsequent PUT statements
wite data to the console, producing the first report.

on line 92, if the variable copy_to_list has the character val ue yes,
then DEPREC cal | s display once again. This tine, the actual paraneter
is list, corresponding to the systemlist device. Thus, the output file
variable is indirectly assigned the value list, and all PUT statenents
that reference file output send data to the printer. This results in
both a soft and hard copy of the report.

DEPREC uses several different forns of decimal arithnmetic. Examine the
various decl arations while cross-checking the output formats with the
di spl ayed results.

A>deprec

16-15



PL/1 Progranmer's CQuide 16. 4Conput ati on of Depreciation Schedul es

Depreciation Schedule

Selling Price? 200000
Residual Value? 40000
Sales Tax (%)?6
Tax Bracket(%)? 50
ProRate Months? 10
How Many Years? 7
New? (yes/no) no
Schedule:
Straight (s)
Sum-of-Yrs W)
Double Dec (d)2d
List? (yes/no) no

DOUBLE DECLINING

$212,000.00 Used $40,000.00 Residual Value

10 Months Left 06% Tax 50% Tax Bracketl
Y | Depreciation ~ Depreciation Book Value
r For Year Remaining | |
1 $ 35,357.14 $ 122,642.86 $ 162,642.86
2 $ 34,852.04 $ 87,790.82 $ 127,790.82
3 $ 27,383.75 $ 60,407.07 $ 100,407.07
4 $ 21,515.79 $ 38,891.28 $ 78,891.28
5 $ 16,905.27 $ 21,986.01 $ 61,986.01
6 $ 13,282.71 $ 8,703.30% 48,703.30
7 $ 8,703.30$ 0.00$ 40,000.00

First Year Reduction in Taxable Income |
Depreciation $ 35,357.14
Sales Tax $ 12,000.00

ITC (Adjusted) $  20,000.00

Bonus Depreciation $ 2,000.00

Total for First Year $ 69,357.14

Direct Reduction in Tax $ 34,678.57

Listing 16-11. First Interaction with DEPREC

Depreciation Schedule

Selling Price?
Residual Value?
Sales Tax (%)?
Tax Bracket(%)?
ProRate Months?
How Many Years?

New? (yes/no) ~es
Schedule:

Straight (s)

Sum-of-Yrs W)
Double Dec (d?y

List? (yes/no) no

16-16



PL/1 Progranmer's CQuide 16. 4Conput ati on of Depreciation Schedul es

SUM OF THE YEARS

$212,000.00 New $40,000.00 Residual Value 1
8 Months Left 06% Tax 50% Tax Bracketl

Y 1 Depreciation | Depreciation Book Value

r For Year Remaining | |
1 $ 26,333.33 $ 131,666.67 $ 171,666.67
2 $ 28,214.29 $ 103,452.38 $ 143,452.38
3 $ 18,473.64 $ 84,978.74 $ 124,978.74
4 $ 12,139.82 $ 72,838.92 $ 112,838.92
5 $ 7,804.17$% 65,034.75 $ 105,034.75
6 $ 4,645.34$% 60,389.41 $ 100,389.41
17J3% 2,156.76 $ 58,232.65 $ 98,232.65
First Year Reduction in Taxable Income |
Depreciation $  26,333.33
Sales Tax $ 12,000.00
ITC (Adjusted) $  40,000.00
Bonus Depreciation $ 2,000.00
Total for First Year $ 80,333.33
Direct Reduction in Tax $  40,166.66
Li sting 16-12. Second Interaction with DEPREC
Depreciation Schedule
Selling Price? 310000
Residual Value? 30000
Sales Tax (%)?
Tax Bracket(%)?
ProRate Months? 12
How Many Years? 5
New? (yes/no) yes
Schedule:
Straight (s)
Sum-of-Yrs W)
Double Dec (d)2d
List? (yes/no) no
DOUBLE DECLINING
$328,600.00 New $30,000.00 Residual Value |
12 Months Left 06% Tax 50% Tax Bracket |
Y 1 Depreciation | Depreciation Book Value
r For Year Remaining | 1
1 $ 123,200.00 $ 154,800.00 $ 184,800.00
2 $ 73,920.00 $ 80,880.00 $ 110,880.00
3 $ 44,352.00 $ 36,528.00 $ 66,528.00
4 $ 26,611.20 $ 9,916.80% 39,916.80
5 $ 9,916.80% 0.00$%$ 30r000.00
First Year Reduction in Taxable Income |

16-17



PL/1 Progranmer's CQuide 16. 4Conput ati on of Depreciation Schedul es

Depreciation $  123,200.00
Sales Tax $ 18,600.00
ITC (Adjusted) $  62,000.00

Bonus Depreciation $ 2,000.00
Total for First Year $ 205,800.00
Direct Reduction in Tax $ 102,900.00

Listing 16-13. Third Interaction with DEPREC

Depreciation Schedule

Selling Price?
Residual Value?
Sales Tax %)
Tax Bracket(%)?
ProRate Months?
How Many Years?
New? (yes/no)

Schedule:

Straight (s)

Sum-of-Yrs W)

Double Dec (d)?s

List? (yes/no) r

STRAIGHT LINE

$328,600.00 New $30,000.00 Residual Value
1 12 Months Left 06% Tax 50% Tax Bracketi

Y 1 Depreciation | Depreciation Book Value

r For Year Remaining | |

1 55,600.00 $ 222,400.00 $ 252,400.00
2 44,480.00 $ 177,920.00 $ 207,920.00
3 35,584.00 $ 142,336.00 $ 172,336.00
4 28,467.20 $ 113,868.80 $ 143,868.80
5 $ 22,773.76 $ 91,095.04 $ 121,095.04

First Year Reduction in Taxable Income I
Depreciation $ 55,600.00

Sales Tax $ 18,600.00

ITC (Adjusted) $ 62,000.00

Bonus Depreciation $ 2,000.00
Total for First Year $ 138,200.00
Direct Reduction in Tax $ 69,100.00

Li sting 16-14. Fourth Interaction with DEPREC
Ref erences: Sections 3.1, 3.5, 4.2, 11.3 LRM

End of Section 16

16-18



Section 17

17 Dynamic Storage and Stack Routines

This section describes sonme functions in the PL/I Run-tine Subroutine
Library (RSL) that performdynam ¢ nenory nanagenent and nani pul ate the
st ack size.

