DIGITAL
RESEARCH®

Pasc/MT+

Language

Programmer’ s Guide

For the CP/M-68K ™
Operating System

COPYRIGHT

Copyright ©1984 ty Digital Reseach Inc. All rights reserved. No pert of this publication may be
reproduced, transmitted, transcribed, stored in aretrieval system, or translated into any languege or
computer language, in any form or by any means, eledronic, mechanicd, magnetic, opticd, chemicd,
manual or otherwise, without the prior written permisson of Digital Research Inc., Post Of f iceBox 579,
Padfic Grove, California, 93950.

DISCLAIMER

Digital Research 1nc. makes no representations or warranties with resped to the cntents hereof and
spedficdly disclaims any impli ed warranties of merchantability or fitnessfor any particular purpase.
Further, Digital Reseach Inc. reserves the right to revise this publication and to make changes fromtimeto
timein the mntent hereof without obli gation of Digital Research Inc. to notify any person of such revision
or changes.

NOTICE TO USER

From time to time changes are made in the file names and in the fil es adually included with the distribution
disk. Thismanual should not be mnstrued as a representation or warranty that such files or fadliti es exist
on the distribution disk or as part of the materials and programs distributed. Most distribution disksinclude
a“READ.ME” file, which explains variations from the manual and which do constitute modification of the
manual and the itemsincluded therewith. Be sure to read that fil e before using the software.

TRADEMARKS

Digital Research and itslogo are registered trademarks of Digital Research Inc. CB68K, CP/M-68K,
Digital Reseach C, Pascd/MT+, and TEX are trademarks of Digital Research Inc. Motorolais aregistered
trademark of Motorola, Inc.

The Pascd/MT+ Language Programmer’s Guide for the CP/M-68K Operating System was prepared using
the Digital Research TEX ™ Text Formatter and printed in the United States of America

*hkkhkkkkhkhkkhkhhkhkhikkhkix

* First Edition: May 1984 *

Foreword

The Pascd/MT+™ language is formally based on the definiti on of standard Pascd as described in the
International Standards Organizaion (I1SO) standard DPS/7185 Pascd/MT+ aso has sveral additionsto
standard Pascd that make it more suitable for commercial programming. Y ou can use Pascd/MT+ to
develop high-quality, efficient, maintainable software for both data processng and red — time control
applications.

The Pascd/MT+ system, which includes compil ers, linkers, and programming toals, isimplemented on a
variety of operating systems and microprocesors. Pascd/MT+ programs are eaily transportable between
various target processors and operating systems because the languege is consistent. The Pascd/M T+
system can also generate software for use in a ROM-based environment, to operate with or without an
operating system.

This manual describes Pasca/M T+ Release 3.3, a system that runs under the CP/M-68K™ operating
system using a Motorola® MC68000microprocesr with at least 128K bytes of memory.

Thismanual isdivided in five parts. Part 1 (Sedions 1 — 2) gives a general description of the Pascd/MT+
programming system, the notational conventions used in the manual, and some guideli nes for configuring
your own system.

Part 2 (Sedions 3 — 5) describes how to use software. Thisincludes the operation of the compiler, linker,
and disaseembler. The cmmand-line and source-code options for the cmpil er and the cmmand-line
options for the linker are fully described.

Part 3 (Sedions 6 — 10) describes avariety of advanced topics, including how to write large programsin
segments, how to inter facePascd/M T+ code with assembly-language @de, how to diredly accessthe
operating system, and how to write your own error handling procedures. Also included is a set of guidelines
for writing ROM-based code.

Part 4 (Sedion 11) contains ©me sample Pascad/M T+ programs that ill ustrate various feaures of the
language. Y ou can study these examples, and then modify them to gain experience with the language. Part
5 isareference sedion containing appendixes and an index.

This manual assumes you are dready famili ar with general aspeds of computer programming, and may
have programmed in alanguage such as BASIC. If you are not familiar with Pascd, refer to the

Pascd/M T+ Language Reference Manual for a bibliography of textbodks. This manual aso assumes that
you are famili ar with the CP/M-68K operating system and your own hardware cmponents.

cContents

IS < o (o] IS 1-1
INtroduction TO PasCal/M T ..ot 1-1
The PasCal/MT+ LanQUAagEccccueeriereeiierieeeesieesieeaesseesaeeeesseessesaesseessessesseesss 1-1
Pascal/MT+ IMPlemMENTaLIONc.ooiiiieieee e 1-1
PasCal/MT+ fOr CP/M-B8Kcooiiiiirienieninieeeie et 1-1
Pascal/MT+ DOCUMENLELION SELcoveeiiiieciee e 1-2
NOtational CONVENTIONS.ciiiieieriese et sb e ens 1-3
S < o f o] o RSP R 2-1
(1 1] a0 = (o 2-1
Hardware REQUITEMENES..........oiiiiiieseee ettt 2-1
PasCal/M T+ SYSteM FIlES........ooeeececeee e 2-1
INSEAlING Y OUI SYSEEIM.......eiiiiiiiie et 2-2
System wWith Hard-diSK DIIVE........c.cceeieie e 2-2
System with Floppy-diSK DIIVES.........ooeiiiiereee et 2-2
Compiling and Linking @ Program..........ccccceieereeiesieesesieeseese e e sse e snee e ennens 2-3
3. SECLION e 31
USING the COMPITENeeieeeieee et et esreeneenee e 31
CoMPIlEr OrganiZAHION........ceiueeieeee ettt sa et eesaeensesnee s 31
(001101011 1= @] o7 = 1 Lo o F0 USSR 31
[INVOKING the COMPITENeiiieiiee e e 31
COMPIALTON DELAccueeiveeieeiesieee et es s e se et eee e e s seeee s e sreeeesneesreennens 31
COMPIALTON EFTOIS. ...ttt st et e e e e nre e 3-2
Compiler Command-1ing OPLIONS...........coiviieiierieee e e ene s 3-2
B, BCD REDIESENIALIONoiueeiieiesieeitieie ettt sre e e 3-3
C, CONLINUE ON EITON ...ttt 3-3
Dd, Disassembled File LOCAHONcccooiiiierieniereeieeee e 3-3
Ed, Error FII@ LOCAEL 10N......ccciiiiiiinie ettt 3-3
Od, MT68.000 Overlay LOCALION.........ccceiereerieeieeiesieeie e eee s 3-3
Pd, Print (Listing) FIl€ LOCAHIONcccueieieeriieieceesie et 3-3
(OB @ 1= O o= - i [0 o ISR 3-3
Rd, Relocatable File LOCAION.........cocoiiiiriiiieieee e 3-3
Td, Temporary File LOCAIONcceeiiiieeeieeee e 3-3
V, View Procedures and FUNCLIONS...........ccoerieiiienenise e 3-3
X, Extended Relocatable ObJect File........ooiiiiiiiiieeeeeee e 3-3
@, Pointer Character EQUIVAIENCEcceceereeeeceereeee e 3-4
SOUICE COUE OPLIONS.......eeieeriierieeieeiee e sieseesree e eesteesteseesseesseeeesseesseeeesaeensesnnens 35
E, Entry-point Record GENeration...........cccceereeeieieenieeiieseesieseeseesie s ssee e 3-5
[, INCIUAE IS et 3-5
Kn, Symbol Table Space REAUCLIONcccevveiiiiereee e 3-5
L, P; LiSting CONLIOIS......ccuiiiiieeie ettt 3-6
R, Run-time Range CheCKING.........ccceiieieiiereee et 3-6
T,W; Type and ISO Standard CheCKing.........ccccuererrirreenenieneesiesee e 3-6

X, Exception (Error) Checking at RUN-tIME.ccccvvieveeiee e 3-7

Conditional COMPIELTIONc..coiiiieeiieere e eee s 3-8

4. SECHION ..o 4-1
USING thE LINKET ...ttt sttt sb e e e 4-1
RUN-TIME LIDIAITES ...t 4-1
S 1 ST 4-1
OFhEY LIDIAITES ...ttt 4-1
[INVOKING the LINKENoviiieiieiee ettt 4-2
BITOIS. . 4-2
REAIreCtiNg OULPULcoveeiieieesieeie ettt s s e e 4-2
Linker Command-lin€ OPLIONSc.ccveririieiieiesie e ese e esee e sae e enae e 4-2
N = O U I S 4-3
ALLMODS.......ooieeeee ettt bbbttt bbb 4-3
RSS2 Y NS = | ST 4-3
COMMAND ...ttt bbbttt b e bbb st naesse e 4-3
(AN N = N () SRR 4-3
IGNOREottt bbb b b ettt b e bbb benaeens 4-3
INCLUDE ...ttt sttt et besne b nneens 4-3
LOCALS ..ttt bbbttt et r e 4-3
NOLOCALS....c ettt te st seebeese e s e e e aenaessesteeneenens 4-4
SYMBOLS ...ttt bbbt a e b 4-4
TEMPFILESA:] . veeeieeeeieieieiesese ettt s sre e enis 4-4
TEXTBASE [N] ettt sttt b e 4-4
UNDEFINED ..ottt st sne st ene s 4-4

5. SECLION oo 5-1
USING the DISasSeMbDIEoiiieeeeee e e 51
[INVOKING DISB8........ceeeivieieeieiteee e see et te e e e esreetesneesneenaesneenes 5-1
B 0TS e n e 5-2
SaMPIE DISASSEMDIY ..o e 5-2

(SIS o { [0 o OSSPSR 6-1
Program Structure at RUNIIME...........oieeiieecie et 6-1
ComMMANd FIlE SITUCIUIE ..ottt 6-1
RUN-tIME MEMOIY M@D......ei ettt sr et e 6-1
S - QS ST 6-2
[1= o PP 6-2

RS o { [0 o E PSR 7-1
Writing Segmented ProgramsSocverieieereerieeeeseeseeseesseessesessseessessessseessesnsssseeses 7-1
IMOQUIES. ...ttt st et sb et e nee e 7-1
(@< 1 = Y OSSR 7-3
JLIC= .01 7o oo VPR 7-3
General Overlay SCheme..........cov o 7-3
Overlay FIE FOIMELcooiiieeee et 7-4
[T T o @ V< 1 = 7-4
(@1 7= 1] oo TSRS 7-5
S g T o [D= v OSSR 7-5
MaintaiNiNg the HEAPccve e e 7-6

TS o 10 [T 8-1

Interfacing Pascd/MT + with Aseembly Language ROUINES.............uueiiiiiiieeeeieennd 8-1

INtEITACE CONVENTIONSuuiiiiiiiiiiiiiii ettt 8:-1
ParameEter PASSINGuuuueiiiiiee ettt ne e e s 8-2
INterfaCe EXaMPIEoeeeeee e e ——— 8-3

9. SECHION e 9-1
Controlli ng the RUN-time ENVIFONMENT...........cooviiiiiiiiiiiiccmr e eeees 9-1
HEg ManagemMENT.e ettt ene et e e e e e en e e enmens 9-1
Using the FULLHEAP ROULINES.........uuiiiiiiiiececceeseeeeiis e enne e 9-1
USINg the PASLIB ROULINEScooiiiiiiiiiiiiiiis et 9-1
LMAXAVAIL aNdLMEMAV AIL ...coooiiiiiiiiieieees e 9-2
CHERR e e e e e et raaaaaae ! 9-2
Dired Operating SYSIEM ACCESS......uuuuuiiiiiieeeeeeeeeeieeeiaaeeeeeeeeaeeeereeeeeensnnneeeeeeeees 9-2
INLINE. .ottt et e e e e e e e e e e emer et e e e e e e aaeeaeeeeeeesassammneeeeeeeenannnns 9-4
ADSOIULE VarTahlES......ccooii e e e 9-5
Manipulating [/O POIS.uuuiieee et ne e 9:6
INP AN OUT ..ottt ettt 9-6
INPORT_W and OUTPORT _W....oiiiiiiiiieieeeeee e eciieee e e e 9-6
Range ald Error Chedkingcooiiiiiiiieeiiiieeme e e 9-6
RANGE QECKING ...ttt e 9-7
[T o e =T (] o USSP 9-7
User-supdied Error HaNAIErS..........ooooiiiiiiiiiieeiieeee e 9-8
7@ =g o g =" o |1 o T SRS 9:8

10, SECLION .ot 10-1
WIriting ROM-DaSed COOEuuuuiieie e ceeee e e e eene e e e e e e e e eeeaaenees 101
Programs That USE 1/O.......uueeiiii e 10-1
Rewriting the _INT ROUINE.ccoiiiiiieeeeicieeeeeeeee e mmme e 101
Linking AItEred ROULINGS.uuuiiiieiieee e ceeeie ettt eeee e eeeeaeeees 10-2

11, SECHION e 11-1
Sample PasCa/MT £ Prograims.cceeuuuuuuueunnnimeeeeeneeiinnns s e e e e s seemssnnnnee s 111
FI @ TTANSEN ...t 11-1
ComMPAiSON TaADI ... et 11-1
Program LiStiNGS.......ccoiiiiiiieeeiiiiiiiimmmr e et s eme e e e e e e e e e e e e e ennas 11-2

AL APPENAIX o e A-1
Compilation and Rurn-time Error MESSagES..........covvvvvevvvvviiiiimmme e A-1
COMPIIALTON EITOIS. ...ceeiiiiiiiiiiee et e e e e e e e eener e e e e e e e e e e e e e e eeeeeenenens A-1
RUMHIIME EITOIS. ...ttt e e e e e mnn s A-9

B. APPENAIX oot B-1
LINKOGOS EITOr MESSAGES .. .cvviiiieiie et e ettt e et e et eamnme et e e e e e e eenaeeees B-1
INternal LOGIC EITOIS......ccoiiiiiiiiiiiiiii ettt ee e e e e e B-4

(G N o] 0 1< [0 | SRR C-1
RurHtime Library ROULINES..........ooooiiiiieiieeeiieeee et C-1

[2N o] 0 1= g [0 | b G S D-1
Internal Data REPIESENTAIION.coeeeeeeeiieeiiieeeeieeee et e e e e eeenannes D-1
Size and RaNQe Of DAAtYPES.........coevvveeriiiiiiiii it e e e e emnenn e D-1
MUITDYIE SEOTagE. ... oot D-1

(21010 I VAN \ R {E ol == | ! (] o] 1SRRI D-2

BYTE REDIESENIAIION.....cceieieitieiieieesie ettt sttt e e sae et e neesaeseesneens D-2

(@1 VAN R R = o] (=< 1= 1 o o D-2
INTEGER REPIreSENtatiON......cc.eeieiiiesieeie ettt D-2
LONGINT REPrESENALIONccvveieieeesieeieeeeseesieseesaeesesseesseeseesseesseesesseessesnsesseens D-2
WORD REDIESENIAIION.......coveeiieiiesieeie ettt see e sre et sseesaeeeesseeseeenes D-3
REAL REDIESENIALIONveeuveeeieiieeieseesieeiesiee e eee s e sse e e sseesseeaesseesseensesneesseensesneens D-3
BCD FOMMEL ...ttt D-3
TEEE FOrMAL........ooiiciie e D-3
ATITay REPIESENTALION.eueiiieieeeesiee et re e e e sneen D-5
St REPIESENTALION.....c.veeieeieieesie e eee s e s e st e e sre e e seesse e seeseesreeseeneesneeseeneas D-5
Static Data AlTOCLIONccveiiiieieieeeee e D-5
Global Variahles.......c.couiiieeeiiecessee s D-5
LOCEl VATADIES ...t D-6
[N o] 0 1= [0 | b SR E-1
Writing Portall € Programs............ooeeieriinieneeie ettt E-1
Hardware-dependent FEALUIES............coveiieerecie et E-1
System-dependent FEALUIES...........coouiiirieieeree e E-1
Tables
Table 2-1. Pascal/MT+ SyStem FIlELYPES.......cciviiriieriee et 2-1
Table 3-1 Compiler Command-ling OPLIONS.ccciiiiririiieereee e 34
Tabhle3-2 BK OPtION VAIUBS ..ottt b ettt b bbb ens 35
Table 3-3 Compiler SOUrce COOE OPLIONScoiiririiirtirieietesieee ettt b s b b se b eenes 3-7
Table4-1 ReQUITEA LIDIAITESoouiiiieie ettt et b et see e 4-2
Table 4-2 LINK68 Command-lin€ OPLIONSc.coiiiiiierienereeieee et s e 4-5
Table 9-1 ERR ROULINE EFTOr COUES.........coueiiririieetiiteeetesiee st 9-7
Table 11-1 Comparison Of /O MENOUScooueiiriiiiieeee e e e 11-1
Figures
Figure 1-1 Software Development under PasCal/M T ..ot e 1-2
Figure 4-1 LINKBS OPEIELHON.c.ciuieeiiriieeiirieeeestee st ns e pe e n e 4-1
FIQUre 5-1 DISB8 OPEIEHON.cueevireiietiriiieteste ettt b et b bbb bbbt b 51
Figure 6-1 Memory Layout in Transient Program ATEaL.........coueeeririeerinieesese e 6-2
Figure 7-1 Typical LINKB8 OVerlay ShEME.........ccviiiiiiieiriiieerie st 7-4
Figure 7-2 Overlay SCheme EXBMPIE Lc.ooiiiiiiieieeer e e 7-5
Figure 7-3 Overlay SCheme EXBMPIE 2 ..o e 7-5
Figure 8-1 Stack Containing @ Parameter LiStcouveiiirieiriieireeesies e e 8-2

Listings

Listing 5-1 PPRIME.PAS ...ttt et 5-3
Listing 5-2 PPRIME.DIS ...ttt ettt 5-4
Listing 7-1 Main Program EXAMPIE..........co et s bt e 7-2
Listing 7-2 MOAUIE EXAMPIE......c.eeiiiiiieieriiet et bbbttt 7-3

Listing 7-3 Chain Demonstration Program L ..o e s 7-6

Listing 8-1 Pascal/MT+ PEEK_POKE PrOgram..........ccciurueerineesieesesseeses s sessssnesens 8-3

Listing 9-1 Calling _BDOS FUNCLION B........ecveruiriiieiiiie ettt st sse e et s sbe e se e e e 9-3
Listing 9-2 Calling BDOS FUNCLION.........cciiitiririeieriee ettt et sbe e s et b sbe e e e e e e e eee e 9-4
Listing 9-3 Using INLINE to Construct Compile-time TableS.........ccoeovirenineneere e 9-5
Listing 11-1 Main Program Body for File Transfer Programs. ... 11-2
Listing 11-2 File Transfer with BLOCKREAD and BLOCKWRITEccovvvirienenesenennsreseeeeee e 11-3
Listing 11-3 File Transfer with GNB and WNBc.coviiriniiriereeeseee e 11-4
Listing 11-4 File Transfer with SEEKREAD and SEEKWRITEcccocviviierieieenene e 11-5

Listing 11-5 File Transfer with GET and PUTcoooiiiiiiircnerieeree e 11-6

1. Section
Introduction To Pascal/MT+

The Pascal/MT+ Language

Pascd/M T+ isahigh-level, block-structured, programming languege. It isformally based on the
definition of standard Pascd as described in the International Standards Organization (1SO) standard
7185

The Pascd/MT+ language is a superset of standard Pascd. That is, Pascd/MT+ has all the feaures and
constructs of standard Pascd, as well as enhancements that make it suitable for writing professonal
applications and system-level programs.