17.1 Dynamic Storage Subroutines

The RSL includes a number of functions that provide access to the
dynam c storage routines. These routines nmaintain a linked |ist of al
unal | ocat ed storage. Upon request, these routines search for the first
avai |l abl e segnent in the free list that satisfies the request size,
renove the requested segnent, and return the remaining portion to the
free list. If the storage is not available, the run tinme system signals
ERROR(7), Free Space Exhaust ed.

PL/1 dynamically allocates storage upon entry to RECURSI VE procedures,
when processing explicit or inplicit OPEN statenents for files
performng disk 1/O or when processing an ALLOCATE statenent. PL/I

al ways all ocates an even nunmber of bytes or whole words, no matter what
the request size.

17.1.1 The TOTWDS and MAXWDS Functions

It is often useful to find the amobunt of storage avail able at any given
point while the programis running. The TOTWDS (Total Wrds) and MAXWDS
(Max Words) functions provide this information.

You mnust declare the functions in the calling program as:
declare totwds entry returns(fixed(15));
declare maxwds entry returns(fixed(15));

Wien you invoke the TOTWDS subroutine, it scans the free storage Ii st
and returns the total number of words (double bytes) available. The
MAXWDS subroutine returns the size (in words) of the | argest contiguous
segnment in the free list. A subsequent ALLCCATE statenent that
specifies a segnment size less than or equal to MAXWDS does not signa
ERROR(7) , because at |east that nuch storage is avail able.

Bot h TOTWDS and MAXWDS count in word units, so the returned val ues can
be held by FIXED BI NARY(15) counters. Both TOTWDS and MAXWDS return the
value -1 if they encounter invalid Iink words while scanning the free
space list. This return is usually due to an out of-bounds subscript or
poi nter store operation. Otherw se, these functions return a
nonnegative integer val ue.

17.1.2 The ALLWDS Subroutine

The PL/1 Run-tinme Subroutine Library contains a subroutine, called
ALLWDS, that you use to control the dynanic allocation size. You nust
declare the subroutine in the calling program as:

declare allwds entry(fixed(15)) returns(pointer);

The ALLWDS subroutine allocates a nmenory segment in words equal to the
size given by the input parameter, and returns a pointer to the

al | ocated segnent. If no segnent is available, ALLWS signals the
ERROR(7) condition. The input val ue nust be a nonnegative integer

17-1



PL/1 Progranmer's CQuide 17.1 Dynani ¢ St orage Subroutines

Listing 17-1 shows the ALLTST program which is an exanple of how to use
the TOTWDS, MAXWDS, and ALLWDS functions. Listing 17-2 shows a sanple
interaction with the ALLTST program

la

2a  /* This program tests the TOTWDS, MAXWDS, and ALLWDS
3a /* functions from the Run-time Subroutine Library.
4a

5a alltst:

6b procedure options(main);

7b declare

8b totwds entry returns(fixed(15)),

9b maxwds entry returns(fixed(15)),

10b allwds entry(fixed(15)) returns(pointer);
11b

12b  declare

13b allreq fixed(15),

14b memptr ptr,

15b meminx Fixed(15),

16b memory (0:0) bit(16) based(memptr);

17b

18c do while("1"b);

19c put edit (totwds()," Total Words Available",
20c maxwds(), " Maximum Segment Size-®,

21c "Allocation Size? ") (2(skip,f(6),a),skip,a);
22c get list(allreq);

23c memptr = allwds(allreq);

24c put edit("Allocated”,allreq,” Words at ",unspec(memptr))
25c (skip,a,f(6),a,bd);

26c

27c /* clear memory as example

28d do meminx = 0 to allreg-1;

29d memory(meminx) = "0000"b4;

30d end;

31c end;

32b

33b end alltst;
Listing 17-1. The ALLTST Program
A>alltst

24470 Total Words Available
24470 Maximum Segment Size
Allocation Size? 0

Al located 0 Words at 28D6
24468 Total Words Available
24468 Maximum Segment Size

Allocation Size? 100

Al located 100 Words at 28DA
24366 Total Words Available
24366 Maximum Segment Size

Allocation Size? 500

Allocated 500 Words at 29A6

23864 Total Words Available
23864 Maximum Segment Size

17-2



PL/1 Progranmer's CQuide 17.2 The STKSI Z Function

Allocation Size? 23865

ERROR (7), Free Space Exhausted
Traceback; 016D
A>

Listing 17-2. Interaction with the ALLTST Program

17.2 The STKSIZ Function

In PL/I, the program stack is placed above the code and data area, and
bel ow t he dynanic storage area (TPA). The default size of the program
stack is 512 bytes, but can be changed using the STACK(n) option in the
mai n procedure headi ng.

The STKSIZ (Stack Size) function returns the current stack size in
bytes. This function is particularly useful for checking possible stack
overflow conditions, or in determning the nmaxi num stack depth during
programtesting.

You nust declare the STKSIZ function in the calling program as:
declare stksiz returns(fixed(15));

Listing 17-3 shows an exanple of the STKSIZ function in the program

cal  ed ACKTST, where it checks the maxi mum stack depth during RECURSI VE
procedure processing. Listing 17-4 shows an interaction with this

pr ogram

1a
2 a /* This program tests the STKSIZ function while
3 a /* evaluating a RECURSIVE procedure.

4a

5a ack:

6b procedure options(main,stack(2000));

7b declare

8b (m,n) Ffixed,

9b (maxm,maxn) Fixed,

10b ncalls decimal(6),

11b (curstack, stacksize) fixed,

12b stksiz entry returns(fixed);

13b

14b put skip list("Type max m,n:

15b get list(maxm,maxn);

16¢c dom =0 to maxm;

17d do n = 0 to maxn;

18d ncalls = 0;

19d curstack = 0;

20d stacksize = 0;

21d put edit("Ack(l,m,",",n,")=",ackermann(m,n),
22d ncalls,” Calls,",stacksize,” Stack Bytes")
23d (skip,a,2(f(2).a).1(6).f(7).a,f(4).a);
24d end;

25¢c end;

26b stop;

27b

28b ackermann:

29c procedure(m,n) returns(fixed) recursive;

30c

3lc declare

17-3



PL/1 Progranmer's CQuide

32c
33c
34c
35c¢c
36¢C
37c
38c
39c
40c
41c
42c
43b
44 b

Listing 17-3. The ACKTST Progran

A>acktst

17.

(m,n) fixed;
ncalls = ncalls + 1;
curstack = stksizo;

if curstack > stacksize then
stacksize = curstack;

if m =0 then

return(n+l);

if n = 0 then

return(ackermann(m-1,1));

2

The STKSI Z Function

return(ackermann(m-1,ackermann(m,n-1)));
end ackermann;

end ack;

Type max m,n: 6,6

Ack( 0O,
Ack( 0O,
Ack( 0O,
Ack( 0O,
Ack( 0O,
Ack( 0,
Ack( 0,
Ack( 1,
Ack( 1,
Ack( 1,
Ack( 1,
Ack( 1,
Ack( 1,
Ack( 1,
Ack( 2,
Ack( 2,
Ack( 2,
Ack( 2,
Ack( 2,
Ack( 2,
Ack( 2,
Ack( 3,
Ack( 3,
Ack( 3,
Ack( 3,
Ack( 3,
Ack( 3,

Li sting 17-4. Qut put

1 1
2 1
3 1
4 1
5 1
6 1
7 1
2 2
3 4
4 6
5 8
6 10
7 12
8 14
3 5
5 14
7 27
9 44
11 65
13 90
15 119
5 15
13 106
29 541

61 2432 Calls,

Calls, 4 Stack
Calls, 4 Stack
Calls, 4 Stack
Calls, 4 Stack
Calls, 4 Stack
Calls, 4 Stack
Calls, 4 Stack
Calls, 6 Stack
Calls, 8 Stack
Calls, 10 Stack
Calls, 12 Stack
Calls, 14 Stack
Calls, 16 Stack
Calls, 18 Stack
Calls, 10 Stack
Calls, 14 Stack
Calls, 18 Stack
Calls, 22 Stack
Calls, 26 Stack
Calls, 30 Stack
Calls, 34 Stack
Calls, 16 Stack
Calls, 32 Stack
Calls, 64 Stack

128 Stack

125 10307 Calls, 256 Stack

End of Section 17

17-4

From t he ACKTST Program

Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes



Section 18

18 Overlays

This section describes how to use the Iinkage editor to create PL/I
overl ays. Overlays are prograns conprised of separate files. The
advant age of overlays is that they share the sane nmenory | ocations, so
you can wite large prograns that run in a linmted nmenory environnent.

18.1 Using Overlays in PL/I

In both the 8-bit and 16-bit inplenmentations, the size of the Transient
Program Area (TPA) deternines the upper limt on the size of a program
However, there is another constraint in the 16-bit inplenentations.

Al t hough there can be enough nenory space avail able on the system the
conpi l er generates code that assunes the small nmenory nodel. The smal
nodel means that when you link one or nmore OBJ files with the Run-tine
Subroutine Library (RSL), the size of the code and data sections in the
CVD or EXE are each limted to 64K Thus, the conpiler determnines the
upper limt on the size of any program but the size limt is not
encountered until link tine.

Wth nmodul ar design, you can wite a |arge programthat does not need
to reside in menory all at once. For exanple, many application prograns
are menu-driven, in which the user selects one of a nunber of functions
to perform Because the functions are separate and invoked
sequentially, they do not need to reside in nmenory sinultaneously. Wen
one of the functions is conplete, control returns to the nmenu portion
of the program from which the user selects the next function. Using
over |l ays, you can divide such a programinto separate subprograns that
can be stored on disk and | oaded only when required.

The following figure illustrates the concept of overlays. Suppose a
nmenu-driven application program consists of three separate user
selected functions. If each function requires 30K of nenory, and the
menu portion requires 10K, then the total nenory required for the
programis 100K, as shown in Figure 18-l1la. However, if the three
functions are designed as overlays, as shown in Figure 18-1b, the
programrequires only 40K, because all three functions share the sane
menory | ocati ons.

A
FUNCTION |
3
FUNCTION | .
2 100K ?
FUNCTION FUNCTION FUNCTION
30K 1 2 3
FUNCTION 40K #
. 30K T
MENU 10K 10K | MENU J
18-la. Without Overlays 18-1b. Separate Overlays

Figure 18-1. Using Overlays in a Large Program

18-1



PL/1 Progranmer's CQuide 18. 2 Witing Overlays in PL/I

You can also create nested overlays in the formof a tree structure,
where each overlay can call other overlays up to a maxi mum nesting

| evel that the overlay nanager determines. Section 18.3 describes the
conmand |ine syntax for creating nested overl ays.

Figure 18-2 illustrates the tree structure of overlays. The top of the
hi ghest overlay determ nes the total anount of menory required. In
Figure 18-2, the highest overlay is SUB4. This is substantially Iess
nmenory than would be required if all the functions and subfunctions had
to reside in nmenory sinultaneously.

SUB 4
[susq Isuez | |sus3|

——

FUNC 1 FUNC 2 FUNC 3

MENU

Figure 18-2. Tree Structure of Overlays

18.2 Writing Overlays in PL/I

There are two ways to wite PL/| programs that use overlays. The first
nmet hod i nvol ves no special coding, but has two restrictions. The first
restriction is all that overlays nmust be on the default drive; the
second is that the overlay nanes nust be deternined at translation tine
and cannot be changed at run-tine.

The second nethod requires a nore involved calling sequence, but does
not have either of the restrictions of the first nethod.

18.2.1 Overlay Method One

To use the first nethod, you declare an overlay as an entry constant in
the nodule where it is referenced. As an entry constant, the overlay
can have paraneters declared in a paraneter list. The overlay itself is
simply a PL/1 procedure or group of procedures.

For exanple, the following programis a root nodule with one overl ay:

root:
procedure options(main);
declare
ovlayl entry(character(15));
put skip list("root");
call ovlayl(“overlay 17);
end root;
The overlay OVLAYL1l. PLI is defined as foll ows:
ovlayl:
procedure(c);
declare

c character(15);

18-2



PL/1 Progranmer's CQuide 18. 2 Witing Overlays in PL/I

put skip list(c);
end ovlayl;

Not e: When passing paraneters to an overlay, you nmust ensure that the
nunber and type of the paranmeters are the sane in both the calling
program and the overl ay.

When the programruns, ROOT first displays the nessage 'root' at the
consol e. The CALL statenment then transfers control to the overlay
manager . The overlay manager |oads the file OVLAY1l fromthe default
drive and transfers control to it.