The enhancementsfall into four cetegories:

e additional datatypes

* enhanced file handling and input/output capability

e accesses both therun-time and operating systems

e writesmodular programsusing overlaysand chaining

Colledively, these enhancements make Pascd/M T+ more suitable for commercial programmingin
both data processng and red-time antrol applicaions.

The Pascd/MT+ language is also the basis of a mmpl ete software devel opment system that includes
compil ers, linkers, subroutine libraries, and ather programming toals.

Pascal/MT+ Implementation

An implementation of the Pasca/MT+ language is a particular combination of software and hardware
components that can translate the language’ s satements into machine-readable instructions for a target
system.

Software components include the compiler, linker, run-time libraries, and ather tools uch as
asemblers, disassemblers, and symbalic debuggers. Hardware components include microprocesors,
random accessmemory, disk storage, and peripheral devices such as consoles and printers. Thus, there
can be many implementations of the Pasca/M T+ language, ead tail ored for a particular
hardware/software combination.

Every implementation of Pascd/M T+ must suppart al the syntadica constructs of the language and
trand ate language statements in conformancewith the 1SO standard. However, ead implementation
can differ in the way it internally represents data, or organizes and transfersfil es.

Digital Reseach has implementations of Pascd/MT+ for avariety of 8-bit and 16-bit microprocesors
and operating system environments. Because of differencesin the capahiliti es of various
microprocesors and operating systems, not all the extensions of Pascd/M T+ are supparted in ead
implementation.

Pascal/MT+ for CP/M-68K

Pascd/M T+ for CP/M-68K isa complete programming system that includes a compiler, alinker, a
disaseembler, and alarge library of run-time subroutines to help you build better programs faster.

Figure 1-1 ill ustrates the software development processusing the Pascal/M T+ system.

Pascd/M T+ Programmer’s Guide Pascd/M T+ Documentation Set

Source Code
File
Filename.pas

Include
Files

Combnil er

optional
Listing
file

Relocaable
Objed cod file

Filename.o

Paslib
Run-time
Library

Other
Run-time
Libraries

— Linker

Commend File
(program)
filename.68k

Figure 1-1 Softwar e Development under Pascal/M T+

Pascal/MT+ Documentation Set

The Pascd/MT+ Language Programmer s Guide for the CP/M-68K Operating System, cited as
Programmer’ s Guide, contains information about using the compil er, linker, and disassmbler. It
provides general guidelinesfor creaing modular programs using overlays, chaining, and shared
variables.

The Programmer’ s Guide also contains information on advanced programming topics, including how
to write large programs in segments, interfadng Pascd/M T+ programs with assembly language
modules, dired accessto the operating system from Pascad/M T+ programs, and writing your own error
handling routines. Thereis also a set of guideli nes for writing ROM—based code.

The Pascd/MT+ Language Reference Manual, cited as Languege Reference Manual, describes the
Pascd/M T+ language, its g/ntax, and semantics. It is not a programming tutorial. Rather, it is primarily
areference document and should be used in conjunction with the Programmer ’s Guide.

The Pascd/M T+ documentation set assumes you have general experience with computer programming
and pcssbly with standard Pascd. If you are abeginning programmer, or if you are not famili ar with
Pascd, you should refer to the bibli ography of textbodks listed in the Language Reference Manual.

The documentation set also assumes you are famili ar with your own hardware components and
operating system.

Pascd/M T+ Programmer’s Guide Notational Conventions

Notational Conventions
The following rotational conventions are used throughout this manual:
Horizontal dlli psesindicae the immediately preceding item can occur once,
or any number of timesin successon.

Verticd dlipsesindicae an omitted pation of a source program or example;
only the relevant part is shown.

b Represents a blank space

Bradket Source ®de in examples and program listings has a bradket on the left side to
[ill ustrate and emphasizethe block structure of the language.

color

Itemsin color represent literal examples including source mde listings,
sedions of code, or single statements. Also, any system output such as error
messages and system prompts are in color. User input isin boldface olor.

CTRL In the text, CTRL represents a control charader. Thus, CTRL-C means
Control-C. In any listing that shows example mnsole interadion, the symbal
N isthe edo of a control charader.

n A numeric value indicates adedmal number unlessotherwise stated.

nH A numeric value foll owed by the capital letter H indicates the number isa
hexadedmal (base 16) value.

lowercese Variable information in example statementsisin lowercase.

UPPERCASE Words in uppercase ae Pascd/MT+ reserved words or predefined identifiers.
For example, ARRAY, ELSE, RECORD, INTEGER, TEXT, WRITELN.
Names of procedures and sample programs when referenced in the text are
also in uppercase.

This manual also uses the foll owing symbalic convent ions to formally describe the syntax of
Pascd/M T+ statements:

| The verticd bar indicates a dhoice between the items it separates. Y ou
pronouncethe symbal "or . ”

{} Itemsinside aurly braces are optional. Optional items can be repeaed any
number of times.
<> Itemsinside angle bradketsin lowercase letters, or in a wmbination of

lowercase letters and digits separated by a hyphen, represent variable
information for you to seled. These items are described or defined more
explicitly in the text, if necessary.

literals Any item not in angle bradkets or curly braces are literal. Enter them just as

they appea in text.

End of Section 1

2. Section

Getting Started

Hardware Requirements

The Pascal/MT+ system runs under the CP/M-68K operating system using a Motorola MC68000
microprocessor. The compiler and linker need at least 192K bytes of memory, but it is recommended
that your system have 256K bytes to handle large programs.

The size of a program developed with Pascal/M T+ depends on the size of the source code and on the
number of run-time subroutines it uses. For example, compiling, linking, and then using the RELOC
utility on the minimal program TEST1.PAS (described later in this section) generates a command file
of 5K bytes.

Pascal/MT+ System Files

Digital Research supplies the Pascal/M T+ system in avariety of disk formats. When you receive your
distribution disks, be sure to examine the file named READ.ME. Thisfile completely describes the
contents of all the other files on each of the distribution disks.

The Pascal / MT+ system uses a variety of filetypes, described in
Table 1-1.

Table 2-1. Pascal/M T+ System Filetypes

Fil etype Contents

S assembly-language source file for AS68

D S disassembled listing (de fault)

DOC document file; contains printable text in ASCII form

ERR error message file output by compiler

L68 library file; contains subroutines

LIS print file output by compiler

0 relocatable 68K -format object file; contains relocatable object code
emitted by the compiler

PAS Pascal source file; contains source codein ASCI1 form (the compiler also
accepts SRC as a source file type)

TDT temporary initialized data file used by disassembler, DIS68; normally
erased at end of compilation

TNP temporary file used by compiler; normally erased at end of compilation

TRL temporary object file used by disassembler, DIS68; normally erased after
compilation

TSY temporary symbol table file used by disassembler, DIS68; normally erased
a end of compilation

TXT text file; contains text of messages output by compiler

68K command file; runs directly under CP/M-68K

nnn hexadecimal n; used for numbering overlays

Pascal/M T+ Programmer’s Guide Installing Y our System

Installing Your System

The first thing you should do when you receive your Pascal/M T+ system is make a backup copy of all
the distribution disks.

Note: You have certain responsibilities when copying Digital Resear ch products. Read your
licensing agr eement.

When installing your own system, you might find it convenient to copy only specific files from the
distribution disks. The way in which you configure your system depends on its actual hardware
capabilities.

System with Hard-disk Drive

If your system has a hard disk, the easiest way to configure it isto put the compiler files, the linker,
and run-time library files on one logical drive.

The conpiler files are as foll ows:

+ MI68. 68K
+ MI68. 000
e MIERRS. TXT (optional)

The linker and run-time libraries are as follows:

* LINK68 . 68K
» PASLI B. L68
» BCDREALS. L68
» FPREALS. L68

* FULLHEAP . O

System with Floppy-disk Drives

If your system has two floppy-disk drives, you can use one disk for compiling and another disk for
linking. Y ou can use other disks for the programming tools, assorted source code, and examples.

To configure separate disks for compiling and linking, perform the following steps:

1. Install the CP/M-68K operating system, the PIP utility, and atext editor on two blank disks. Label
one disk as the compiler and the other as the linker.

Put the following files on the compiler disk:

« MI68. 68K
e« MI68. 000
e MIERRS. TXT (optional)

2. Put the following files on the Iinker disk:

* LI NK68. 68K

» PASLIB. L68

» BCDREALS. L68
» FPREALS. L68
* FULLHEAP. O

This suggestion is one way of configuring your disks. All the compiler modules must be on one disk.
For simplicity, put al the related rel ocatable files on the same disk.

Note that compiler can run without the error message file MTERRS.TXT. If your compiler disk is
short of space, you can eliminate thisfile.

Pascal/M T+ Programmer’s Guide Compiling and Linking a Program

Compiling and Linking a Program

If you have never used Pascal/M T+ before, the following step- by-step example shows you how to
compile, link, and run a simple program. This example assumes that you are using a CP/M-68K system
with two disk drives and that you are familiar with CP/M-68K.

1.

2.

Put the compiler disk indrive A.

Using the text editor, create afile called TEST1.PAS and enter the following program. Use PIP to
put the file on drive B.

PROGRAM simple example;

VAR
i : INTEGER;

BEGIN

WRITELN('This is just a test);

FORi:=1TOIO DO

WRITELN(i);

WRITELN('A11 Done’)
END.
Now, compile the program with the following command:
A>mt68 b:testl

If you examine your directory, you will see afile named TEST 1.0 that contains the relocatable
object code emitted by the compiler. If the compiler detects any errors, correct your source
program and try again.

Now, log on to drive B, and link the program using the following command:

B>link68t estl,paslib.168

Y our directory will now contain afile named TEST 1.68K that runs directly under CP/M-68K .

To run the program, enter the command:

B>testl

Although the test program shown above is very simple, it demonstrates the essential stepsin the
development process of any program: editing, compiling, and linking.

End of Section 2

3. Section

Using the Compiler

Compiler Organization
The Pascal/MT+ compiler is composed of two files:

« MI68. 68K
+ MI68. 000

When you invoke the compiler, CP/M-68K |oads the root module, MT68.68K, which performs the
initial processing, then chains to the second module, MT68.000, to continue processing.

Compiler Operation
The Pascal/MT+ compiler processes a source-code file in three separate steps called passes or phases.

* Phase 0 checksthe syntax and generates a token file named PASTMP.TOK. Thisfile
contains an inter mediate language (tokenized) version of the sour ce code.

» Phasel generatesatable of the symbolsthat are defined in the source code. The compiler
uses this symbol table when generating the relocatable object-code file in Phase 2.

e Phase2 generatestherelocatable object-codef ile.

The compiler also creates temporary files on the same disk containing the source code file. Under
normal conditions, the compiler deletes the temporary files when finished processing. However, if the
compiler terminates abnormally, the temporary files can remain in the directory.

When you compile the program, make sure there is enough space on the disk, or use the Td option to
specify adifferent disk for the temporary files. See Command-line Options in this section.

Invoking the Compiler
Y ou invoke the compiler with a command line of the form
MT68 < filespec> [<opt ions >]

where <filespec> is the source-code file to be compiled, and the <options> are alist of optional
parameters that control the compilation process.

The compiler can read the source file from any disk. The <filespec> must be in Digital Research
standard filespec format, and end with a carriage return, line feed, and CTRL-Z.

When you create Pascal/M T+ programs, make sure that your text editor does not insert nonprintable
formatting characters in the source file. The compiler cannot process a file containing any nonprintable
control characters except tabs. Some text editors use nonprintable ASCI| characters to control
formatting.

If you do not specify afiletype, the compiler searches for the file with no filetype. If the compiler
cannot find the file, it assumes a SRC filetype, then a PAS filetype. If the compiler still cannot find the
file, it displays an error message and stops processing.

The compiler generates a rel ocatable object-code file with the same filename as the input source
program. The relocatable file has the filetype O.

Compilation Data

The Pascal/MT+ compiler periodically outputs information during Phases 0 and 1 to assure you it is
running properly.

During Phase 0, the compiler outputs a plus sign (+) to the console after scanning every 16 lines of

Pascal/M T+ Programmer’s Guide Compilation Errors

source code.

At the beginning of Phase 1, the compiler indicates the total amount of memory space available. The
compiler also indicates the amount of memory space available after the predefined (internal compiler)
symbols are loaded. This second indication is the amount of memory left for user symbols. Both
amounts are shown in decimal.

During Phase 1, the compiler also outputs a pound sign (#) to the console each time it reads a
procedure or function. At completion of Phase 1, the compiler indicates the total number of bytes
remaining in memory.

Phase 2 generates the rel ocatable object code. During this phase, each time the compiler encounters a
procedure or function, it displays the procedure’s name, its offset f rom the beginning of the module,
and itssizein decimal.

When the processing is completed at the end of Phase 2, the compiler displays the following diagnostic
information:

Li nes : linesof source code compiled
Errors: number of error s detected

Code : bytesof code generated (in decimal)
Bss . bytes of block storage used (in decimal)

Compilation Errors

During Phase 0, when the compiler detects a syntax error, it displays the line containing the error. If
you are using the MTERRS.TXT file, the compiler also displays an error description. In all other
phases, the compiler displays an error identification number.

When the compiler is building the symbol table in Phase 1, over flow occurs if not enough space
remains for the current symbol. Symbol table over flow is a non-recoverable error. Y ou can overcome
the problem by using the $Kn option to eliminate unused symbols from the table (see Source Code
Optionsin this section). Y ou can also try to segment the program into smaller modules and compile
them separately (see Section 7, "Writing Segmented Programs”) .

In all phases, when the compiler detects an error it asks if you want to continue or stop, unless you use
the C command line option. See Command Line Options, in this section.

Note: You must ensure that all the compiler overlays are on the same disk. If the overlay manager in
the run-time system cannot find an overlay, it displays an error message and stops processing.

Usually you can find a missing overlay by ensuring that the filename is correct and that it is on the
disk. If you cannot find it, recopy the overlay file from your distribution disk. If you are sure the
overlay ison the disk and you till get an error message, then the file is corrupted.

When all processing is completed, the ERR file generated by the compiler summarizes all
non-syntactic errors.

Appendix A contains a complete list of the error messages, their causes, and suggested responses.

Compiler Command-line Options

Command-line options control specific actions of the compiler, such as where it writes the output files.
All command-line options are single letters that start with adollar sign ($) or apound sign (#). If you
specify more than one option, do not put any blanks between the options.

Certain options require an additional parameter to specify adisk drive or other 1/0 device.

The command-line options are listed below.

Pascal/M T+ Programmer’s Guide Compiler Command-line Options

B, BCD Representation
The B option tells the compiler to internally represent REAL numbers using Binary Coded Decimal
(BCD) instead of afloating- point format. The default is to represent REAL numbers using floating-
point format. Refer to Appendix D for more information about internal representation of data.

C, Continueon Error
The C option tells the compiler to continue processing the source-code file whenever it encounters an
error. The default isto stop at each error and ask whether to continue or not.