Wien the overlay receives control, it displays the nmessage 'overlay 1'
at the console. OVLAY1 then returns control directly to the statenent
followi ng the CALL statenent in ROOT. The program then continues from
t hat point.

If the requested overlay is already in nenory, the overlay manager does
not reload it before transferring control

The follow ng constraints apply to overlay nethod one:

* The label in the call statenent is the actual nane of the overlay
file loaded by the overlay nanager; consequently, the two names mnust
agr ee.

* The nanme of the entry point to an overlay need not agree with the
nane used in the calling sequence, but using the same name avoids
conf usi on.

* The overlay nmanager only | oads overlays fromthe drive that was the
default when the root nopdul e began execution. The overlay manager
di sregards any changes in the default drive that occur after the
root nodul e begi ns execution

* The nanmes of the overlays are fixed. To change the names of the
overl ays, you nust edit, reconpile, and relink the program

* No nonstandard PL/| statenents are needed. Thus, you can postpone
t he decision on whether or not to create overlays until link tinme.

18.2.2 Overlay Method Two

In sone applications, you mght want to have greater flexibility with
overl ays, such as | oading overlays fromdifferent drives, or

determ ning the name of an overlay fromthe console or a disk file at
run-time.

To do this, a PL/I program nust declare an explicit entry point into
t he overlay manager, as foll ows:

declare ?ovlay entry(character(10),Ffixed(l));

This entry point requires two paranmeters. The first is a 10 character
string that specifies the nane of the overlay to | oad, and an optiona
drive code in the standard format (d:filenane).

The second paraneter is the load flag. If the load flag is 1, the

overl ay manager | oads the specified overlay whether or not it is
already in menory. If the load flag is 0, the overlay nanager |oads the
overlay only if it is not already in nenory.

18-3



PL/1 Progranmer's CQuide 18. 2 Witing Overlays in PL/I

Using this nethod, the exanple illustrating nethod one appears as
foll ows:
root:

procedure options(main);

declare
?ovlay entry(character(10),fixed(l)),
dummy entry(character(15)),
name character(10);

put skip list("root");

name = "0OV1®;

call ?ovlay(name,0);

call dummy(“overlay 1%);
end root;

The file OV1.PLI is the same as the previous exanple.
At run-time, the statement:
call ?ovlay(name,0);

directs the overlay manager to load OV1 fromthe default drive (1 is
the current value of the variable nane); control then transfers to OV1.
When OV1 finishes processing, control returns to the statenent

foll owi ng the invocation.

In this exanple, the variable nane is assigned the value 'OVl
However, you could also supply the overlay nane as a character string
fromsone other source, such as the consol e keyboard.

The follow ng constraints apply to overlay nethod two:

* You can specify a drive code so the overlay nanager can | oad
overlays fromdrives other than the default drive. If you do not
specify a drive code, the overlay nmanager uses the default drive as
described in nmethod one.

* |f you pass any paranmeters to the overlay, they nust agree in nunber
and type with the paraneters that the overlay expects

18.2.3 General Overlay Constraints

The followi ng general constraints apply when creating overlays in a
PL/1 program

* Each overlay has only one entry point. The overlay manager in the
PL/1 Run-tine Subroutine Library assunes that this entry point is at
the | oad address of the overl ay.

* You cannot nmake an upward reference froma nodule to entry points in
overl ays higher on-the tree. The only exception is a reference to
the main entry point of the overlay. You can nake downward
references to entry points in overlays lower on the tree or in the
root nodul e.

e Conmmon segnents (EXTERNALS in PL/1) that are declared in one nodul e
cannot be initialized by a nodule higher in the tree. The |linkage
editor ignores any attenpt to do so.

* You can nest overlays to a depth of 5 |evels.

18-4



PL/1 Progranmer's CQuide 18. 3 Command Li ne Synt ax

* The overlay manager uses the default buffer |located at 80H, so user
progranms should not depend on data stored in this buffer. Note that
in the 8086 inplenmentations, the default buffer is at 80H rel ative
to the base of the data segnent.

18.3 Command Line Syntax

To specify overlays in the command |ine of the |linkage editor, enclose
each overlay specification in parentheses. You can create overlays wth
LI NK-80™in one of the follow ng forns:

link root(ovl)
link root(ovl,part2,part3)
link root(ovl=partl,part2,part3)

The first form produces the file OV1. OV fromthe file OV1. REL. The
second form produces the file O/ .OVL from OVl. REL, PART2. RREL, and
PART3. REL. The third form produces the file Ov1. OVL from PART1. REL,
PART2. REL, and PART3. REL.

Create overlays with LINK-86™using the sane fornmns:
1ink86 root(ovl)
1ink86 root(ovl,part2,part3)
1ink86 root(ovl=partl,part2,part3)

The first form produces the file O/V.OVR fromthe file Ov1.OBJ. The
second form produces the file OV .OVR from Ovli. OBJ, PART2.OBJ, and
PART3. OBJ. The third form produces the file OvVI. OVR from PART1. OBJ,
PART2. OBJ, and PART3. OBJ.

In the conmand line, a left parenthesis indicates the start of a new
overlay specification, and also indicates the end of the group
preceding it. Al files to be included at any point on the tree nust
appear together, wi thout any intervening overlay specifications. You
can use spaces to inprove readability, but do not use commas to set off
the overlay specifications fromthe root nodule or from each other

For exanple, the followi ng conmand line is invalid:
A>1ink root(ovl),moreroot

The correct conmand is as follows:
A>link root,moreroot(ovl)

To nest overlays, you nust specify themin the command |ine with nested
par ent heses. For exanple, the follow ng conmand |line creates the
overlay system shown in Figure 18-2:

A>1ink menu(funcl (subl)(sub 2)) (func2) (func3 (sub3)(sub4))

End of Section 18

18-5






| ndex
%
OOINCLUDE ......ooeieiveeece e 14-4
%INCLUDE statement...........c.ccoovvenee. 4-17, 8-3
%REPLACE statement.............ccoccvenene 4-17,7-1
1
10's complement .........ccccoeeeveiiiennne. 15-3, 15-4
A
Aformat........ccceiiiiiiie 4-11, 10-7
actual parameter.........cccccooevvnineennn 10-2, 16-15
actual parameters .........ccocceveneneniniinieie e 10-2
aggregate data........ccoceeeveeereererenese e 3-1
algorithms ..., 16-1, 16-9
ALLOCATE statement...........cc.cceveee. 12-1,12-4
application programs

MENU-AFIVEN ... 18-1
ArQUMENTS.....eeiiie i 4-5
arithmetic data ..........ccccoeveiie i, 3-1
AITAYS eeeeeeiieiieee e 3-3, 3-4, 3-6, 3-7, 4-15
ASCII character data..........cccoevvvevveireciennnenn, 4-8
assignment statement4-1, 9-1, 11-1, 11-6, 13-1,

14-2, 16-2
AUTOMATIC ..o 4-15
B
B format.......ccovviiviiiinec e 4-11
BLfOrmat.......cccoovviriiiiieneeee e 3-4
B2 fOrmat.......ccooviriiiieee e 3-4
B3 fOrmat.......cccoviriiiiieneee e 3-4
B4 fOrmat.......cccoovviiiiiiiceeee e 3-4
BASED storage Class........ccoovveereneenienenienne. 4-15
BASED variable .........ccccoceveiiieiieieece e 4-16
based variables..........c.ccccoevviiiiiiiinnnnn, 3-1,12-1
BASIC ..ot 15-1
BCD ..ot 15-4
BEGIN

PIOCK .o 2-2,12-3,13-1
BIF o 1-2

Binary Coded Decimal (BCD).................. 15-3
binary eXponent ........ccccooveveieevene v, 3-2
BIT variables .......cccoevvieieicieniceneceee 3-3
bit-string constant ...........ccccooeieii i 3-4
blank padding.........cccooeiiiiiiiii 4-11
DIOCK ..o 2-2
BLOCK NESTING.......ccovvviiiriiieenieieeens 2-2
block-structure .........cccovevieiviiiiccecnn, 4-6, 13-8
PUFFEr .o, 8-9, 11-6

SIZE vttt 8-11
built-in

DECIMAL function..........cccvevvvvvicnnnne 16-7

function ROUND........ccoveriveneiieneen, 16-1

fUNCLIONS ..o 1-2, 3-3, 16-1

LOCK oottt 4-9

Section 18

MOD fUNCLION.....coiiriiiiiece e 16-1
C
CALL statement............. 2-3,4-4,4-5,13-1, 18-3

label i ..o 18-3
calls by reference .......ccccccecvvevvivvcvniecccccnce 4-5
CEIL funCtion ........cccoovieiiniiieeiece e 16-9
CHARACTER ..ot 8-14, 16-8

Variables .....ccvieeie e 3-3
Character-string constants...........ccccceevenennenn 3-3
CLOSE statement ..........cccoceeieeienienieieeneenn 8-5
COBOL ..ot 15-1
code

QENEIALION....uecieece e 6-3

OPLIMIZAtioN ..o 6-4
COLUMN ..ottt 4-11
command file ......cocooevvinii 6-5
common segments declared in one module ..18-4
compiler

OPLIONS...eetiieieeee e 6-3
computational expressions.........cc.ceeevenennene 4-1
Computed GOTO.....ccveeiieieseeeee e 9-2
condition categories .......cc.cvvvevereeriennenn 4-13, 6-6
condition processing ........... 4-2,4-12,9-1, 13-10
Condition StacK.........coeevrervirinnireiinienns 10-2
conditional branching...........cc.ccovvveieinne 4-2, 4-6
connected StOrage.......ccovvrveererieinenieisenieneane 3-7
containing blocksS .......cccccoveviieiinnen, 2-2,2-3,4-6
CONEEXE. vttt 2-1
control

CharaCters ........cocveieiinence e 8-14

At . 3-4

format items ..o 4-11

Variable ... 4-2
cross sectional reference ........cccococveiiiiiennnn 3-6
D
data

AQOrEgALe .. .evvecee e 3-6

CONSTANTS. ... 3-1

conversion4-1, 10-1, 11-7, 13-10, 15-1, 16-7,
16-8

format itemMS .....oooveeeieie e 4-11
1< PR 4-7,4-10
([ U (=R 8-3, 8-9
SHIUCTUIES ... ittt 12-8
debugging .....ccocoeeeiiiie e 6-5
DECIMAL ...ooooeiiveeeeee e 15-4
built-in function .........ccoveeveveiiece e, 15-9
function.....ccocooveveeeiceeeee 13-6, 15-7, 16-7
declarative statements...........cco....... 2-1, 3-1, 6-3
DECLARE statements.......cccccveeevvvicvveiieeeennnn 3-1
default
010 1 (<] SRR 18-5
drive

18-1



Changing......cccvcvvvvveiece e 18-4
VAIUBS ..o 3-3
delete ... 4-9
DEMO Program .........ccceeeereeneenesneeeeeseeseeenns 6-5
dimeNnSion array........ccoeeveeeneneneneeeeseeie e 4-16
DIRECT
AttribULE ..o 8-12
FIlES e 4-8
DIVIDE built-in function..................... 15-4, 15-9

DO-groups2-4, 7-1, 8-5, 8-12, 8-14, 9-1, 9-3, 10-
1,10-2,10-7, 11-1, 11-4, 11-6, 12-4, 13-1, 13-
7

downward reference to entry point................ 18-4
AriVE COOEB...uoiiviiiiie e 18-4
dynamic memory management ..................... 17-1
E
Eformat....cccccooceeeiieiie e 4-11
EDIT formats .......ccocovveivieieeiciiee e 16-1
EDIT-directed ........oocovveivieieeiciiee e 4-11
ENDPAGE condition...........coeevvveviveeeesrneen. 10-7
entry
CONSLANt ..., 2-4, 3-5, 14-4
point
EXPlICIt .o 18-3
Variable....c.oo i 3-5
ENTRY
CONSEANTS...vvviiiiec i, 14-2
(0 U TR 3-4, 14-2
VaNabIES ..o 14-2

environment2-1, 2-2, 2-3, 2-4, 4-5, 4-13, 10-3,
12-3

ENVIRONMENT
AttribULe ... 4-9
OPLION 1. 8-9
BITON ittt 5-1
MESSAGES 1.vvvevverreesreeseresereneeeeesseesseeseneseeeeens 6-4
executable statements.........c.cccccceverernnnnn. 2-1,6-3
explicit declaration.........cccooiiiieiiiiincncne 3-1
EXPIESSION .ottt 4-1
external
deViCeS....cocevvvi et 3-6, 4-7, 4-8, 6-6
ProOCEAUIES ....ccvveveie e 2-2,2-4
EXTERNAL attribute ........cocoovveveeieecrecnee, 14-1
F
[ (0] 11| 4-11
FIlE e 4-7
(000] 0151 - 1o | (SR 3-6
Variable.......ooeveviice e 3-6, 4-7
File
Access Methods ........cocveviieecieciieccieee, 4-10
Data........oooeeiiieeee e 3-6
DESCIIPION...eiiiiitiiieiieiee e 4-9
Parameter Block (FPB) ........cccoccooviiiicnienn. 4-9
file id .o 4-7, 4-8, 4-10