Dd, Disassembled File Location

The Dd option tells the compiler to put the disassembled listing file on the 1/0O device d. d can be any
logical disk drive, A through 0O, or the currently logged-in drive. Y ou can also specify X, the console or
P, the printer. By default, the compiler outputs the disassembled listing file at the console.

Ed, Error FileLocat ion

The Ed option tells the compiler that the error message text file, NTERRS.TXT, islocated on disk d.
d can be any logical disk drive, A through O. By default, the compiler searchesfor MTERRS.TXT
on the default (currently logged-in) disk.

Od, MT68.000 Overlay L ocation
The Od option tells the compiler that the overlay file MT68.000 is located on disk d. By default, the
compiler searches for MT68.000 on the same drive asthe MT68.68K file.

Pd, Print (Listing) File Location
The Pd option tells the compiler to put the print file (L1S) on the I/O device d. d can be any logical disk
drive, A through 0, or the currently logged-in drive, designated by Q. Y ou can also specify X (the
console) or P (the printer) . By default, the compiler does not create a print file.

Q, Quiet Operation
The Q option tells the compiler not to display any unnecessary diagnostic messages on the console. By
default, the compiler displays all diagnostic messages on the console.

Rd, Relocatable File L ocation

The Rd option tells the compiler to put the relocatable object-code file on disk d. d can be any logical
disk drive, A through O. By default, the compiler puts the relocatable object-code file on the default (
currently logged-in) disk.

Td, Temporary File Location
The Td option tells the compiler to put the temporary files on disk d. d can be any logical disk drive, A
through O. By default, the compiler puts the temporary files on the default (currently logged-in) disk.

V, View Procedur es and Functions

The V option tells the compiler to print at the console the name of each procedure and function it
encounters in the source-code file during Phase 0. Such procedure and function names can be useful
for finding errors during Phase 0. By default, the compiler does not print the names of procedures and
functions during Phase 0.

X, Extended Relocatable Object File

The X option tells the compiler to generate an extended rel ocatabl e obj ect-code file containing
encoded source-code line number information. By default, the compiler does not generate this

Pascal/M T+ Programmer’s Guide Compiler Command-line Options

information, and you cannot disassembl e the object-code file. The X option also tells the compiler not
to erase the temporary files at the end of compilation because these files are used by the disassembler.

@, Pointer Character Equivalence
The @ option tells the compiler to treat the @ character as equivalent to the standard pointer reference
character (*) . When you use this option, you cannot use the @ character as the first character in an
identifier. By default, the compiler does not treat @ as equivalent to /.
The following is an example command line:
A>nt 68 a:testprog $rbtbvpp
This command line tells the compiler to read the source-code file from drive A, write the relocatable
object-code file and the temporary filesto drive B, print procedure and function names during Phase 0,
and send the listing file to the printer.
Table 3-1 summarizes the compiler command-line options and their de fault values.
Table 3-1 Compiler Command-line Options
Option Meani ng Def aul t
B Use BCD rather than floating point Floating point binary reals.
binary for real numbers.
C Continue compiling when error is Compiler stops and ask s on each error.
encountered.
Dd Put the disassembled listing on Show disassembled listing on console.
deviced: d=A..0, X,P
Ed MTERRS.TXT file is on disk d:d = MTERRS.TXT on default disk.
A.O
ad MT68 .000 file is on disk d: d = A..O MT68.000 on same disk as MT68.68K.
Pd Put the print (listing) file on device d: No print file.
d=A..0, XP
Q Quiet; suppress any unnecessary Compiler outputs all messages.
console messages.
Rd Put the relocatable object- code file Relocatable file on default disk.
ondiskd:d=A..0
Td Put the temporary files on disk d: Put temporary
d=A.0 files on default disk.
Vv Print the name of each procedure and | Procedure names not printed.
function found in source code during
Phase 0.
X Generate an ex tended relocatable Relocatable file cannot be
object-code file including disassembled and temporary files are
disassembler information; do not erased.
erase temporary files used by the
disassembler.
@ Make the @ character equivalent to @ not equivalent to *
the ~ character.

Note: The A option has no effect as in other implementations; the compiler ignoresit.

Pascal/M T+ Programmer’s Guide Source Code Options

Source Code Options

Source-code options are special instructions to the compiler that you put in the program source code A
source-code option isasingle lower or uppercase letter preceded by a dollar sign, embedded in a
comment The option must be the first item in the comment. Certain source-code options require
additional parameter s.

Y ou can put any number of options in a source program, but only one option per comment is allowed.
Y ou cannot place blanks between the dollar sign and the option letter. The compiler accepts blanks
between the option letter and the parameter.

The source-code options are listed below.

E, Entry-point Record Generation

The E option controls the generation of entry-point recordsin the relocatable object-code file. Enable
the E option using a + parameter and disable it using a— parameter. E+ is the default.

E+ tells the compiler to generate entry-point records for variables, procedures, and functions declared
at the outermost (global) level o f the program. Y ou can reference a global variable, procedure, or
function in a separate module if the modul e uses the same declaration and the reserved word
EXTERNAL .

E- tells the compiler not to generate entry-point records, thus making all variables, procedures, and
functions local to the block where they are defined.

I, Include Files

The | option tells the compiler to include a specified file for compilation in the input stream of the
original program. The compiler supports only one level of file inclusion, so you cannot nest Include
files. The form of the option is

| <filespec>

where <filespec> must be in standard format. If you omit the drive specification, the compiler looks on
the default drive. If you omit the filetype, the compiler supplies the same filetype as the original source
file. If the compiler cannot find thefile, it displays an error message and stops processing. Thefile
must end with a carriage return, line feed, and CTRL-Z.

Kn, Symbol Table Space Reduction

The Kn option tells the compiler to make more room in the symbol table for user symbols by removing
any predefined symbols that are unreferenced in the source program. Examples of predefined symbols
are the Pascal/M T+ reserved words and names of predefined functions and procedures. These
predefined symbols normally take about 6K bytes of symbol table space.

The form of the option is
Kn

where nisan integer parameter ranging from 0 to 15. Each integer corresponds to a different group of
routines as defined in Table 3-2.

Y ou must enter all K options before the reserved words PROGRAM or MODULE in the source code.
Y ou can use as many K options as required, but place only one integer parameter after each letter K.
Note that if the program makes any reference to a symbol removed with the K option, the compiler
issues the following error message:

UNDECLARED | DENTI FI ER
Table 3-2 $K Option Values

Pascal/M T+ Programmer’s Guide Source Code Options

G oup Routines Removed

0 ROUND, TRUNC, EXP, LN, ARCTAN, SQRT, COS, SIN

1 COPY, IN SERT, PO S, DELETE, LENGTH, CONCAT

2 GNB, WNB, CLOSEDEL, OPENX, BLOCKREAD,
BLOCKWRITE

3 CLOSE, OPEN, PURGE, CHAIN

4 WRD, HI, LO, SWAP, ADDR, SIZEOF, INLINE, EXIT,
PACK, UNPACK

5 IORESULT, PAGE, NEW, DISPOSE

6 SUCC, PRED, EOF, EOLN

7 TSTBIT, CLRBIT, SETBIT, SHR, SHL

8 RESET, REWRITE, GET, PUT, ASSIGN, MOVEL EFT,
MOVE R IGHT, FILLCHAR

9 READ, RE ADLN

10 WRI TE, WRI TEL N

11 unused

12 MEMAVAIL, MAXAVAIL

13 SEEKREAD, SEEKWRITE

14 unused on the 68000

15 unused on the 68000

L, P; Listing Controls

The L option controls the listing that the compiler generates during Phase 0. Enable the L option with
the + parameter and disable it with the — parameter. L+ is the defaullt.

The P option starts a new page by placing aform-feed character in the listing file.

R, Run-time Range Checking

The R option tells the compiler to generate run-time code that performs range checking for array
subscripts and assignment to subrange variables. Enable the R option with the + parameter and disable
it with the — parameter. R- isthe default. Refer to Section 9.6 for information on range checking.

T,W; Typeand | SO Standard Checking

The T option controls the compiler 's strict type-checking/non 1SO-standard warning facility. The W
option controls the display of warning messages pertaining to the T option. Enable both options with
the + parameter and disable them with the - parameter. The default value for both optionsis -.

The T+ option tells the compiler to per form strict type checking. If the T and W options are both

Pascal/M T+ Programmer’s Guide

enabled and the compiler detects a non 1SO-standard feature, the compiler displays the message
NON- | SO STANDARD FEATURE

For example, when both options are enabled, string operations generate this message because the
STRING datatypeis non I SO- standard.

X, Exception (Error) Checking at Run-time

The X option tells the compiler to generate code that performs error checking at run-time. Error
checking covers division by zero (both integer and real numbers) and real number over
flow/underflow.

Y ou enable the X option with the + parameter and disable it with the — parameter. By default, error
checking is always enabled in this version. Refer to Section 9.6 for information on run-time error
handling.

The following examples show proper source-code compiler options:

($p)

($e+)

($kO)

($i d:userfile.lib)

For reference, Table 3-3 summarizes the source-code compiler options.
Table 3-3 Compiler Source Code Options

Option Function Defaul t

E+ - controls entry point generation; E+

makes variables and routines either
global or local

I<filespec> includes another source file into
the input stream, for example, ($I
MATH.LIB}
Kn removes predefined routines to save
space insymbo |table (n=0..15)
L+ - controls the listing of source code L+
P enters a form feed in the LIS file
R+/ - controls range checking code R-
T+ - controls strict type checking T-
W +/ - generates warning messages for non - W
ISO standard features
X+ - controls exception checking code X+

Note: The Cn, O, S, and Z options have no effect as they do in other
i npl enent ati ons; the conpiler ignores them

Source Code Options

Pascal/M T+ Programmer’s Guide Conditional Compilation

Conditional Compilation

Pascal/M T+ supports conditional compilation directives so that you can compile alternative versions of
asingle source-code file. Thisfacility can be very useful when compiling large application programs
that are designed to run in different hardware or operating system environments. Y ou can isolate the
environment dependent code and then compile different versions based on some conditional test.

The conditional compilation directives are

o &SET
« &IF
 &ELSE
« &END
+ &MSG

Put conditional compilation directives in the source code as you do for other options. Each directive
begins with an ampersand character (&), and must be in the first column.

You use the & IF and & END directives to delimit the section of source code you want to conditionally
compile. The syntax is shown below.

& F (<variable>)

<source line 1>

<source line n>
[&ELSE]

<al ternate source line 1>

<al ternate source |line n>

&END

If the value of the <variable> is TRUE, the source code in lines 1 through n is compiled. If the valueis
FALSE, the compiler ignores the lines and continues compiling at the line immediately following
&END.

If the value is FALSE and you use the optional & EL SE directive to specify an alternative section of
code, the compiler ignores lines 1 through n, compiles the alternate source code instead, and continues
at the lineimmediately following & END.

Y ou must define the test <variable> using the syntax
6 SET <vari abl e>

The most common way to use conditional compilationisto put several & SET directivesin an Include
file and select the proper version by placing comments around any directives not wanted. To compile a
different version, simply remove the comments.

For example, if the Include file contains the code

(* &SET verl *)
&SET ver 2

Pascal/M T+ Programmer’s Guide Conditional Compilation

the compiler processes the source code delimited by
&l F ver2

&END
However, if the Include file contains the code

&SET ver |
(* &SET ver2 *)

the compiler processes the source code delimited by
&l F verl

&END
The & M SG directive outputs a diagnostic message to the consol e that tells you which section of code
is being conditionally compiled. For example,

&l F ver?2
&VBG Now conpi | i ng version #2

&END
The message must be an ASCI | string not exceeding 80 characters.

End of Section 3

4. Section

Using the Linker

LINK68™ isthe linkage aditor that combines objed-code filesinto a command file. Y ou can also use
LINK68to link a program as a set of overlays (see Overlays,” in Sedion 7).

LINK68 accepts the objed-code fil es produced by Pascd/M T+ compiler and produces an exeautable
filein the 68K command file format. LINK68 also accepts objed-code fil es produced by any CP/M-
68K language processor including AS68, CB68K, and the Digital Reseach C compil er.

LINK68 resolves all references to external symbols and concatenates the objed-code fil es in the order
you spedfy in the mmmand line. The entry point of the resulting command fil e is the first instruction
in the first objed-codefile.

Figure 4-1ill ustrates LINK68 operation.

Object file 1 —»

Object filen

PASLIB Link68 Command file
..... —p Or
OtherLibraries Overlay file

Input
Commandfile —p

Figure4-1 LINK 68 Operation

Run-time Libraries

Althoughthe Pascd/MT+ compil er generates native machine mde, ead implementation requires a
library of run-time routines to handle fil e processng and ather feaures that are not supparted by the
native hardware.

PASLIB

Themain runtime library is cdled PASLIB, for Pascd Library. All 1/Ois per formed and all set
variables are manipulated with PASLIB routines. Console 1/0 is assumed by the initi ali zation routine,
_INI, so the I/O routines are dways loaded. Y ou can avoid this by writing areplacement _INI routine
and linking it before linking PASLIB to resolve the _INI reference

Other Libraries

Other libraries contain routines that are required by any program using red numbersin either BCD or
floating-point format, or per forming cd culations with transcendental functions, or random accessl/O
operations. Table 4-1 summarizes these libraries. Appendix C contains a complete list of the routines
inead library.

Pascal/M T+ Programmer’s Guide Invoking the Linker

Table4-1 Required Libraries

Li brary Contents
BCDREALS BCD real - number routines

FPREALS Fl oati ng- poi nt real - nunber routines
FULLHEAP Mermory managenent routines

Note: You must use LINK 68 to create an executable command file even when a single object-code file
contains no undefined symbols.

Invoking the Linker
Y ou invoke LINK 68 with acommand line of the form:
LINK68 {file=} object-file-1[,0bject-file-2,...0bject-file-n]

where file is the name of the command file you want to create, and object-f ile-1 through object-file-n
are the object-code filesto link.

If you invoke LINK 68 without a command tail, the linker lists the options and returns control to the
operating system.

If you enter afilename to the left of the equal sign, LINK 68 creates the output file with that name. For
example, the command

A>| i nk68 math = sin, cos, tan

creates the command file MATH. However, if you omit the filename to the left of the equal sign,
LINK68 creates the command file using the first filename in the command line and assigns the default
filetype 68K. For example,

A>link68 sin, cos, tan
creates the command file SIN.68K.
LINK68 ignores anything past a backslash (\) character, so you can put comments in a command line.
See the example below.
Errors
When LINK68 detects an error while processing, it returns an error message in the following form:
LI NK68: < Error Message>
Most linkage errors are nonrecoverable and prevent your program from linking. Appendix B contains a
complete list of the LINK68 errors with explanations and suggested user responses.
Redir ecting Output

Normally, LINK68 sends all diagnostic output to the console. However, you can redirect this output by
using the > character in the command line. For example, the command

A>link68 [ten[b:] nyfile.68k = noda, nodb >d: | nknmsgs. t xt
creates MY FILE.68K on drive A, using drive B for the temporary files, and sends the diagnostic
output to the file LNKM SGS.TXT on drive D.

Linker Command-line Options

When you invoke LINK68, you can specify command-line options that control the link operation.

Pascal/M T+ Programmer’s Guide Linker Command-line Options

There are two kinds of options: global and local. Global options apply to the entire link operation.
Local options apply only to the individual files being linked. Y ou enclose both kinds of optionsin
sguare brackets.

Y ou enclose global optionsin square brackets immediately preceding the command filename (if
specified) in the command line. Y ou enclose local options in square brackets immediately following
the filename to which they apply.

Y ou can use spaces between filenames to improve readability in the command line, and you can put
more than one option in square brackets by separating the options with commas. LINK 68 also allows
you to abbreviate an option hame to its shortest unambiguous form.

The command-line options are listed below.

ABSOLUTE
Tells LINK68 to generate an absolute command file with no relocation bits. The default isa
relocatable command file.

ALLMODS
TellsLINK68 to load all modules from alibrary, even if they are not referenced. The default action is
to include only those modules that are actually referenced.

BSSBASE[N]

Specifies the base address for the Block Storage Segment (bss) containing the uninitialized datain
discontiguous programs. n is a hexadecimal value. The default value isthe first even word after the
Data segment. Y ou cannot use this option when linking overlaid programs.

COMMAND

Tells LINK 68 that the following named file contains the rest of the command line. LINK 68 ignores the
rest of the main command line. Nested command files are not allowed.

The format of thisoptionis
COWAND [fi | enane]

where filename is the file containing the rest of the command line.

DATABASE (n)

Specifies the base address of the Data segment in discontiguous programs. n is a hexadecimal value.
The default isthe first even word after the Text segment. Y ou cannot use this option when linking
overlaid programs.

IGNORE

Tells LINK68 to ignore 16-bit address overflow and continue processing. The default action isto issue
an error message and stop processing.

INCLUDE
TellsLINK68 to load an unreferenced module from alibrary. The format for this option is
filenane [|I NCLUDE [nodul e- nane]]

where module-name is the module you want to load.

LOCALS
Tells LINK68 to put local symbolsin the symbol table. The default is no local symbols. LOCALS only

Pascal/M T+ Programmer’s Guide Linker Command-line Options

applies from the point in the command line that it appears.