Program

| ndex

FILE variables.......cccccoovevviiiiiieeee e 14-2
FIXED BINARY3-1, 3-2, 4-8, 4-10, 12-2, 13-1,
13-6, 14-1, 16-6, 16-8, 17-1

FIXED DECIMALS3-1, 3-2, 3-3, 7-2, 7-3, 8-14,
13-4, 15-1, 15-2, 16-1, 16-5, 16-6, 16-8

(0 1 - NPT PR 3-2
FIXED OVERFLOW........ 4-14, 13-2, 15-4, 15-7
fixed record Size.....occvvvveevreececieiieens 4-8, 8-9
FLOAT BINARY7-1, 10-3, 13-4, 15-1, 15-2,

16-5, 16-7

ata..coeerececec 3-2,7-2
formal parameters............ 13-1, 14-2, 14-4, 16-15
format

TEBMS v 4-11

ISt 4-11
FORMAT statement..........ccccceeeviieeeciieeeenee, 4-12
FORTRAN ...ttt 15-1
FREE statement..........cccccoevveeiiiieen, 12-1,12-5
free Storage area .......cccevevevenceieicnc s 4-16
free-format language .........ccccovevvvvivecicrcrennen, 5-1
function

ProCeAUIES .....vvvvreveeeie et 2-3,4-4

reference.....ccccoevvveveececie e, 2-3,4-5, 13-1
G
GET EDIT ..ot 4-11

statement ..........cooceeeeiiieeenee. 10-7, 11-6, 11-7
GET LIST i, 4-11, 8-12

statement ................ 8-3, 9-2, 10-3, 12-10, 13-9
GOTO

statements........cccoeeeevieeeeciiieeens 4-6, 9-3, 10-3
H
halting the compiler.........c.oceoeveviiiiinicieene 6-4
hierarchical structure............cocoeevveieeieeineenen, 2-1
|
IF statement........cccoceveeviec e, 4-6, 4-17
implicit declaration.............c..ccceuee.e. 3-1,3-3,34
implied

AttrIDULES ....vvi e 4-10

DASE ..ot 12-1, 12-2
INAENtAtioN ...cccovvvvecieicecce e, 5-1
INDEX function.........ccoeeeevviiiveeenenn, 11-1, 16-15
INITIAL attribute.......cccovvvvveiiiiieiie e, 4-15
INPUT fil€..iioeeiiiice e 4-8
INEEOEIS ..ottt 3-2
internal

DUFFEr SIZES ...vviiceee e 4-9

(010 1= C 4-10, 8-5

file constant.........cccceeeiiieeciec e, 4-7, 8-2

PrOCEAUNE. ....cveieieieeiee e 2-3,3-5

representation .........ccoceeevereneninnne. 4-16, 15-3

STACK oottt 6-6
invoking compiler ........c.ccooeoiciinincine 6-2



iteration4-2, 7-1, 11-1, 12-9, 12-10, 12-11, 16-1,
16-3

K

key4-8, 4-10, 4-14, 6-4, 8-8, 8-10, 8-11, 8-12, 8-
13

KEYED

attribute ..o 4-8, 8-9, 8-10

FIlE 4-8
KEYTO Option ...ccooovevveverrieeeie e 8-11
KEYWOTAS. ..o 1-1
L
label

CONSEANES ..o 3-4,9-1,9-3

variable ..., 3-4

variables.........ccccoeviiiii i 9-1,9-3
LABEL data.......cccoveiviiiieineneesesee e 3-4
JEVEL .o 4-9
LINE ..o 4-11
linemark........cccoooiiiii 4-8
LINESIZE attribute .........ccceovvviviiieecien, 4-9
LINK-80 ..ot 18-5
LINK-86 ..ot 18-5
linkage editor

creating overlays With.............ccocvvevivenenne. 18-1
liSt ProCESSING .vvvevvereeieviecie e 12-1
LIST-directed.......c.ccovevvvieiieiie e 4-11
load

AAUIESS .. 18-4

Flag ..o 18-3
local reference.......cccccvveveiie e, 9-2
10CKEd ..o 4-9
logical units.......cccevvevvrennnnnnn, 2-1, 2-4, 3-4, 4-5
M
main

PrOCEAUNE ...ovvieeee e 2-2

SEIUCTUTE . 3-8
MAIN OPtioNn ....ccvevveieieccse e 13-6
MANTISSA 1cvvveveeie ettt 3-2
mathematical functions............c.ccccoevveiiinenen. 3-3
MEMDET ..t 3-8
modular design.........ceceiereieiineiieieeee 18-1
module

upward reference from.......cccccecvvvvivvnenns 18-4
N
NAtIVE COUB......cviieicie e 6-3
nesting

level

MAXIMUM Lo 18-2

JEVEIS ... 6-4

OVEFIAYS....eeiiiieieeeee e 18-5

to five level depth ... 18-4
noncomputational eXpressions...........c.cc.eee... 4-1

| ndex

nonlocal referenCe.......cccocveveeeiicecccie e 9-2
null

POINEN ... 12-9,12-11

statement........occevvveiiei s 4-6, 4-17
o]
object

(o101 [T 6-3

Tl s 6-1
ON ENDFILE statements........ccccccoevvveevivvennn. 10-6
ON ENDPAGE ......cooiieeeeeece e 10-7
ON statement ..........ccoceveeeveeeennns 10-1, 10-3, 10-6
ON-DOAY ...vveee e 4-13
ON-DOAY ..o 10-3
ONCODE function .........cceevevvveversiieceren e 4-14
ON-condition