The NOLOCALS option turns this option of f. Use LOCALS and NOLOCALS in combination to put
local symbols from specific filesin the symbol table. LINK68 always ignores local symbols starting
with L.

NOLOCALS

See LOCALS.

SYMBOLS

Tells LINK68 to put the symbol table in the command file. The default is no symbol table in the
command file.

TEMPFILES[d:]

Tells LINK68 to use drive d for the temporary filesit creates during processing. The default isthe
currently logged-in drive. If you use TEMPFILES, it must precede any input files on the command
line.

TEXTBASE [n]
Specifies the base address for the Text segment t. n is a hexadecimal value. The default is OH. You can
use this option when linking overlaid programs.

UNDEFINED

Tells LINK68 to ignore the presence of undefined symbolsin the input files. LINK68 lists the
undefined symbols, and then continues processing. The default action isto list any undefined symbols
and then stop processing.

The following are examples of LINK68 command lines. Addresses are in hexadecimal.
A>link68 [sym ten{b:]] math = mathmain, mathlib

This command links the files MATHMAIN and MATHLIB into a command file named MATH. It al'so
tells LINK 68 to include the symbol tablein MATH, and place the temporary files on drive B.

A>link68 [conflinkit.inp

This command tells LINK68K to read the command line from the file LINKIT. INP. Note that closing
brackets are not needed. The file LINKIT. INP might contain the following commands:

Iink68 [ab, tex[500], d[2a0d, b[3000]] screen =\ too long scrnsl[I],
iolib[al]

This command creates the file SCREEN from the files SCRNS1 and IOLIB. The command tells
LINK®68 to create SCREEN as an absolute command file with the Text segment starting at 500H, the
Data segment starting at 2AOOH, and the uninitialized Data segment starting at 3000H. It also tells
LINK®68 to include local symbolsfrom SCRNS1 and all the modulesin IOLIB.

Table 4-2 lists the LINK68 options, their abbreviations, and default s.

Pascal/M T+ Programmer’s Guide

Linker Command-line Options

Table 4-2 LINK 68 Command-line Options

Opti on Abbr ev. Purpose Default
ABSA UTE AB generates an absolute file generates relocatable file
ALLMODS AL loads all modules loads only the modules

referenced
BSSBASE[n | B[n] sets base address of bss first even word after Data
] segment segment
COVIVAND Cc gets command line from a file
DATABASE[| O n] sets base of the Data first even word after Text
nj segment segment
| GNORE IG ignores 16-bit address stop; issue error message
overflow
| NCLUDE I'N loads a module
LOCALS LO puts local symbols in symbol | no local symbols
table
NOLOCALS NO turns off LOCALS
SYMBOLS puts symbol table in no symbol table
command file
TEMPFI LES | TEM d:] | puts temporary currently logged-in disk
[d:] files on drive d
TEXTBASE[| TEX] n] sets base of Text segment OH
nj
UNDEFI NED | U ignores undefined symbols lists undefined symbols and

and continue

stop

End of Section 4

5. Section

Using the Disassembler

DIS68 isa utility program that enables you to disassernble the machine code produced by the compiler
into a series of assembly-language instructions. This can be very useful when debugging a program at
the machine-code level.

In order to disassemble a program, you must compile the source code using the Pd and X command-
line options.

The Pd option tells the compiler to generate a print (listing) file with filetype LIS.

The X option tells the compiler to generate an extended rel ocatable object-code file. This extended file
contains the assembly-language code emitted by the compiler, and source-code line number
information in encoded form. The X option also tells the compiler not to erase the temporary files
needed by DI S68.

DI1S68 combines the extended relocatabl e object-code file, the LIS file, and the temporary files (TRL
and TSY) to produce a file showing the assembly-language code generated for each line of source
code.

Figure 5-1 illustrates the operation of DIS68.

Filename. TDT

Filename.TSY

g

Filename. TRL

| o DIS68 Filename.DIS

Filename.o —Pp

Filename.LST

TN N N N
/N N Y

Figure 5-1 DI S68 Operation

Invoking DIS68

DIS68 is automatically invoked when you compile a program with the command-line options Pd and
X. The compiler chains to the disassembler at the end of the compilation. The object-code file, the
listing file, and the temporary files must all be on one logica disk drive.

Y ou can use the Dd command-line option to specify the location of the disassembled listing. The

Pascal/M T+ Programmer’s Guide Errors

location can be adisk file or aPascal/MT+ logical device, CON: or LST:. The default destination is
CON:.. If you specify adisk file, DIS68 supplies the default filetype DIS.

For example, the command
A>mt 68 mathlib $xp

compiles, then disassembles the file MATHLIB and sends the disassembled listing to the console. The
command

A>nt 68 mat hli b $xpbd:

compiles, then disassembles the file MATHLIB, and sends the disassembled listing to the file
MATHLIB.DIS on drive B.

Errors

DIS68 generates an error message whenever it detects an error in the rel ocatable object-code file. Since
the relocatabl e object-code file should not have any errors, continuing at this point produces more
errors because the sequence is off. To correct error s, recompile the program and be sure you are
disassembling Pascal/M T+ code only.

Sample Disassembly

The listings shown below show the source code and the disassembly of a program called PPRIME,
which counts prime numbers.

Pascal/M T+ Programmer’s Guide

Listing 5-1 PPRIME.PAS

PROGRAM
pprime; (* Uses sieve of Eratosthenes *)
CONST
size = 8190;
VAR
flags ‘ARRAY]|O .. size] OF BOOLEAN,;
i,k INTEGER,;
prime INTEGER,;
count INTEGER,;
iteration :IN TEGER;

BEGIN (* Main Program *)
count:= 0;
writeln('Do 10 iterations’);

FOR iteration := 1 TO 10 DO
BEGIN
count := 0;
FILLCHAR(flags,SIZEOF(flags), CHR(TRUE));
FORi:=0 TO size DO
IF flags[i] THEN
BEGIN
prime: =i+i+3;
k:=i+ prime;
WHILE k <= size DO
BEGIN
flags[k]: = FALSE;
k :=k + prime;
END;
count := count + 1;
END
END;
WRITELN(count,” Primes’);
END. (* Main Program *)

Sample Disassembly

Pascal/M T+ Programmer’s Guide

* Address

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00004000
0O0003FFE
00004002
00004006
00004004
00000000
00000000

00000000
00000004

OCOoO~NOOUTR,WNE

L S T T R B N N

PR RPRRPRRPRPRPRRPRRPRPOOO

0000000A

* 151

Listing 5-2 PPRIME.DIS

Opcode Mieunoni ¢ OQper ands
. gl obl _win * external
. gl obl _crl * external
. gl obl _sfb * external
. gl obl _ini * external
. gl obl _Wr'S * external
. gl obl _hit * external
. gl obl flags * external
. gl obl 1 * external
. gl obl k * external
. gl obl prinme * external
. gl obl iteratio * external
. gl obl count * external
. gl obl out put * external
. gl obl fillchar * external

6000 bra 0004

4EB9 | sr _ini
PROGRAM pprine; (* Uses sieve of Eratosthenes *)
CONST
size = 8190;
VAR
flags : ARRAY[O .. size] OF BOOLEAN;
i,k : | NTEGER;
prine : | NTECER;
count : | NTEGER;
iteration . | NTEGER;
BEG N (* Main Program *)
count: = 0O;
33FC nove. w #$0000, count

witeln(Do 10 iterations’);

Sample Disassembly

6. Section

Program Structure at Runtime

Command File Structure

LINK68 creates a command file in the standard CP/M-68K format. Each command file has a 28-byte
header. The header contains the size and starting address for each of the following componentsin the
command file:

* A Text (code) segment containing the program’sinstructions.

» A Data segment containing the program’s initialized data such as arithmetic and string
constants.

» A Block storage segment (bss) for any uninitialized data generated by the program when it
runs. This space is not allocated until the operating system load the command file.

* Anoptional symbol table that defines any symbols referenced by the program.
» Optiona relocation information that specifies the relative relocation of each word within each
program segment, if required.

At the beginning of each module isajump table that contains jumps to each procedure or functionin
the module. The main module aso has ajump to the beginning of the code (first instruction).

Run-time Memory Map

Figure 6-1 shows the memory layout at run-time after CP/M-68K |oads a Pascal/M T+ program into the
Transient Program Area (TPA).

An areareserved for stack space isimmediately below the operating system. First, thereisalexical
stack used by the run-time system to keep track of the lexical level of procedure blocks. Below the
lexical stack isthe user stack (see Figure 6-1).

The default size for the lexical stack is 512 bytes, and the default size of the user stack is 1024 bytes.
Y ou can change both values by altering the file named CPM INI, which isincluded on the distribution
disks.

Free memory is the area from the end of the bss segment to the top of available memory. The heap
grows upward from the low end of free memory, and the user stack grows downward from the high
end of available memory.

Pascal/M T+ Programmer’s Guide

Free
Memory

CP/M-68K bios,bdos,ccp

(system)
¢ Lexical Stack
(512 bytes)
¢ User Stack ¢
Heap

b4

Block Storage Segment

™

Top of Memory

Data Segment

Text Segment

Base Page

Exception Vectors
(system)

Figure 6-1 Memory Layout in Transient Program Area

Stack

Stack

Transient
Program
Area

The compiler always generates recursive code. Return addresses and local variables for all procedures
are stored on the user stack. If recursion is deeply nested and the default stack size istoo small, the

program can overwrite the top of memory. Generally thisis not a problem unless the heap is also very
large. In this case, if recursion continues or the heap continuesto grow, it is possible for the user stack

to overwrite the heap or vice versa.
Note: The run-time system does not perform any checks on memory allocation bounds. If the user

stack overwrites the heap, the program halts with unpredictable results.

Heap

The heap is the area of free memory from which storage for certain variablesis dynamically allocated
and deallocated at run-time. Refer to Section 9 for more in formation about managing the heap.

End of Section 6

7. Section

Writing Segmented Programs

One major advantage of Pascal/MT+ is the ability to write alarge, complex program as a series of
small, independent modules. Y ou can code, test, debug, and maintain each module separately, and
thereby greatly simplify the overall task of program design. The process of breaking a program into
separate unitsis called segmenting.

Pascal/M T+ provides three methods for segmenting programs: modules, overlays, and chaining.

* Modules are separately compiled program sections. Y ou can link modules together to build
overlays, libraries, or entire programs.

* Overlays are sets of modules, linked together as a unit, that load into memory from disk when
aprocedure or function in one of the modulesis referenced from somewhere else in the
program. Overlays need to be in memory only when aroutine in the overlay is called;
otherwise, they remain on the disk. Overlays have hexadecimal filetypes, for example,
PROG.O1F .

* Chaining allows one program to call another and leave datain memory that can be shared by
the new program.

Y ou can use these three features in any combination to produce modular programs that are easier to
maintain and take up less memory than monolithic programs.

If you are not an experienced Pascal/M T+ programmer, you should start by writing programs without
overlays.

Modules

The Pascal/MT+ system lets you do modular programming with little preliminary planning. Y ou can
develop programs until they become too large to compile and then split them into modules. The E
compiler source-code option lets you make variables, functions, and procedures local to the module.

There are two main differences between modules and programs:

* A module must contain at |east one procedure or function. However, a module does not have a
main body of statements other than those contained in procedures and functions.

* Inamodule, the reserved words MODULE and MODEND replace the reserved words
PROGRAM and END.

The following example shows a typical module.

MODULE sample_mod,;

VAR
mainfile : EXTERNAL TEXT;

PROCEDURE echo (st: STRING; times: INTEGER);

VAR
i :INTEGER BEGIN
FOR i:=" 1 TO times DO
WRITELN (mainfile,st)
END;

MODEND.

Pascal/M T+ Programmer’s Guide Modules

Modules can have free access to global variables, functions, and procedures in any other module. If
you want to keep variables, functions, and procedures local to a module, use the E- compiler source-
code option.

Use the reserved word EXTERNAL to declare variables, functions, and procedures that are allocated
in other modules or in the main program. EXTERNAL tells the compiler not to allocate spacein the
module. Y ou can declare externals only at the global (outermost) level of a module or program.

For variables, put the reserved word EXTERNAL between the colon and the type in a global
declaration. For example,

VAR
i,j,k : EXTERNAL | NTEGER; (* in another nodule *)
r : EXTERNAL RECORD ; (* in another nodule *)
X,y . I NTEGER;
st : STRING
END;

For procedures and functions declared in other modules, put the reserved word EXTERNAL before the
word FUNCTION or PROCEDURE. These external declarations must come before the first normal
procedure or function declaration in the module or program. External routines cannot have procedures
and functions as parameters.

Note: The compiler does not type check declarations between modules. Therefore, ensure that the
number and type of parameters match the declarations in the module where the space is allocated. For
functions, the type of the returned value must match.

In Pascal/M T+, external names are significant to seven characters only. Internal names are significant
to eight characters.

Listing 7-1 shows the outline of a main program, and Listing 7-2 shows the outline of amodule. The
main program references variables and subprograms in the module; the module references variables
and subprograms in the main program.

Listing 7-1 Main Program Example
PROGRAM ext er nal _denp;

(* label, constant and type declarations go here *)

VAR

i,j: INTEGER, (* available in other nmodules *) k,l : EXTERNAL | NTEGER,
(* located el sewhere *)

EXTERNAL PROCEDURE sort (VAR q : list; len :INTEGER); EXTERNAL FUNCTI ON
iotest : | NTEGER;

PROCEDURE pr ocl ;

BEG N
IF iotest -1 THEN(* normal external function call *)

END,;

BEA N
sort(...) (* normal external procedure call *)
END.

Pascal/M T+ Programmer’s Guide Overlays

Listing 7-2 M odule Example
MODULE nodul e_denp;

(* label, constant and type declarations go here *)

VAR
i,] EXTERNAL | NTEGER;, (* use those from main program*)
Kk, I | NTEGER, (* define these here *)

EXTERNAL PROCEDURE prod; (* from main program *)
PROCEDURE SORT(...); (* define sort here *)

FUNCTI ON i ot est I NTECGER; (* define iotest here *)

(* maybe ot her procedures and functions here *)

MODEND.

Overlays

Using overlays, you can link programs so that parts of them automatically load from the disk as they
are needed. Thus, awhole program does not have to fit in memory simultaneously. Y ou can use
overlays to store infrequently used modules and module groups that need not be co-resident.

Terminology
The following terms are used when describing overlays:

* Root module: the portion of the program that is always in memory. Root modules have the
68K filetype. A root module consists of a main program, the run-time routines it requires, and,
optionally, the run-time routines that the overlays require.

» Overlay area: an area of memory where the overlay manager |oads overlays. Plan the location
and size of the overlay areas and specify them at link-time.

* Overlay static variables: global variables, or variableslocal to arun-time or assembly-
language routine in the overlay. All Pascal/M T+ modules are recursive. Recursion reduces the
amount of static data. It does not necessarily eliminate it because run-time code linked with
the overlay might contain static data. When you link the overlay, the linker determines the
amount of space required for static variables.

General Overlay Scheme

LINK 68 supports a simple tree-structured overlay scheme with a maximum of 255 overlays. Y ou can
create overlaysto adepth of five levels below the root module. Only one overlay on agiven level can
be memory-resident at atime. LINK68 places all global static data in the root module, no matter where
itisoriginaly defined.

An overlay can reference any symbol in another overlay that is one level aboveit inthetree, or inan
overlay on any level below. An overlay cannot reference any symbol in an overlay on the same level or

Pascd/M T+ Programmer’s Guide Overlays

in an overlay that is more than one level above itself.

Figure 7-1 shows atypicd overlay scheme. In this £heme, overlays A and B can both reference
symbalsin the roat, but overlay A cannot reference symbalsin B because they cannot be coresident.
Overlays B and C can reference symbaolsin each other and the roat, but not in overlay A.

Overlay C

Overlay A Overlay B

Root Module

Figure 7-1 Typical LINK 68 Overlay Sheme

Overlay File For mat

An overlay fil e has the same format as areguar 68K command file. The first word in the header is
always 60IAH. An overlay file can be ather absolute or relocatable. An overlay file can have ay
filetype. The default fil etype is068.

If you usethe SYMBOLS option, LINK68 daces the overlay’s ymbalsin the root module.

If you use the mommon diredive in AS68to spedfy a cmmon areashared by separate overlay
modules, LINK68 resolves all common areas with the same name to the same aldressin the root
module’s bss ggment. If more than one overlay file spedfies gatic storage with the same name,
LINK68 uses the largest sizefor al ocation.

The bss szefor the root moduleis st to contain the aeainto which the overlays are loaded. The
symbal _end isresolved to the top d the overlay area
Linking Overlays

Y ou determine aspedfic overlay scheme by the manner in which you link the programs. That is,
overlays do not require any spedal construct or syntax in the source mde. However, you must ensure
that the root module cntains the overlay manager and loader.

The general form of the command line for linking overlaysis
LINK 68 <root>, <ovimgr>,(<overlay-I>[, <overlay-2>[, .<overlay-n>]])

where <ovimgr> is the overlay manager in the run—time system and <overlay—i> through
<overlay—n> are the overlay modules. The overlay spedfications are dways last in the command line.

For example, the foll owing command creaes the overlay scheme shown in Figure 7-2:

A>l i nk68 nyfile -parta, ovl ngr, (partbl, partb2)

Pascd/M T+ Programmer’s Guide Chaining

Overlay Part B1 Overlay Part B2

Part A
Roat Module

Figure 7-2 Overlay Scheme Example 1

You can nest overlays by nesting the enclosing parentheses in the ammmand line. For example, the
foll owing command creaes the overlay scheme shown in Figure 7—3:

A>l i nk68 nyfile -parta, ovlngr, (partbl, (partb2))

Overlay
Part B2

Overlay
Part B1

Root Module
Part A

Figure 7-3 Overlay Scheme Example 2

Chaining

Chaining all ows one program to cdl another program into memory and transfer control to that
program. Chaining is an implementation—dependent feaure that is not be available on all
implementations of Pascd/MT+ (seeAppendix E, “Writing Portable Programs”).

To chain to another program, you exeaute a c#l to the CHAIN procedure, and passthe name of the file
variable & asingle string parameter.

Sharing Data

There ae two ways that chained programs can share data: shared global variables and absolute
variables.

Using the shared global variable method, you must guaranteethat at least the first sedion of global
variablesisthe ommunicaion area The remainder of the global variables do not need to be the same
in ead program. You must also dedare the shared variables identicdly in eat of the chained

Pascal/M T+ Programmer’s Guide

programs so that they have the same location and size.

Chaining

Using the absolute variable method, you typically define arecord that is used as a communication area;

then place the record at the same absolute location in each module.

Maintaining the Heap

No special facilities are needed to maintain the heap across the chain. However, files cannot remain

open across a chain. If you want to leave something open, you must use overlays, not chaining.

Listings 7—3aand 7—3b list two example programs that communicate with each other using absolute

variables. The first program chains to the second program, which prints the results of the first

program’s execution.

Listing 7-3 Chain Demonstration Program 1
PROGRAM chain_1; (* Program #1 in chain demonstration *) TYPE

comm_area = RECORD

i.j,k INTEGER

END;
VAR

globals ABSOLUTE [$8000] comm_area;

(* this address is arbi trary; *)
(* it may not work on your system *)
chain_file FILE;

title string;

BEGIN (* Main program #1 *)
title := ‘F:CHAIN2.68K’;
WITH globals DO
BEGIN
ii=3;
ji=3;
ki=i*j;
END;
IF IORESULT = 255 THEN
BEGIN
WRITELN(‘Unable to open C
EXIT
END;
CHAIN(chain file)
END. (* End chain 1%

HAIN2.68K’):;

Pascal/M T+ Programmer’s Guide Chaining

Listing 7-3b. chain Denonstration Program 2

PROGRAM chai n_2; (* Program #2 in chain denonstration *)

TYPE
comm area = RECORD
i,j,k I NTEGER

END;

VAR

gl obal s ABSOLUTE [$8000 conm ar ea;
BEG N (* Main program #2 *)
W TH gl obal s DO
WRI TELN(’ Result of ‘,i,’ times ‘,j, ‘is =, Kk)

END. (* End chain_2; return to operating system *)

8. Section

Interfacing Pascal/MT + with Assembly Language Routines

This section describes the conventions for interfacing Pascal/M T+ programs with code written in
assembly language.
Interface Conventions

Both the AS68 assembler and the Pascal/M T+ compiler generate entry-point and external-reference
records in the same rel ocatable object-code format. These records contain external symbol names. The
relocatable object-code format allows up to seven characters in an external name.

To access assembly-language variables or routines from a Pascal/M T+ program, you must follow these
conventions:

* Declare them .globl in the Data segment of the assembly-language module.
* Declare them EXTERNAL in the Pascal/M T+ program.

To access Pascal/MT+ global variables and routines from an assembly—Ilanguage routine, you must
perform the following steps:

» Declare the name .globl in the Data segment of the assembly-language program.
» Declare the variable or routine at the global level in the Pascal/M T+ program.

» Compile the program using the E+ source-code option to generate entry-point records.

The following example shows how an assembly-language module references a variable that is declared
in aPascal/M T+ module.

(* programtest.s *)

.globl pgr (* external variable from pascal program *)
.text

test:

nove.w pqr,d7 (*get contents of pascal integer *)

end
(* Pascal program fragnment *)

VAR (* in globals *)
PQR INTEGER; (* accessible by as68 routine *)

Pascal/M T+ Programmer’s Guide Parameter Passing

Parameter Passing

When you call an assembly-language routine from Pascal/M T+ or a Pascal/M T+ routine from
assembly language, parameters pass on the stack.

On entry to the routine, the top of the stack is a double word containing the return address. The
parameters are below the return address, in reverse order from declaration.

Each parameter requires at least one 16-hit word of stack space. A character or Boolean passes as a 16-
bit word with a high-order byte of 00. VAR parameters pass by address.

Address operands and pointers use two words of stack space. The address represents the byte of the
actua variable with the lowest memory address.

Nonscalar parameters, except sets, aways pass by address. If the parameter is a value parameter, the
compiler generates code that calls_MVL to move the data.

The _SS2 routine handles set parameters. If passed by value, the actual value of the set goes on the
stack. Sets are stored on the stack with the least significant byte on top and the most significant byte on
bottom.

Figure 8-1 shows how atypical parameter list appears on the stack on entry to a procedure. If the
procedure is declared as

PROCEDURE deno(i,j |NTEGER. VAR q STRING c,d CHAR):

then the stack as appears as shown below.

Stack —— > 0 return address (msb)
Pointer +1 return address

+2 return address

+3 return address (Isb)

+4 byte of 00

+5 d

+6 byte of 00

+7 C

+8 address of actual string (msb)

+9 " " "

+10 " " "

+11 address of actual string (Isb)

+12 j (msb)

+13 j (Isb)

+14 i (msb)

+15 i (Isb)

Isb = least significant byte
msb = most significant byte

Figure 8-1 Stack Containing a Parameter List

The assembly-language program must remove all parameters from the stack before returning to the
calling routine.

Nonreal function valuesreturn in the D7 register. Real values return on the stack. They are placed
below the return address before the function returns. Therefore, they remain on the top of the stack
when the calling program reenters after the return.

Assembly-language functions can return the simple types BOOLEAN, CHAR, INTEGER, LONGINT,
or REAL. Assembly-language functions can also return pointers and enumerated types, but cannot
return the structured types STRING, RECORD, or arrays.

Pascal/M T+ Programmer’s Guide Interface Example

Interface Example

Listings 8-1 and 8-2 illustrate the interface between a Pascal/M T+ program and two assembly—
language routines.

The Pascal program performs the PEEK and POKE functions found in BASIC. The assembly-language
module simulates the PEEK and POKE. PEEK returns the byte found at the address passed to it, and
POKE puts the bytes in the specified address.

Listing 8-1 Pascal/M T+ PEEK_POKE Program

PROGRAM peek_poke;

TYPE
byte ptr = "BYTE;

poi nt er kl udge = RECORD
CASE BOOLEAN OF
TRUE (p : byte _ptr);
FALSE: (g : LONG NT)
END;
VAR
choi ce | NTECGER;
bbb BYTE;
ppp poi nterkl udge;

EXTERNAL PROCEDURE poke(b : BYTE;, p byte-ptr); EXTERNAL FUNCTI ON peek(p
byte ptr) : BYTE;

BEA N (* Main Program *)
REPEAT

WRI TE(* Whi ch address?’);
READLN(ppp. q) ;
WRI TE(‘ 1) Peek 2) Poke 3) Exit');
READLN(choi ce) ;
| F choice = 1 THEN

WRI TELN(ppp.q, ‘' contains ', peek(ppp.p))
ELSE

| F choice =2 THEN
BEG N
WRI TE(* Enter byte of data: ');
READLN(bbb) ;
PCOKE(bbb, ppp. p)
END
UNTI L choice =3
END. (* Main Program*)

Pascal/M T+ Programmer’s Guide Interface Example

Listing8 -2. Assembly - Language PEEK and POKE Routines

* PEEK and POKE Routines
*

.globl peek * Entry point for peek routine

.globl poke * Entry point for poke routine

text * Tell assembler we are writing code

*

*

* PEEK — Address to peek is on stack. Return result in D7.
*

peek:
move.| (a7)+,a0 * pop return address
move.| (@rn)+,al * pop address to peek
moveq #0,d7 * clear function return
move.b (al),d7 * get byte fro m memory
jmp (aQ) * return

* POKE - Byte to poke is on top of stack as the lower byte * of a
word.

* Address to poke follows on stack.
*

poke:
move.| (a 7)+,a0 * pop return address
move.w (@n)+,d7 * byte to store
move.l (a7)+,al * address to poke
move.b d7,(al) * poke byte
jmp (a0O) * return

*
.end

End of Section 8

9. Section

Controlling the Run-time Environment

This section describes several Pascal/M T+ features that let you control your program’s run—time
environment. The features provide the ability to

* manage the heap as a standard heap, or as a stack

* access the operating system through direct function calls

* insert machine code into the Pascal/M T+ source code using INLINE
» declare variables with absolute addresses

* addressthe processor’s 1/0O ports

» perform range and error checking

Heap Management
Pascal/M T+ supports two alternative methods for managing the heap: asa standard heapor as a
st ack.

Using the FULLHEAP Routines

Y ou can manage the heap using the | SO—standard routines NEW and DISIOSE asthey are
implemented in the library named FULLHEAP. When you use the FULLHEAP routines,

* NEW assumes a standard heap and dynamically allocates data to the smallest space that can hold
the requested item.

» DISPOSE frees the memory allocated to the requested item.

Using the PASL IB Routines

Y ou can a so manage the heap using the NEW and DI SPOSE routines as they are implemented in the
PASLIB run-time library. When you use the PASLIB routines,

* NEW treatsthe heap area as an ordinary stack. NEW puts the dynamic data on top of the
stack which grows upward from the end of the bss segment.

» DISPOSE performs no function, but isincluded in the symbol-table.

* You can simulate UCSD Pascal’'s MARK and RELEASE routines by using the built-in
routines MRK and RLS, as shown in this example:

MODULE ucsd_heap;

EXTERNAL FUNCTI ON MRK : LONG NT;
EXTERNAL FUNCTI ON _RLS (I : LONG NT);

PROCEDURE mar k(VAR p : LONG NT);
BEG N

p = _MXK
END;

Pascal/M T+ Programmer’s Guide Direct Operating System Access

PROCEDURE rel ease(p : LONG NT);
BEG N

_RLS(p)

END;

MODEND.

LMAXAVAIL and LMEMAVAIL

Y ou can use the predefined functions LMAXAVAIL and LMEMAVAIL to determine the amount of
heap space remaining at any given time. LMAXAVAIL and LMEMAVAIL are not included in
PASLIB. You must explicitly declare them in your program as

EXTERNAL FUNCTI ON LMEVAVAI L : LONG NT;
EXTERNAL FUNCTI ON LMAXAVAI L : LONG NT;

When used in conjunction with the NEW and DISPOSE routinesin FULLHEAP, LMAXAVAIL
returns the size of the largest contiguous block of unallocated free memory. LMEMAVAIL returns the
total of al currently unallocated blocks of memory.

When used in conjunction with the NEW and DISPOSE routinesin PASLIB, LMAXAVAIL and
LMEMAVAIL returnidentical values.

Y ou should always use LMAXAVAIL and LMEMAVAIL instead of the standard PASLIB routines
MEMAVAIL and MAXAVAIL, which return true values only if the total amount of heap space isless
than 32,767 bytes. If the heap space is greater than 32,767 bytes, both MEMAVAIL and MAXAVAIL
return 7FFFH.

_HERR

HERR (Heap Error) is a predefined BOOLEAN variable used by NEW to return the result of an
allocation request. Always use HERR in conjunction with NEW, because the heap management system
does not signal an error if there is no space available when you make an allocation request.

Direct Operating System Access

Y ou can make direct function calls to the CP/M—68K operating system by using the BDOS routine
which you declare in a Pascal/M T+ program as follows:

EXTERNAL FUNCTI ON_BDOS (<func>: | NTECER; <par m>PTR) : | NTEGER,;

<func> is the BDOS function number. Refer to your operating system documentation for the list of
functions. <parm> is a generic pointer. Y ou can use the ADDR function to generate the value.

The following example demonstrates direct access to the operating system in afunction definition. The
function KEY PRESSED returns TRUE if akey is pressed, and FALSE if not.

FUNCTI ON keypressed : BOOLEAN,
BEG N

keypressed := (_BDOS (11, ADDR(keypressed)) <> 0)
END;

Listings 9-1 and 9-2 illustrate calls to BDOS Functions 6 and 23 respectively.

Pascal/M T+ Programmer’s Guide Direct Operating System Access

Listing 9-1 Calling_BDOS Function 6

PROGRAM BDOS 6; (* Use BDOS Function 6 for console |/o *)

(* Since the BDOS call requires a pointer paraneter *)
(* we nmust define a record that allows us to pass an *)
(* INTEGER as a pointer type. In the record, the *)

(* FALSE tagfield occupies the same nenory as the two *)
(* INTEGERS in the TRUE tagfield.

TYPE
ptr = "CHAR;

VAR
i 1 NTEGER;
ch : CHAR
pchar :ptr;

EXTERNAL FUNCTI ON _BDOS(func | NTEGER, parm ptr) | NTEGER;

(* The main program echoes any input character *)
(* at the console until you input a colon *)

BEG N (* Main Program *)
new(pchar) ;
REPEAT
pchar” : = chr (255);

REPEAT (* Read a character *)
ch : = CHR(_BDOS(6, pchar));
UNTIL ch <> CHR(0);

IF ch <> "':" THEN
BEA N (* convert ch to I NTEGER, pass as a pointer *)
pchar” : = ch;
i:= BDOS(6, pchar); (* Wite a character *)
END;
UNTIL ch = *:’

END. (* Main Program *)

Pascal/M T+ Programmer’s Guide INLINE

Listing 9-2 Calling BDOS Function

PROGRAM BDOS_23; (* Use BDOS Function 23 to renane files *)

TYPE
ptr~ = | NTEGER,
fcbl k = PACKED ARRAY [0. .36] OF CHAR

VAR
ol dnane, newnane : STRI NG
fl,f2 . fcblk;

i . | NTEGER;

EXTERNAL FUNCTI ON _BDOS(func | NTEGER, parm: ptr) |NTEGER, EXTERNAL
PROCEDURE _PARSE(VAR f : fcblk; S STRING;

(* _PARSE converts a string into internal *)
(* CPIMfilename format *)

BEG N (* Main Program *)
WRI TE(‘ Enter old filename:’);(* Get the old fil ename *)
READLN(ol dnane) ;
_PARSE(fl, ol dnane);

WRI TE(‘ Enter new filename:’);(* Get the new fil ename *)
READLN(newnane) ;
_PARSE (f2, newnane);

(* Create the FCB required by BDCS call 23 *)
MOVE(f2, fi[16] ,12);

(* Now call the renane function passing pointer to FCB *)
(* containing the old and new fil enanes *)

| F BDOS(23, ADDR(fl)) = 255 THEN

VWRI TELN(* Renane failed. ',oldnane, ‘ not found.’)
ELSE

WRI TELN(*File ' ,oldnane, ‘renaned to ' , newnane);

END. (* Main Program *)

INLINE

INLINE is abuilt-in feature that lets you insert code or datain the middle of a Pascal/M T+ procedure
or function. You can insert small machine-code sequences and constant tables into a Pascal/M T+
program without using externally-assembled routines.

The syntax for INLINE has the form
I NLI NE(<argunent> {/<argument>/... <argunment>})

where <argument> must be either a constant or a variable reference that evaluates to a constant.
<argument> can be of type BOOLEAN, CHAR, INTEGER, LONGINT, REAL, or STRING.

Note that a string in single apostrophes does not generate a length byte, but simply the data for the
string.

Pascal/M T+ Programmer’s Guide Absolute Variables

Variables evaluate to along address. All jumps are relative to the current position in the code segment.

Literal constants of type integer are allocated one byte if the value fallsin the range 0 to 255. Named
and declared integer constants always get two bytes.

Listing 9—3 demonstrates how you can use INLINE to construct compile-time tables. Note that the
ADDR of TABLE must be added to its offset. Thisis because ADDR does not give the address of
TABLE, due to additional code that recursion management produces. An extra eight bytes of code is
generated.

Note also that the procedure TABLE must be in the same module as the statement that takes the
ADDR of TABLE.

Listing 9-3 Using INLINE to Construct Compile-time Tables

PROGRAM demo_inline;

CONST
element = 3; {Third array element}

TYPE
Id_field = ARRAY [1. .8] OF CHAR,;
Id_ptr = ~id_field;
pointerkludge = RECORD
CASE BOOLEAN OF
TRUE :(p : id_ptn);
FALSE: (I : longint);
END;
VAR
table_ptr : id_ptr;
p : pointerkludge;
offset : integer;

PROCEDURE table;

BEGIN
INLINE(‘Digital ' /'Research’ /I'So ftware’);
END;

BEGIN (* Main Program *)

p.p := ADDR(table);

p.l:=p.l+#14;

offset := sizeof(table_ptr*) * (element —1);
p.l := p.l + long(offset);

table_ptr := p.p;

WRITELN(table_ptr?); (* Should write ‘Software’ *)

END. (* Main Program *)

Absolute Variables

Y ou can declare a variable with an absolute address if you know the address at compiletime. The
syntax for declaring ABSOLUTE variablesis

<variable name> : ABSOLUTE [<address>]
The following examples are valid declarations of ABSOLUTE variables:
int : ABSOLUTE [$8000] INTEGER;

Pascal/M T+ Programmer’s Guide Manipulating I/O Ports

screen: ABSOLUTE [$CO ARRAY[O0..15, 0..63] OF CHAR

The compiler does not allocate space in your Data segment for absolute variables. Ensure that no
compiler—allocated var i abl es conflict with the ABSOLUTE vari abl es.