ON-UNItS....cveecvireeeeee. 10-4, 10-6, 11-2, 11-7
ONFILE function........cccocevveeivciiii e, 4-14
ONKEY function........c.coceveeveviie i, 4-14
OPEN MOGE.....eeiiieiiieieieiee e 4-9

OPEN statement4-7, 4-8, 4-9, 4-10, 8-1, 8-2, 8-3,
8-5, 8-9, 8-12, 16-15, 17-1

operating Systems.........ccccevrerennn 1-2, 4-10, 4-12
OUTPUT file oot 4-8
overlay
method one constraints ..........ccccevervrienen 18-3
method two constraints ............cccccceeereene. 18-4
names
when determined..........ccocoooeveienennne. 18-2
specifications
changing names of .........cccceeeveniennns 18-3
COMIMAS TN . 18-5
CoOmMPOSItion Of .......cccovvvviirciciccces 18-1
creating with LINK-80..........c.cccocvvrnene 18-5
creating with LINK-86.............cccccvrnine 18-5
enclosing in parentheses ..........ccocoevevine 18-5
flexibility with........ccccooveiveee, 18-3
general constraints .........ccoceeevercrennnns 18-4
left parenthesis in........c.ccoovveieiencnnenn 18-5
IOWEr ONree .ovieeeiee e 18-4
MEthod ONe......ccoeiiiiieec 18-2
NESLEA ... 18-2
NESEING . ..e vt 18-5
passing parameters t0.......cccocevervrvrrenn 18-4
FEStriCtioNS t0.....cviireiviccccc e 18-2
storing on disK........ccocvvevveveierennnnnnn, 18-2
tree structure of ..., 18-2
USE OF .o 18-1
using in a large program.............c...... 18-1
When to Create ........ccoceeeveienesiennne. 18-3
WITING ..o 18-2
SUBA...ooiieceec e 18-2
eNtry POINEL0....ccvevviieeieiieiricieecee e 18-4
name of entry point to.........ccccceeerenene 18-3
overlay manager.......ccoccoevvreneereeneene 18-3, 18-5
passing control from .......ccccooeveveniicnennn 18-3

Program



P
PAGE ..o 4-12
PAGEMAIK. ..c..iveieieiieiee e 4-8
PAGESIZE attribute .........ccooeveiiiiiiiiie 4-9
parameter ist.........cocoveiiiinieeiee e 18-2
Parse FUNCHION........cccoooeiiiiice e 11-4
PASCAL ..ot 15-1
Pass
1 6-3
2 6-3
3 6-4
pass by
TEFEIENCE....ociiice e 4-5
VaIUB ... 4-5,13-1
PASSING ettt e 18-4
agreeing with overlay..........ccccoovevinnnnn. 18-4
picture
edit format..........ocoooeiiiiiii 16-9
POINEET ...t 4-15
At e 3-6
qualifier ... 4-16, 12-1
variable. ... 3-6, 12-1
POINTER variable.........ccccooovviiiniiiene, 4-16
pointer-qualified reference.........cc.cccevevvernnnn. 4-16

precision3-2, 13-4, 15-2, 15-4, 15-5, 15-7, 15-9,
16-1, 16-7

predefined file constants

Preprocessor Statements

PRINT 4-7, 4-8, 4-9, 4-12, 4-15, 8-3, 10-4, 12-12

ATIDULE .. 8-7
procedure
DOAY .o 2-3
definition ..o 4-5
Q1< 10 [ 2-3,4-5
heading.....ccooevevieririece e 14-4
INVOCALION.....ccvieiree e, 2-3,4-2,4-5
NAME ...t e e e eaees 2-3
PROCEDURE........ccoiiiieeie e 9-2
BIOCKS ... 2-3
program
development ... 6-1
MAINEENANCE ... 2-3,5-1, 5-3
size
upper limit.......ccooooovviveecece v, 18-1
PUT EDIT statements...........cccevvveenneee. 4-11, 10-7
PUT LIST statements.......ccccccoevvevevvnennn. 4-11, 8-7
R
R 4-12
REA ... 4-9
READ. ... 4-11
StAtEMENT ..vvviiiiic e 8-11
with KEY statement...........cocoeeevciieeinen. 8-12
Read-ONly ......ccooviiiiiiiiieee e 4-9
RECORD

Program

| ndex

FIlE oo 4-8
O 4-10
FECUISIVE ..veeeeeveiee e 4-4, 4-15, 13-2, 13-8
PrOCESSING....cveivirieiiieiie e 13-1
RECURSIVE attribute .........cccoceeevvievieene, 13-1
relative record ......ccoovveeeeeiiieie e 4-8
RETURN statement .........cooecevvieiiiiiiviinneenn, 13-2
RETURNS attribute ..........ocoeeeeviieeiiiee e, 14-2
REVERT statement..........cccoeevevevieene 10-1, 10-6
root MOAUIE ......vveveeccee e, 18-3
with one overlay .......cccccoevvevevevcnieicsnen, 18-2
] IR 14-2, 14-4, 16-6
FUN-tiME StACK......ccoveveriiicee e, 13-6

Run-time Subroutine Library (RSL)6-1, 6-5, 12-
1,14-1,18-1

S
saving memory with overlays ...............c....... 18-1
scalar

VAIUE ...t 2-3

scale factor3-2, 15-2, 15-5, 15-6, 15-7, 15-8, 15-
9, 16-1, 16-7, 16-8

sequence control statements..........ccoceeveeriennn 4-2
SEQUENTIAL fileS....cocovriiiiniiiiiicnn 4-8
SHhared ..o 49
SIGNAL statement............ 4-13, 10-1, 10-3, 10-7
single-precision NUMbEr ..........cccoovveieiinenine 3-2
size of programs

upper lmit......ooooiiee e 18-1
SKIP .ottt 4-12, 10-7
SOUICE il ..eiiiiiiie e 6-1
special

ChAraCters ......cooevverciie e 1-2
SEACK v 15-4, 15-7, 15-8
STACK OPtioN ..ocveeveieece e 13-6
StANAArd ....ocvevveici 4-15
STATIC....ciiiee e 4-15