Manipulating 1/0 Ports

Pascal/M T+ supports direct manipulation of the processor sinput and output ports through two
features:

+ INPand OUT
* INPORT-W and OUTPORT_W

INP and OUT

INP and OUT are two predeclared arrays of type BY TE that can be subscripted with INTEGER port
number constants in the range 0 to 255. The syntax is

<variabl e> : = I NP[<I NTEGER const ant >]
QUT[<I NTEGER constant >] := <vari abl e>

OUT can be used only on the left side of an assignment statement. If it is not convenient to use aliteral
constant, you can put the values you want to send out in a CASE statement. For example,

CASE <expressi on> OF
SN : QUT[$NI] :-<val ue 1>

SN2 : QUT[$N2] :-=<val ue 2>
$N3 : QUT[$N3] :-<val ue 3>

where $NI,$N2, etc. are literal constants.

If you assign values from INP to an INTEGER type, use the following construct to zero the high-order
byte:

<variabl e> =(INP[$N] & $FF)
The following examplesillustrate INP and OUT:
QUT[0] : =%$88;
j = INP[portnuni;
INPORT_W and OUTPORT_W

Y ou can also manipulate the processor’s 1/O ports using the function INPORT_W and the procedure
OUTPRT_W. Although they are present in PASLIB, you must explicitly declare them as follows:

EXTERNAL FUNCTI ON | NPORT_W <por t nunber >: | NTEGER) : WORD; EXTERNAL PROCEDURE
OUTPRT_W <por t nurmber >: | NTEGER; dat a: WORD) ;

The following examplesillustrate INPORT W and OUTPORT W:
i nchar :=1NPORT_W portnun;
OUTPRT_W por t num out char) ;
OUTPRT_W $004F, outchar);
Range and Error Checking

The Pascal/MT+ system supports two types of run-time checking: range and error (exception)

Pascd/M T+ Programmer’s Guide Range and Error Cheding

cheding. By default, the compil er disables range dhedking and enables error cheding.

Range checking

Range dheding monitors array subscripts and subrange assgnments. It does not ched when you read
into a subrange variable.

When range chedking is enabled, the compil er generates cdlsto CHK for eat array subscri pt

and subrange assignment. The _CHK routineleavesaBoodea value on the stadk and
error code number 4 (see“Error Chedking’ in this sdion). The compiler generates cdlsto _ERR after
the CHK cdl. If an error occurs, _ERR asks you whether it should continue or abort.

When range chedking is disabled and an array subscript fall s outside the valid range, you get
unpredictable results. For subrange assgnments, the value truncaes at the byte level.
Error checking
By default, the run—time system chedks for the foll owing error conditions:
e integersand red numbersdivided by O
* red number under flow and overflow
e stringoverflow

Therurtime aror cheding routines st internal Boolean flags. At run—time, these flags are loaded
onto the stadk along with an error code. Then, the predefined routine ERR is cdl ed to test the Boolean
flag.

If thereisno error, the flag is FALSE, so _ERR returns to the compiled code and continues exeaution.

If an error occurs, the flag is TRUE and _ERR takes appropriate adion. Table 9-1 summarizes the
error codes asociated with the ERR routine.

Table 9-1 ERR Routine Error Codes

5
c
0]

Meani ng

D vide by zero check

Heap overfl ow check (unused)
String overflow check (unused)
array and subrange check

Fl oati ng poi nt underfl ow

Fl oati ng point overflow

OO WN

The various error conditi ons produce the foll owing results:

e For floating—point underflow, ERR does not print an error message, and the result of the
operation is 0.0.

e For floating—point overflow, ERR printsthe aror message
FLOATI NG- PO NT OVERFLOW

The result of the operation is alarge number.

e For division by zero, ERR printsthe eror message
DI VI DE BY ZERO DETECTED

The result isthe representation of the largest—paossble number.

» For heg overflow, ERR takesno adion and does not print an error message. Y ou should always
test the value of HERRto deted hegp overflow.

e For string overflow, ERR printsthe eror message

Pascal/M T+ Programmer’s Guide Range and Error Checking

STRI NG OVERFLOW (TRUNCATED)
and the string is truncated.

User-supplied Error Handlers

Y ou can write your own _ERR routine instead of using the one supplied with the system. To use your
own version of ERR instead of the one in PASLIB, link your routine ahead of PASLIB to resolve the
referenceto ERR.

Declare your version of ERR as follows:

PROCEDURE_ERR(<error> : BOOLEAN; <error nunber> : |NTEGER);

Y our version should check the <error> variable and exit if it is FALSE. If the value is TRUE, decide
what action to take. Y our version should also use the same values of <error number> listed in Table 9-
1.

/O Error Handling

The run-time routine BDOS does not handle /O errors. However, it returns the CP/M-68K error code
in |ORESULT. You can rewrite_ BDOS, using the supplied assembly-language source, to make more
extensive checks for disk /O errors.

End of Section 9

10. Section

Writing ROM-based Code

The Pascal/MT+ system can generate code for use with or without an operating system. This section
presents some guidelines for writing programs in a ROM-based system.

Note: The guidelines presented here are just a suggestion; Digital Research does not provide detailed
application support for ROM-based applications.

Programs That Use I/O

There are three ways you can write a ROM-based program that performs |/O:

» Useredirected I/O for al READ and WRITE statements. This replaces the run-time character
1/0 routines with user-written 1/0 routines. Refer to the Language Reference Manual.

* Rewrite the GET routine because the read-integer and read-real routines call it. Also, rewrite
the run-time subroutines _ RNC (read-next-character) and _WNC (write-next-character).

* If you want the program to run in atotally stand-alone environment, you must write an
assembly-language module that simulates the CP/M-68K BDOS in your PROM. This routine
can jump around the standard code that simulates the BDOS and can simulate the following
BDOS functions:

* Function 1: Console Input
* Function 2: Console Output
* Function 5: List Output
The function number isin the DO register; the data for output isin DI.

To simulate Function 1, return the datain the DO register. All registers are free to use, and the stack
contains nothing but the return address.

Rewriting the _INI Routine

In a ROM-based environment, you might also want to rewrite the INI routine to shorten or eliminate
the INPUT and OUTPUT FIB (File Information Block) storage, which is needed for TEXT file [/O
compatibility.

Make sure any changesto INPUT and OUTPUT are also handled in RST (read a string from afile) and
_CWT (wait for EOLN to be TRUE on afile).

If your program does not do READLN or WRITELN calls and does not use the heap or overlays, you
can rewrite the _INI procedure in your program as

PROCEDURE _|I NI';
BEG N
END;

Note: The distribution disks include source-code outlines for the _INI, _RNC, "WNC, and GET
routines that you can customize for your ROM-based environment.

Pascal/M T+ Programmer’s Guide Linking Altered Routines

Linking Altered Routines

If you ater any of the standard run—time routines to run in a ROM-based environment, remember to
link them before PASLIB tor esol ve t he references. For exanpl e,

A>l i nk68 user pr og, nywnc, nyrnc, myget, nyi ni , paslib. L68

End of Section 10

11. Section

Sample Pascal/MT + Programs

This section contains sample programs that illustrate various features of Pascal/MT+. The best way to
learn any programming language is to study working examples. Y ou should study the programsin this
and other sections, and cross check with the material in the Language Reference Manual when
necessary. Once you understand the operation of a program, you can modify or enhance it, and thereby
gain further experience with Pascal/MT+.

File Transfer

Listing 11-1 shows the main body of afile transfer program. The main program calls one of four
different transfer procedures that illustrate different ways to implement such afile transfer.

Listing 11-2 shows the transfer program using the BLOCKREAD and BLOCKWRITE procedures.
This program uses untyped files and alarge 2K byte buffer to transfer the data.

Note that the program only works for files whose size is an even multiple of 2K bytes. Thus, if the size
of the sourcefileis 9K, thelast 1K is not written because the variable result is nonzero after the call to
BLOCKREAD. Using a 128-byte buffer guarantees that all the datais transferred.

Listing 11-3 shows the transfer program using the GNB and WNB routines for byte-level access to the

file.

Listing 11-4 shows the transfer program using the SEEKREAD and SEEKWRITE procedures for

performing random access 1/O.

Note that IORESULT returns a 1, indicating end-of-file if the source file does not fill the sector, asin
BLOCK I/O. In this case, the 2K bytes of window variable for <file &> do not fill the sector, and the
last portion of data that does not fill the 2K buffer is never written to the destination file.

Listing 11-5 shows the transfer program using the GET and PUT procedures. This method is slower

than the buffered methods.

Comparison Table

Table 11—1 shows a comparison of the code size, data size, and execution speed for each file transfer
program. The sizes are in decimal bytes, the speed is in seconds, and the size of thefileis 8K bytes.
Each program was run on a 10MHz Motorola M C68000 processor with no wait states, using both a

dual floppy disk and a hard disk system.

Note: Your system might not produce the same values reflected in Table 11-1. However, the relative
sizeand speed di f f erences shoul d be the sane.

Table 11-1 Comparison of 1/0 Methods

Statistics Transfer Method
BLOCK 1/ 0O GN\B/ WNB SEEK 1/ O GET/ PUT

Conpi | ed Code 678 716 718 666
Conpi | ed Data 2258 2260 4306 214
Tot al Code 6428 6448 9170 6204
Total Data 4332 4334 6380 2288
Total Size 10760 10782 15550 8942
Speed

(Fl oppy Di sks) 8.0 10.0 8.0 64.0
(Hard Di sk) 2.0 5.0 3.0 12.0

Pascal/M T+ Programmer’s Guide Program Listings

Program Listings

Listing 11-1 Main Program Body for File Transfer Programs

BEA N (* Main Program *)

WRI TE(* Nane of Source File ? ');
READLN(nane) ;
ASSI GN(fil e_a, nane);
RESET(file_a);
| F 1 ORESULT = 255 THEN
BEGA N
VWRI TELN(* Sorry, cannot open ', nane);
EXIT
END;

VWRI TE(' Nane of Destination File ? ');
READLN(nane) ;
ASSI GN(fil e_b, nane);
REWRI TE(fi | e_b);
| F 1 ORESULT = 255 THEN
BEGA N
VWRI TELN(Sorry, cannot open , nane);
EXIT
END;

(* Call specific TRANSFER procedure *)
transfer(file_a, file_b)

END. (* Main Program *)

Pascal/M T+ Programmer’s Guide Program Listings

Listing 11-2 File Transfer with BLOCKREAD and BLOCKWRITE

PROGRAM fi |l e_transfer_1;

(* Transfer file_ a to file_b using BLOCKREAD and BLOCKWRI TE *)

CONST
Buf fer _size = 2047;
TYPE
paoc = ARRAY[O .buffer_size] OF CHAR
fyle = FILE;
VAR
file_a, file_b : fyle;
name : STRING
buf f er . paoc;

PROCEDURE transfer (VAR source : fyle; VAR destination : fyle);

VAR
result,i : |NTEGER;
quit : BOOLEAN;

BEG N (* Body of TRANSFER procedure *)
i:=1;

REPEAT
BLOCKREAD(sour ce, buffer, resul t, SI ZEOF(buffer), i);
IF result = 0 THEN
BLOCKWRI TE(desti nati on, buffer, result, SI ZEOF(buffer), i)
ELSE quit: =TRUE;
UNTIL quit;

CLOSE(destination, result);
I F result = 255
THEN WRI TELN(' Error closing destination file")
END; (* TRANSFER procedure *)

(* Body of Main Programin Listing | 1-1 *)

Pascal/M T+ Programmer’s Guide Program Listings

Listing 11-3 File Transfer with GNB and WNB

PROGRAM file_transfer_2;

(* Transfer file_a to file_b using GNB and WNB *)
CONST

buffer size = 2047,
TYPE

paoc = ARRAY[L1. .buffer_size] OF CHAR;

text file F ILE OF paoc;

char_file = FILE OF CHAR;

VAR
file_a : text file;
file_b : char file;
name : STRING;

PROCEDURE transfer(VAR source: text file;
VAR destination : char_file);
VAR
ch: CHAR;
result : INTEGER,;
stop_it : BOOLEAN;

BEGIN (* Body of T RANSFER procedure *)
stop it := FALSE;
WHILE (NOT EOF(source)) AND (NOT stop_it) DO
BEGIN
ch := GNB(source);

IF WNB(destination,ch) THEN
BEGIN
WRITELN(‘Error writing character’);
stop_it := TRUE;
END;

CLOSE(destination, result);
IF result = 255 THEN
WRITELN(‘Error closing’)
END; (* TRANSFER procedure *)

(* Body of Main Program in Listing 11 —4 %)

Pascal/M T+ Programmer’s Guide Program Listings

Listing 11-4 File Transfer with SEEKREAD and SEEKWRITE
PROGRAM fil e_transfer 3;

(* Transfer file_a to file_b using SEEKREAD and SEEKWRI TE *)

CONST
buffer size = 2047,

TYPE
paoc = ARRAY[O . buffer size] OF CHAR,
text _file FILE OF paoc;
char _file = FILE OF paoc;

VAR
file_a: text file;
file b : text file;
nanme : STRI NG

PROCEDURE transfer(VAR source: text file;
VAR destination : text _file);
VAR
result,i : | NTECER
stop_it : BOOLEAN;
ch : CHAR

BEG N (* Body of TRANSFER procedure *)
ch:= "A;

result := 0;

i = 0;

VWH LE result <> 1 DO
BEG N
SEEKREAD(source, i);
result := | ORESULT;
IF result = 0 THEN
BEG N
destinati on®™ := source’;
SEEKWRI TE(desti nation,i);
END;
o= 0 +1;

CLOSE(destination, result);
I F result = 255 THEN

WRI TELN(“ Error cl osing destination file')
END; (* TRANSFER procedure *)

(* Body of Main Programin Listing 11-1 *)

Pascal/M T+ Programmer’s Guide Program Listings

Listing 11-5 File Transfer with GET and PUT

PROGRAM fi | e_t ransfer_4;
(* Transfer file_ato file_b using GET and PUT *)

TYPE
char_file = FILE OF CHAR

VAR
file_a, file_b : char file;
name : STRI NG

PROCEDURE transfer (VAR source: char _file;
VAR destination : char_file);

VAR
result . | NTEGER,

BEG N (* Body of TRANSFER procedure *)
VWHI LE NOT EOF(source) DO
BEG N
destinati on® = source®
PUT(desti nation);
CET(source);
END;

CLOSE(destination, result);
IF result = 255 THEN
WRI TELN(“ Error closing destination file’)
END; (* TRANSFER procedure *)

(* Body of Main Programin Listing 11-1 *)

End of Section 11

A. Appendix

Compilation and Run-time Error Messages

This appendix contains alist of the error messages output by the compiler and run—time system.
The compilation errors have the same numbering sequence as described in the Pascal User Manual
and Report, second edition, by Kathleen Jensen and Niklaus Wirth (New Y ork: Springer—Verlag,
1978).

In most cases, the error description is self—explanatory and the user responseis obvious. In certain
cases where the error can occur in more than one context, suggested user responses are given. In
each case, you must correct the error and recompile the program.

Compilation Errors

Table A — Compiler Error Messages

Message Meaning

ERROR # 3
'PROGRAM’ EXPECTED

The compiler expects the reserved word ‘PROGRAM’ in this
context.

ERROR # 5
" EXPECTED

The compiler expects the token 1:1 in this context. This error
can be caused by using an equal sign (~) in a VAR declaration.

ERROR # 6
ILLEGAL SYMBOL (POSSIBLY MISSING ;' ON LINE ABOVE)

The compiler does not allow the symbol in this context.

ERROR# 11
' EXPECTED

The compiler expects the token ‘[* in this context.

ERROR # 15
INTEGER EXPECTED

The compiler expects an integer value in this context.

ERROR # 16
‘=" EXPECTED

The compiler expects the token in this context. This error can
be caused by using a colon (:) in a TYPE or CONST declaration.

Pascal/M T+ Programmers Guide Compilation Errors

ERRCR # 17
' BEG N EXPECTED

The conpiler expects the reserved word ‘BEAN in this
cont ext .

ERRCR # 18
ERRCOR | N DECLARATI ON PART

The conpiler encountered an error in the declaration. This
error can be caused by an illegal backward reference to a type
in a pointer declaration.

ERRCR # 50
ERROR | N CONSTANT

The conpiler encountered a syntax error in a literal constant.
This error can occur when using recursion, or inproperly using
I NP and

ouT

ERROR # 55
' TO OR ‘' DOAWNTO EXPECTED I N FOR STATEMENT

The conpil er expects the reserved word ‘TO or ‘DOMNTO in
this context.

ERROR # 58
ERROR | N <FACTOR> (BAD EXPRESSI ON)

The conpiler encountered a syntax error in the expression.

ERROR # 101
| DENTI FI ER DECLARED TW CE

The conpiler encountered an identifier that is already
decl ar ed.

ERROR # 102
LOW BOUND EXCEEDS H GH BOUND

For subrange types, the | ow bound nust be I ess than or equa
to the high bound.

ERROR # 103
| DENTI FI ER 1 S NOT OF THE APPROPRI ATE CLASS

The compiler encountered a variable name used as a type, or a
type used as a variabl e nane

ERROR # 104
UNDECLARED | DENTI FI ER

The conpiler encountered an identifier that has not been
decl ar ed.

ERROR # 105 SI GN NOT ALLOWED

Signs are not allowed on non-1NTEGER or non- REAL constants.

Pascal/M T+ Programmers Guide Compilation Errors

ERROR # 106
NUMBER EXPECTED

The conpiler expects a nunmber in this context. This error can
occur as the conpiler checks for nunbers in an expression
after all other possibilities have been exhaust ed.

ERROR # 107
I NCOVPATI BLE SUBRANGE TYPES

Types nust be conpatible for subrange conparison and _
a35|gnnant. For exanple, ‘A .. ‘Z is not conpatible with 0.

ERROR # 108
FI LE NOT ALLOWED HERE

Conpari son and assignment of FILE types is not allowed.

ERROR # 109
TYPE MUST NOT BE REAL

The conpiler does not allow the type REAL in this context.

ERROR # 110
<TAGFI ELD> TYPE MUST BE SCALAR OR SUBRANGE

The tagfield in a CASE—variant record nust be a scalar or
subrange type.

ERROR # 111
| NCOVPATI BLE W TH <TAGFI ELD> PART

The type of the selector in a CASE—variant record is not
compati ble with the type of the tagfield.

ERROR # 113
| NDEX TYPE MUST BE A SCALAR CR A SUBRANGE

The type of an array index nust be declared as a scal ar or
subr ange.

ERROR # 115
BASE TYPE MJUST BE A SCALAR OR A SUBRANGE

The base type of a set nust be a declared as a scal ar or
subr ange.

ERROR # 116
ERROR | N TYPE OF STANDARD PROCEDURE PARAMETER

There is an error in the type of a variant when using NEW or
DI SPCSE.

ERROR # 117
UNSATI SFI ED FORWARD REFERENCE

A forwardly decl ared pointer was never defined.

Pascal/M T+ Programmers Guide Compilation Errors

ERROR # 119
FORWARD DECLARED PROCEDURE CANNOT RESPECI FY PARAMETERS

Sel f - expl anat ory.

ERROR # 120
FUNCTI ON RESULT TYPE MUST BE A SCALAR, SUBRANCE, OR
PO NTER

The function is declared with a return value of some nonscal ar
type such as STRING This is not allowed in Pascal / M+

ERROR # 121
FI LE VALUE PARAMETER NOT ALLOWED

FI LE types nust be passed as VAR paraneters.

ERROR # 122
FORWARD DECLARED FUNCTI ON CANNOT RESPECI FY RESULT TYPE

Sel f - expl anat ory

ERROR # 125
ERROR | N TYPE OF STANDARD PROCEDURE PARAMETER

The conpiler encountered an error in the type of a parameter
to a procedure. This error can be caused by not having the
paraneters in the proper order for built—n procedures. It can
al so be caused by attenpting to read or wite pointers,
enunerated types, etc.

ERROR # 126
NUMBER OF PARAMETERS DCES NOT AGREE W TH DECLARATI ON

The nunber of paraneters passed to the procedure does not
mat ch the nunber specified in the procedure’s declaration

ERROR # 127
| LLEGAL PARAMETER SUBSTI TUTI ON

The type of a paraneter passed to the procedure does not match
the corresponding fornmal paraneter in the procedure’s
decl arati on.

ERROR # 129
TYPE CONFLI CT OF OPERANDS

The operands in the expression have inconpatible types.

ERROR # 130
EXPRESSI ON | S NOT OF SET TYPE

EE$ context of the expression requires the type

ERROR # 131
TESTS ON EQUALI TY ALLOWED ONLY

SET types can only be conpared for equality; no other
compari son is all owed.

Pascal/M T+ Programmers Guide Compilation Errors

ERROR # 134
| LLEGAL TYPE OF OPERAND(S)

The operands are not valid for this operator.

ERROR # 135
TYPE OF OPERAND MUST BE BOOLEAN

The operands to AND, OR, and NOT nust be BOOLEAN.

ERROR # 136
SET ELEMENT TYPE MJUST BE SCALAR OR SUBRANGE

An el enent of a set nust be a scal ar of subrange type.

ERROR # 137
SET ELEMENT TYPES MUST BE COVPATI BLE

Al the el enents of a set nust be of a conpatible type.

ERROR # 138
TYPE OF VARI ABLE | S NOT ARRAY

A subscript was specified for a variable that was not decl ared
as ARRAY OF ...

ERROR # 139
I NDEX TYPE |'S NOT COMPATI BLE W TH THE DECLARATI ON

The type of the expression that specifies an array subscript
is inconpatible with the array type.

ERROR # 140
TYPE OF VARI ABLE | S NOT RECORD

This error occurs when there is an attenpt to access a non-
RECORD data structure with the dot operator ‘.‘' or the ‘WTH
stat enent .

ERROR # 141
TYPE OF VARI ABLE MUST BE FI LE OR PO NTER

This error occurs when the pointer reference character follows
a variable that is not of type pointer or FILE

ERROR # 143
| LLEGAL TYPE OF LOOP CONTRCL VARI ABLE

The control variable in an iterative |loop can be only be a
| ocal |y decl ared, non—REAL scal ar val ue.

ERROR # 144
| LLEGAL TYPE OF EXPRESSI ON

The expression used as a selector in a CASE statenment nust be
of non—REAL, scal ar type.

Pascal/M T+ Programmers Guide Compilation Errors

ERROR # 145
TYPE CONFLI CT

The selector in a CASE statenent is not the sanme type as the
sel ecting expression.

ERROR # 147
LABEL TYPE | NCOVPATI BLE W TH SELECTI NG EXPRESSI ON

The selector in a CASE statenent is not the sanme type as the
sel ecting expression.

ERROR # 148
SUBRANGE BOUNDS MUST BE SCALAR

The | ower and upper bounds of a subrange must be scal ar types.

ERROR # 149
I NDEX TYPE MUST NOT BE | NTEGER

An array bound cannot be declared type INTEGER or LONG NT, it
must be a subrange type.

ERROR # 151
ASSI GNVENT TO FUNCTI ON |'S NOT ALLOWED

A val ue cannot be assigned to a function

ERROR # 152
NO SUCH FI ELD I N TH S RECORD

The conpiler cannot find the specified field in the record.

ERROR # 155
CONTROL VARI ABLE CANNCT BE FORVMAL OR NONLOCAL

The control variable in a FOR | oop nust be locally decl ared.

ERROR # 156
MULTI DEFI NED CASE LABEL

A label in a CASE statenent has been defined nore than once.

ERROR # 158
NO SUCH VARI ANT I N THI S RECORD

The conpiler cannot find the specified variant in the record.

ERROR # 159
REAL OR STRI NG TAGFI ELDS NOT ALLOWED

The tagfield in a CASE-variant record nust be a scalar or
subrange type.

ERROR # 162
PARAMETER SI ZE MUST BE CONSTANT

This error occurs when using NEWor DI SPOSE with a variant
that is not a constant.

Pascal/M T+ Programmers Guide Compilation Errors

ERROR # 165
MULTI DEFI NED LABEL

This error occurs when nore than one statenent is assigned the
sane | abel

ERROR # 168
UNDEFI NED LABEL

This error occurs when a declared | abel was not used to | abe
a statenent.

ERROR # 169
ERROR | N BASE SET

The base type of a set nust be a scal ar or subrange type.

ERROR # 170
VAR PARAMETER EXPECTED

This error occurs when an array is passed as a val ue
par amet er .

ERROR # 174
PASCAL FUNCTI ON OR PROCEDURE EXPECTED

rhe fonpiler expects a function or procedure at this |exica
evel .

ERROR # 183
EXTERNAL DECLARATI ON NOT ALLOWED AT THI S NESTI NG LEVEL

This error occurs when an EXTERNAL variable is declared
anywhere except at the outermpbst (global) Ievel

ERROR #206
| LIEGAL REAL NUMBER

The integer part of a REAL constant exceeds the valid range.

ERROR # 250
TOO MANY SCOPES OF NESTED | DENTI FI ERS

There is a limt of 15 nesting levels at conpile tinme. This
i ncludes WTH and procedure nesting. Sinmplify the program and
reconpil e.

ERROR # 251
TOO MANY NESTED PROCEDURES OR FUNCTI ONS

There is a limt of 15 nesting levels at run-
time. This error can al so occur when nore than
200 routines are in one conpiled nodul e.
Sinplify and reconpile.

Pascal/M T+ Programmers Guide Compilation Errors

ERROR # 253
PROCEDURE (OR PROGRAM BCDY) TOO LONG

A procedure generated code that overflowed the internal
procedure buffer. The limt is 4096 bytes. Reduce the size of
the procedure and reconpile.

ERROR # 397
TOO MANY FOR OR W TH STATEMENTS I N A PROCEDURE

There is a limt of 16 FOR or WTH statenments in a single
procedure. Sinplify and reconpile.

ERROR # 398
| MPLEMENTATI ON RESTRI CTI ON

Normal |y used for arrays and sets that are too big to be
mani pul ated or al | ocat ed.

ERROR # 407
SYMBCL TABLE OVERFLOW

There is not enough space left in the symbol table. Use the Kn
conmpi ler option to elimnate unused entry points, or segment
the programinto smaller nodul es.

ERROR # 496
I NVALI D OPERAND TO | NLI NE

Usual | y due to reference that requires address cal cul ation at
run—ti nme.

ERROR # 500
NON | SO STANDARD FEATURE BEI NG USED

This is a warning only and does not prevent the program from
compi | i ng.

ERROR # 998
ERROR | N CONDI TI ONAL COWVPI LATI ON PARAMETER

There is an error in one or nmore conditional conpilation
par anet ers

ERROR # 999
COVPI LER UNABLE TO CONTI NUE DUE TO PREVI QUS ERRORS

It is possible for a programto be syntactically correct and
still have semantic errors that can confuse the conpiler. The
compi ler stops early with this error number. Look carefully at
the line on which the conpilation halts. Make some corrections
and reconpil e.

Pascal/M T+ Programmers Guide

Run-time Errors

Table A—2 lists the error messages reported by the run—time system.
Table A —2. Run —tine Error Messages

STRI NG OVERFLOW (TRUNCATED)

This error occurs when a string constant
is assigned to a variabl e whose decl ared
length is insufficient to hold the
constant.

SUBSCRI PT/ SUBRANGE OUT OF BOUNDS

This error occurs when a subscripted array
reference or a subrange reference is not
within the decl ared bounds.

FLOATI NG PO NT OVERFLOW

This error occurs when a REAL nunber
becones | arger than the | argest possible
nunber that can be represented in internal
floati ng—point form

End of Appendix A

Run-time Errors

B. Appendix

LINK68 Error Messages

LINK68 returns two types of error messages: diagnostic and logic. Both types of error messages
have the following form:

LI NK68: <Error Message>

A diagnostic error prevents your program from linking. Y ou should make the appropriate correction
to your program and try again.

A logic error is a non—recoverable error in the internal logic of LINKG8. If you receive one of these
messages, contact the place you purchased your system for assistance. Y ou should provide the
following:

e Theversion of the operating system you are using.
e A description of your system’s hardware configuration.

» Sufficient information to reproduce the error. Indicate which program was running at the
time the error occurred. If possible, also provide a disk with a copy of the program.

Diagnostic Error M essages

Table B—I list the LINK68 diagnostic errors in alphabetic order with explanations and suggested
USer responses.

Table B-1. LINK68 Diagnostic Error Messages

Message Meaning

LINK68:ILLEGAL CHARACTER: ‘<char>’

The character <char> is not alegal character in the command line. Correct the error and
relink.

LINK68: SYNTAX ERROR, EXPECTED: <item>

Thereisasyntax error in the command line. LINK 68 expected to encounter <item>.
Correct the error and relink.

LINKGS: UNEXPECTED END OF COMMAND STREAM

LINK6S unexpectedly encountered the physical end of the command stream before the
logical end. Check the command line for proper syntax and options.

LINKGS: UNRECOGNIZED OR MISPLACED OPTION NAME: ‘<option>"

The option given by <option> is not avalid LINK68 option, or it is misplaced in the
command line. Correct the error and relink.

LINKGS: HEAP OVERFLOW- NOT ENOUB MEMORY

There is not enough memory for LINK68 to continue processing.

Pascal/M T+ Programmers Guide Run-time Errors

LINKG8: IMPROPERLY FORMED HEX NUMBER: “<num>"

The hexadecimal number h contains an invalid digit. Correct the error and relink.

LINKG8: PARSE END BEFORE COMMAND STREAM END

LINK 68 has unexpectedly encountered the logical end of the command line before the
physical end. Check the command line for proper syntax and options.

LINKGS: CANNOT OPEN <filename> FOR INPUT

Thefile indicated by the variable <filename> isinvalid, or the file does not exist. Check
the filename before you reenter the LINK68 command line.

LINKES: NESTED COMMAND FILES NOT ALLOWED

LINK®68 does not allow you to nest command files. Correct the error and relink.

LINKGS: TOO MANY OVERLAYS

LINK68 allows a maximum of 255 overlays. Examine your program and simplify the
overlay scheme. Reassemble or recompile the source code before relinking.

LINKGS: COMMAND LINE TOO LONG

The command line does not fit on one line. Correct the error by using a command file and
relink.

LINKGS: OVERLAYS NESTED TOO DEEPLY

LINK®68 allows only 5 levels of overlays. Examine your program and simplify the overlay
scheme. Reassemble or recompile the source code before relinking.

LINKG68: CANNOT SET DATA OR BSS BASE WHEN USING OVERLAYS

The BSSBASE and DATABASE options are not allowed when linking overlays. Correct
the error end relink.

LINK68: ILLEGAL REFERENCE TO OVERLAY SYMBOL “<symbol - name>" FROM
MODULE <module- name>

The module indicated by <module—name> contains aiillegal reference to the symbol
indicated by <symbol—name>.

LINKGS: “<symbol - name>" DOUBLY DEFINED IN <filename>

The symbol <symbol—name> is defined twice. The variable <filename> indicates the file
where the second definition occurs. Rewrite the source code and provide a unique
definition for each symbol. Reassemble or recompile the file before relinking.

LINKES: FILE FORMAT ERROR IN <filename>

Thefile indicated by the variable <filename> is not an object file or the file has been
corrupted. Ensure that the file is an object file, output by the assembler or compiler.
Reassembl e or recompile the file before relinking.

Pascal/M T+ Programmers Guide Run-time Errors

L1 NK68: | NVALI D SYMBOL FLAG I N <fil ename>

LINK®68 does not recognize the symbol flags indicated by the variable <filename>. The
fileisnot an object file or it has been corrupted. Ensure that the file is an object file,
output by the assembler or compiler. Reassemble or recompile the file before relinking.

L1 NK68: | NVALI D RELOCATI ON FLAG I N <fi | ename>

The contents of the file indicated by the variable <filename> are incorrectly formatted.
Thefileisnot an abject file or it has been corrupted. Ensure that the file is an object file,
output by the assembler or compiler. If the file is an object file and this error occurs, the
file has been corrupted. Reassemble or recompile the file before relinking.

L1 NK68: NO RELOCATION BITS IN <fil ename>

Thefile indicated by the variable <filename> is not an object file or has been corrupted.
Ensure that the fileis an object file, output by the assembler or compiler. If thefileisan
object file and this error occurs, the file has been corrupted. Reassemble or recompile the
file before relinking.

L1 NK68: WRI TE ERROR ON FI LE: <fil enanme>

The disk to which LINK68 iswriting is full. Erase unnecessary files, if any, or insert a
new disk before you reenter the LINK68 command line.

L1 NK68: READ ERROR ON FI LE <fil ename>

The object file indicated by the variable <filename>, does not have enough bytes. Thefile
either isincorrectly formatted or has been corrupted. This error is commonly caused
when the input to LINK68 is a partially assembled or compiled object file. The
assembler, AS68, and some compilers create partial object files when they receive the
disk full abort message while assembling or compiling afile. Ensure that the fileisa
complete object file. Reassemble or recompile the file before relinking.

L1 NK68: SYMBCL TABLE OVERFLOW

The object code contains too many symbols for the size of the symbol table. Rewrite the
source code using fewer symbols. Reassemble or recompile the file before relinking.

L1 NK68: UNABLE TO CREATE FI LE <fil ename>

Either the output file indicated by <filename> has an invalid drive code, or the disk to
which LINK6B iswriting is full. Check the drive code. If it is correct, the disk isfull.
Erase unnecessary files, if any, or insert a new disk before you reenter the LINK6B
command line.