ALribULE .o 14-2
STOP statement........ccccevvveiiieiivennnnn, 7-1,13-10
storage

ClaSS...ecieeie e 4-15

SNAFING ...t 4-5
STREAM

L[ 4-8, 8-3, 8-11, 8-12, 10-4, 12-12

HO oo 4-10
string

PrOCESSING...cvvvereeeireereeiesicrieeeieneens 11-1,11-4

VariabIeS ..o 3-3
structural statements.........ccocveveeeeverereseneens 2-1
SITUCTUNE....vvei e 3-7,12-5, 14-1
structured 1anguage ........ccoceeeverineiieiee 1-1
SUDCOAES.....cvvevieciececcrcccceie 4-13, 6-6, 10-1
SUBrOULINg......ccvveirerceee e, 11-4,12-3, 16-6

PrOCEAUIES ..ot 2-3,4-4
subroutines............... 12-1,12-3, 12-9, 14-1, 14-4
SUDSCIIPLS. v 4-16



| ndex

SUDSEE G 1-1, 4-15, 15-6 U
SUBSTR covsvvsvessvessssssns 11-1,11-7 unconditional branching...............cc.c........ 4-2,4-6
SYMFUE oo, 6-2 .
UNLOCK fuNCtionS......ccccoveveeeeiiiee e 4-9
Symbol Table.........cccceeenee. 6-1, 6-3, 12-5, 14-1 UPDATE file 4-8
SYSIN. ..o, 4-12, 6-6, 10-3, 10-6 uoward referer.{(;;';;)“éﬁ{r """ 0|nt """"""""""" i8-4
SYSPRINT oo 4-12,7-1, 8-7 P Y PO v
SYStem files ..o 6-2 V
T VARYING attribute..........cooeviveiiiiiiee e 3-3
. LVZ=Tox (o] SR 9-2,9-3
temporary variables .........ccccoeveverevininiesee 6-4 : ’
TITLE QttribULE .. .ooor oo 4-8 VERIFY fUNCHON....oosvsvsvs 11-1,11-6
tOKENS..eoccveee e, 11-4, 11-6, 11-7, 13-9 W
tracehaCK ....cveiceii e 6-6 i1dcard ref 4.9
Transient Program Area................ 6-4,12-1, 18-1 Wri tcear PETETENCE. ..ooooovvvvr 4:9
TRANSLATE FUNCHON. . e WRITE SEAtEMents............... 4-11,8-9, 8-14
''''''''''''''''''''''''''''''''''''' WRITE with KEYFROM statement............. 8-12
TRUNC ... 5-1 it | 18.2
trUNCALION ..vovoovereeen, 4-11, 7-2, 15-1, 15-2, 15-7 WITING OVETIAYS w.ovvvorvviriises -
<] (0] ST 3-2 X
K e 4-12

Program



	Introduction
	What is PL/I?
	Using This Manual
	Notation

	The PL/I Language
	Structural Statements
	Declarative Statements
	Executable Statements
	PL/I Blocks
	Procedures
	DO-groups

	Declarations
	Scalar Data
	Arithmetic Data
	FIXED BINARY
	FLOAT BINARY
	FIXED DECIMAL

	String Data
	Control Data
	Pointer Data
	File Data

	Data Aggregates
	Arrays
	Structures


	Executable Statements
	Assignment Statements
	Sequence Control Statements
	Iteration
	Procedure Invocation
	Parameter Passing
	Conditional Branch
	Unconditional Branch

	I/O and File-handling Statements
	Opening Files
	File Attributes
	Implied Attributes
	Closing Files
	File Access Methods
	Data Format Items
	Control Format Items
	Predefined Files

	Condition-processing Statements
	The ON Statement
	The REVERT Statement
	The SIGNAL Statement
	Condition Categories
	Condition Processing Built-in Functions

	Memory Management Statements
	BASED Variables and Pointers
	The ALLOCATE Statement
	The FREE Statement

	Preprocessor Statements
	Null Statements

	Programming Style
	Case
	Indentation

	Using the System
	PL/1 System Files
	Invoking the Compiler
	Compiler Operation
	The DEMO Program
	Running DEMO
	Error Messages and Codes

	Using Different Data Types
	The FLTPOLY Program
	The DECPOLY Program

	STREAM and RECORD File Processing
	File Copy Program
	Name and Address File
	The CREATE Program
	The RETRIEVE Program

	An Information Management System
	The ENTER Program
	The KEYFILE Program
	The UPDATE Program
	The REPORT Program


	Label Constants, Variables, and Parameters
	Labeled Statements
	Program Labels
	Computed GOTO
	Label References
	Example Program

	Condition Processing
	Condition Categories
	Condition Processing Statements
	ON and REVERT
	SIGNAL

	Examples of Condition Processing
	The FLTPOLY2 Program
	The COPYLPT Program


	Character String Processing
	The OPTIMIST Program
	A Parse Function
	The GNT Procedure
	The DO-Group


	List Processing
	Based and Pointer Variables
	The REVERSE Program
	A Network Analysis Program
	NETWORK List Structures
	Traversing the Linked Lists
	Overall Program Structure
	The Setup Procedure
	The Connect Procedure
	The Find Procedure
	The Print-All Procedure
	The Print-Paths Procedure
	The Print-Route Procedure
	The Shortest-Distance Procedure
	The Free-All Procedure
	NETWORK Expansion


	Recursive Processing
	The Factorial Function
	FIXED DECINAL and FLOAT BINARY Evaluation
	The Ackermann Function
	An Arithmetic Expression Evaluator
	The Exp Procedure
	Condition Processing
	Improvements


	Separate Compilation
	Data and Program Declarations
	ENTRY Data
	An Example of Separate Compilation

	Decimal Computations
	A Comparison of Decimal and Binary Operations
	Decimal Representation
	Addition and Subtraction
	Multiplication
	Division

	Commercial Processing
	A Simple Loan Program
	Ordinary Annuity
	Mixed Data Types
	Evaluating the Present Value PV
	Evaluating the Payment PHT
	Evaluating the Number of Periods n

	Loan Payment Schedule Format
	Variable Declarations
	Program Execution
	Display Formats

	Computation of Depreciation Schedules
	General Algorithms
	Selecting the Schedule
	Displaying the Output


	Dynamic Storage and Stack Routines
	Dynamic Storage Subroutines
	The TOTWDS and MAXWDS Functions
	The ALLWDS Subroutine

	The STKSIZ Function

	Overlays
	Using Overlays in PL/I
	Writing Overlays in PL/I
	Overlay Method One
	Overlay Method Two
	General Overlay Constraints

	Command Line Syntax