L1 NK68: UNABLE TO OPEN TEMPORARY FI LE <fil ename>

Either the file, indicated by <filename>, has an invalid drive code, specified by the f
option, or the disk to which LINK68 iswriting is full. Check the drive code. If itis
correct, the disk isfull. Erase unnecessary files, if any, or insert anew disk before you
reenter the LINK68 command line.

Pascal/M T+ Programmers Guide Internal Logic Errors

L1 NK68: UNDEFI NED SYMBOL(S)

The symbol or symbols which are listed one per line on the lines following the error
message are undefined. Provide a valid definition and reassemble the source code before
you reenter the LINK68 command line. If the symbols are not referenced by the program,
you can use the UNDEFINED option in the command line.

Internal Logic Errors
The following list identifies the LINK68 internal logic error messages.

LI NK68: | NTERNAL ERROR | N <pr ochane>

LI NK68: TEXT SIZE ERROR I N <fil enane>

LI NK68: RELATI VE ADDRESS OVERFLOW AT Lx IN <fil enane>
LI NK68: SEEK ERROR ON FI LE <fil enane>

LI NK68: SHORT ADDRESS OVERFLOW I N <fil enanme>

LI NK68: UNABLE TO REOPEN FI LE <fil enanme>

End of Appendix B

C. Appendix

Run-time Library Routines

This appendix describes the run—time library routines that are specific to the implementation for the
Motorola MC68000 microprocessor and the CP/M—68K operating system.

The following tables list the names of the routines and their purposes. Knowledge of what these
routines do can be helpful when you are disassembling a program.

Note: Y ou should not call these routines from your program because Digital Research does not
guarantee parameter list compatibility between releases.

Tabl e C4. PASLIB Routi nes

System Access
_BDGCs Call operating system directly
_CHN Program chaining routine
CHAI' N Pascal interface for
HLT Halt routine; returns to operating system
TIN Run—time initialization
“XJIP Table case jump routine
String Handling Routines
Rout i ne Purpose
_EQD String comparison routine for =
_NED String comparison routine for <>
GTD String comparison routine for >
“LTD String comparison routine for <
"GED String comparison routine for >=
"LED String comparison routine for <=
LBA Load concat string buffer address
T sB Initialize string buffer
oG Concatenate a string to the buffer
- String store
_STR Read a string from afile
_RST Write astring to afile
_WCH Run-time support for strings
PGS
Set Manipulation Routines
Rout i ne Purpose
_EQS Set equality
_NES Set inequality
GES Set superset
L ES Set subset
_SAD Set union
“ssB Set Qifferenc_e
“sMmL Set intersection
N Set membership

Pascal/M T+ Programmers Guide

Internal Logic Errors

_SIN Build singleton set
_BST Build subrange set
_BSR
_EQA Array comparison routine for =
_NEA Array comparison routine for <>
GTA Array comparison routine for >
LTA Array comparison routine for <
"GEA Array comparison routine for >=
:L EA Array comparison routine for <=
Character Manipulation Routines
Rout i ne Purpose
_CCH Concatenate a character to the buffer
_RNC Read next character from afile
VWNC Write next character to afile
"RCH Read a character from afile
" CHW Write a character to afile
"CRL Write anewline character (CR) to afile
Bit Manipulation Routines
Rout i ne Purpose
TSTBI T Test for abit on
SETBI T Turn abit on
CLRBIT Turn abit off
I/0 and File Handling Routines
Rout i ne Purpose
_SFB Set global FIB address
_DWD Set default width and decimal places
_SIA Reset input vector
_SCA Reset output vector
DO Set 1/0 vectors to default addresses
_COWr Read until EOLN is True on afile
_RNB Read n bytes from afile
_VW\B Write n bytesto afile
OPEN File handling routine
BLOCKREA File handling routine
BLOCKVWRI File handling routine
SEEKREAD File handling routine
SEEKWRI T File handling routine
CREATE File handling routine
CLCSE File handling routine
CLOSEDEL File handling routine
G\B File handling routine
V\NB File handling routine
PAGE File handling routine
EQLN File handling routine
EOF File handling routine
RESET File handling routine
REVRI TE File handling routine
CGET File handling routine
PUT File handling routine
ASSI GN File handling routine
PURGE File handling routine

Pascal/M T+ Programmers Guide Internal Logic Errors

| ORESULT File handling routine
corY File handling routine
| NSERT File handling routine
DELETE File handling routine
Arithmetic Routines
Rout i ne Purpose
_MUL Multiply along integer
"RIN Read integer from afile
RDL Read along integer from afile
"WN Write an integer to afile
"RTL Write along integer to afile
_DVL 32—hit DIV software routine
VDL 32-bit MOD software routine

Memory Manipulation Routines

Rout i ne Purpose

MOVELEFT Block move left end to left end
MOVERI GH Block move right end to left right

_NEW Allocate memory for NEW procedure

_DSP Deallocate memory for DISPOSE procedure
MEMAVAI L MEMAVAIL function
MAXAVAI L MAXAVAIL function

LMENAVAI LMEMAVAIL function
L MAXAVA| LMAXAVAIL function

Tabl e C-2. BCDREALSRout i nes

Rout i ne Pur pose
_EQR Real conparison for =
NER Real conparison for <>
"GTR Real conparison for >
"LSR Real conparison for <
~ Real conparison for >=
_GER Real conparison for <=
_LER P B
Fl oati ng- poi nt operations
_XoP g-p p

_RAD Real add

RSB Real subtract
"RML Real nultiply
_RDV Real divide
"RNG Real negate

Real absol ute val ue

_RAB
_QQS Store a real
_FLT Convert integer to float

TRUNC Built-in truncate function

Pascal/M T+ Programmers Guide

| ROUND Built-in round function
Table C-3. FPREAL S Routines

Rout i ne Purpose

EQR Real comparison for =

_NER Real comparison for <>

_GIR Real comparison for >

_LSR Real comparison for <

_CGER Real comparison for >=

_LER Real compasison for <=

_RAD Real add

RSB Real subtract

_RML Real multiply

_RDV Real divide

_RNG Real negate

_RAB Real absolute value

_XOP Floating-point operations

_RRL Read areal from afile

V\RL Write areal to afile

Qs Store area

_FLT Convert integer to float

TRUNC Built-in truncate function

ROUND Built-in round function

SQR Built-in sguare function

SQRT Built-in sguare root function

SI'N Built—in sine function

Ccos Built—in cosine function

ARCTAN Built-in arctangent function

EXP Built-in exponential function

LN Built-in natural log function

Table C-4. FULLHEAP Routines

Rout i ne Pur pose

_NEW Allocate memory from heap
DSP Return memory space to heap

End of Appendix C

Internal Logic Errors

D. Appendix

Internal Data Representation

This appendix describes how Pascal/M T+ internally represents the constants and variables declared
in your programs. Thisinformation is useful when you want to interface Pascal/M T+ code with

assembly language programs (see Section 8).

Each Pascal/M T+ implementation differsin the way it internally represents data. The information
presented here is specific to the Motorola MC68000 microprocessor running under the CP/M-68K

operating system.

Size and Range of Data types

The table below summarizes the size and range of Pascal/M T+ data types for the 68K

implementation.

Table D—I. Sizeand Range of Pascal/M T+ Data Types

Data Type Si ze Range
BOOLEAN 2 bytes FALSE .. TRUE
BYTE 1 byte. 0 .. 255
CHAR 1 byte. 0 .. 255
| NTEGER 2 bytes -32768 .. 32767
LONG NT 4 bytes 32 +32

2% .. 2
WORD 2 bytes 0 .. 65535
BCD REAL 10 bytes 18 total digits, 4 decinmal places
FLOATI NG REAL 8 bytes 107397 . | &%
SET 32 bytes 0 .. 255
STRI NG 1. .256 bytes

Multibyte Storage

All data represented by multiple bytesis stored in memory with the high—order (most significant)
bytefirst. That is, the high-order byte appears at the lowest address; then the other bytes appear at

increasing addresses with the low-order (least significant) byte at the highest address.

Pascal/M T+ Programmers Guide BOOLEAN Representation

BOOLEAN Representation

Pascal/M T+ represents variables of type BOOLEAN using two consecutive bytes. The high-order
byteis stored first. The least significant bit (LSB) in the low-order byte determines the value. If the
bitisO0, thevalueis TRUE; if the bit is 1, the value is FALSE.

o|lmwnr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure D-1. BOOLEAN Representation

BYTE Representation

Pascal/M T+ represents variables of type BY TE using one byte. All the bits are considered
significant.

7 6 5 4 3 2 1 0
Figure D-2. BYTE Representation

CHAR Representation

Pascal/M T+ represents variables of type CHAR using one byte to contain the ASCI I representation.
The most significant bit (MSB) isignored.

o
~Nwmn=z

6 5 4 3 2 1 O

Figure D-3. CHAR Representation

INTEGER Representation

Pascal/M T+ represents variables of type INTEGER in two’s complement form using two
consecutive bytes. The high-order byte is stored first, and the most significant bit (MSB) isthe sign
bit.

o wnr

zq-g

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fi gure D-4. | NTECER Representation

LONGINT Representation

Pascal/M T+ represents variables of type LONGINT in two's complement form using four
consecutive bytes. The high—order byte is stored first, and the most significant bit (MSB) isthe sign
bit.

Pascal/M T+ Programmers Guide WORD Representation

1 0 9 8 7 6 5 9 8 7 6 5 4 3 2 1 0

Figure D-5. LONG NT Representation

WORD Representation

Pascal/M T+ represents variables of type WORD using two consecutive bytes. The high-order byte is
stored first. All the bits are considered significant.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Figure D-5. WORD Representation

REAL Representation
Pascal/M T+ represents variables of type REAL using two different formats:

» Fixed-point variables use the Binary Coded Decimal (BCD) format. Fixed—jpoint numbers
are decimal numbers that have a fixed total number of digits and a fixed number of digitsto

the right of the decimal point.

e Floating—point variables use the Institute of Electrical and Electronic Engineers (IEEE)
double precision format. Floating-point numbers are very large or very small numbers
expressed in scientific notation with a mantissa and an optionally signed integer exponent.

BCD For mat
The BCD format uses 10 consecutive bytes with the high-order byte stored first.

1 2 3 4 5 6 7 8 9 10
bjp|pb|b|b|D|D|D|D|D|D|D|D D|D|D|D
1({2(3|4|5|6|7|8]9|1|1|1|1|1 1(1|1|1]SI&N

0|1](2]3]4 516|178

Figure D-7. BCD REAL Representation

In bytes 1 through 9, the decimal digits are packed two to a byte. That is, each digit occupies four
bits. Byte 10 is reserved for the sign, with O for positive, and FF11 for negative.

Thereisan implicit decimal point immediately preceding byte number 8, so the BCD format can
represent a number with 18 total digits and 4 digits to the right of the decimal point.

|EEE Format

Pascal/M T+ represents floating-point binary data using the | EEE double—precision format. This
format uses eight consecutive bytes, with the 64 bits containing the following fields: a 52— bi t
mantissa, an 11—bit exponent, and a sign-bit. Theleast si gni fi cant byte of the
mantissa is stored at the hi ghest nenory address.

S Exponent Mant i ssa

Pascal/M T+ Programmers Guide REAL Representation

63 62 52 651 0
H gher Menory ------------ EN

Fi gure D-8. Doubl e-precision Floating-point Format

The doubl e-precision format nornalizes floating—poi nt nunbers so
the nost significant bit of the mantissa is always 1 for nonzero
numbers. Because the most significant bit of the mantissa must be 1 for nonzero numbers, this bit is
not stored. Thisis called using an implicit normalized bit. The binary point is considered to be
immediately to the right of the normalized bit.

In the double—precision format, the exponent has a bias of 1023 (decimal) or 3FF (hexadecimal) so
400 represents an exponent of +1 while 3FE represents an exponent of -1.

Suppose a doubl e-precision floating—point binary nunber appears in nenory as the
ei ght -byt e val ue:

CO 43 CO 00 00 00 00 00

hi gher nemory —->

You can visualize this value as a string of 64 bits in the form
c o 43 CO0OO0OOUOOTUOUOTOTDWO

1100 0000 0100 0011 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000
The high—order bit equal to 1 indicates the sign is negative.

c 0 4 3Cco
1100 0000 0100 0011 1100 0000 .

Ignoring the sign bit yields a biased exponent value of

4 0 4
0100 0000 0100
N

s (ignored)

Subtracting the bias (3FF) from the exponent 404 gives atrue binary exponent of 5.
Restoring the implicit normalized bit to the mantissa produces the bit pattern shown below:

3 C 0 ..
0011 1100 0000
1001 1110 0000
N

inmplicit normalized bit (restored)

Because the binary point is one position to the right of the implicit normalized bit, the value of the
mantissais
1 001 1110 0000

N

Since the true binary exponent is 5, the binary point must be shifted to right 5 places, giving a new
value to the mantissa as shown below:

1001 11 10 0000
N

To calculate the value represented by the mantissa, multiply by the true binary exponent, which is
now 2 because the binary point has been shifted to the right.

Pascal/M T+ Programmers Guide Array Representation

(22+2+2+2+2)*2=32+4+2 +1+1/2)*1=39.5
Thus, the eight-byte value
00 00 00 00 00 CO 43 CO
is the double-precision float—nbinary representation of the decimal number -39.5.

Array Representation

Pascal/M T+ represents variables of type ARRAY in row-major order. Figure D—9 shows the
storage for the declaration:

A. ARRAY [1. .3, 1. .31] OF CHAR

byte number

00 01 02 03 04 05 06 07 08

ALY | A2 | A3 | A1 | AR2] | AR3] | ABL | AB2 | AS3S3]

High memory ->

Figure D - 9. Storage for Arrays

Logically, thisisaone-dimensional array of vectors. In Pascal/MT+, all arrays are logically one-
dimensional arrays of some type.

Set Representation

Pascal/M T+ represents variables of type SET using 32 consecutive bytes with each element of the
set using one bit. The low-order bit (bit 0) of each byte isthe least significant bit in the byte.

Figure D-10 shows the storage for the set A. .Z. Thefirst element in the set is capital A, which
occupies position 65 in the ASCII collating sequence (see Appendix F). Thus, the first bit in the set
ishbit 65, thefirst bit in byte 8. The last bit in the set is bit 90, which isbit 2 in byte 11, and
corresponds to capital Z.
Byte Number
[00 [O1 [02 [03 [04 [05 06 07 [08 [09 [0a | Ob][Oc]| 0d] Oe [Of [10 [..1f|
[00 00 [00 [00 [00 [00 [00 [OO | ff | ff [ff |07 | 00 | 00 [00 | 00 | 00 | 00 |
Higher memory ->

Figure D-10 Storage for the Set A .Z

Static Data Allocation

Pascal/M T+ allocates space for variablesin the order you declare them. The exception is variables
appearing in an identifier list before atype. These are alocated in reverse order. For example, given
the declaration:

VAR
a,b,c : INTEGER

cisallocated first, then b, then a.

Global Variables

Pascal/M T+ stores global variables contiguously with no space |eft between one declaration and the
next. For example, given the declaration

VAR
a . INTEGER,;
b : CHAR;
i,k :BYTE;

Pascal/M T+ Programmers Guide

| . | NTEGER;
p © N NTEGER;

Pascal/M T+ stores the variables as shown below:

00 01 02 03 04 06 08

10

11

12

Static Data Allocation

14

A A 0 b k i i
[nsb] | [Isb]

[msb]

L
[Isb]

p
[msb]

P
[Isb]

H gher nenory ->

Fi gure D-11 Contiguous Variabl e Storage

Local Variables

All local variables are allocated on the stack. If asingle-byte variable (BY TE or CHAR) fallson an
odd byte boundary, the compiler pads the variable with one byte and alignsit on aword boundary to

improve code efficiency.

End of Appendi x D

E. Appendix

Writing Portable Programs

This appendix describes certain features of Pascal/M T+ that are not portable to other
implementations. This does not mean that these features are not available in other implementations,
but only indicates that if they are available, they are implemented differently.

If you want to write portable programs, you should avoid using the implementati on-dependent
features listed below, but if you do, isolate them so that they are easy to locate and modify when you
port the program.

Hardware-dependent Features

All the following Pascal/M T+ features depend on detailed knowledge of a particular processor’s
architecture and native instruction set.

ABSOLUTE variable addressing
INLINE

INTERRUPT procedures

I/O port addressing

Redirected I/O

System-dependent Features

All the following Pascal/M T+ features either depend on a particular implementation’s run-time
system or operating system’s file structure. Thus, they can vary from one implementation to another.

logical device names such as CON: and RDR:
the values returned by IORESULT

chaining from one program to another

having overlays call other overlays

dependence upon EOF for non—TEXT files. Some operating systems keep track of how
much dataisin the file to the exact byte, while others only keep track to the sector/block
level, and the last sector/block can contain uninitialized data.

BLQCKREAD/BLOCKWRITE depends on knowledge of the correct allocation block size
in the BIOS. Use SEEKREAD/SEEKWRITE instead.

temporary files

In general, if compliance with the 1SO standard is desired, you should avoid using variant records
that circumvent type checking.

End of Appendix E

